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Abstract: Forest fires are undesirable situations with tremendous impacts on wildlife and people’s
lives. Reaching them quickly is essential to slowing down their expansion and putting them out in
an effective manner. This work proposes an optimized distribution of fire stations in the province of
Valencia (Spain) to minimize the impacts of forest fires. Using historical data about fires in the Valencia
province, together with the location information about existing fire stations and municipalities, two
different clustering techniques have been applied. Floyd–Warshall dynamic programming algorithm
has been used to estimate the average times to reach fires among municipalities and fire stations
in order to quantify the impacts of station relocation. The minimization was done approximately
through k-means clustering. The outcomes with different numbers of clusters determined a predicted
tradeoff between reducing the time and the cost of more stations. The results show that the proposed
relocation of fire stations generally ensures faster arrival to the municipalities compared to the current
disposition of fire stations. In addition, deployment costs associated with station relocation are also
of paramount importance, so this factor was also taken into account in the proposed approach.

Keywords: fire prevention; artificial intelligence; k-means; DBSCAN; Floyd–Warshall

1. Introduction

Fires are a tremendous threat to both urban areas and natural ecosystems, often leading
to chaotic, even critical situations. Since forest fires represent a problem for climate change,
it is worrying that these natural disasters have increased in recent decades. Early fire
warning systems allow one to fight against these natural disasters. They are mostly based
on camera surveillance applications in home monitoring [1,2], or wireless sensor networks
for large green areas [3,4]. Exhaustive surveys on different technologies used for forest fire
detection have been carried out during the last few years [5]. Wireless sensor networks [6]
and mobile ad hoc networks [7] are two significant techniques in the context of firefighting,
whereas drone swarms have also been recently proposed for both fire detection and fire
extinguishing [8]. In addition, the strengths and weaknesses of fire detection systems based
on optical remote sensing are deeply analyzed in [9], those including sensors placed on the
ground, in the air and in outer space.

However, prevention is better than a cure, so fire prediction techniques may help to
identify which areas that are at higher risk of fires. For example, Guldaker [10] found and
predicted risk areas for residential fires based on geo-visualization techniques. Regarding
forest fire prediction, parameters such as previous weather conditions, humidity and
cumulative precipitation can offer a risk estimate by means of artificial intelligence methods,
such as support vector machines and artificial neural networks [11,12], and fire ignitions
caused by negligence and pyromaniacal behavior can also provide valuable information in
the prediction [13].
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Above-mentioned factors, along with population density and accessibility limitations,
are commonly included when defining prevention planning and emergency management
for forest fires [14]. Orography complexity has also been analyzed to develop projec-
tive geo-referencing algorithms for decision support aids for fire risk evaluation and
monitoring [15].

In general, the placement of fire stations plays a major role on the effectiveness
provided by the fire department [16]. Localization requirements are different depending on
the scenario [17]. Travel times from fire stations are always critical, but even more so when
the fire is located in the surroundings of a petrol station [18] or in high-density population
areas [19,20].

Several previous works made use of geographic information systems (GIS) for aiding
fire service optimization [21]. GIS has also been used to calculate the optimized route based
on distance and time of travel, slope of the roads and delays [22,23], and to minimize the
total cost by mathematical models which include proper features of the area under analysis
as the location in earthquake zones [24]. Related to this, fire simulations with forest harvest
scheduling techniques have also been proposed to model schedule management activities
and optimize them to mitigate wildfire damage [25]. When optimizing management
activities, not only are heuristic methods used, but operational and fuel consumption
reasons are considered too.

The determination and optimization of fire stations’ locations is a crucial task to
improving the emergency coverage. Different approaches have been studied, such as
constraint-based solutions to generate the Pareto frontier to explore alternative fire sta-
tion location scenarios [26]; hierarchical covering models to deploy macro and micro fire
stations according to different capacities [27]; mixed-integer linear programming models
which consider multiple regions and vehicles average utilization to calculate demand
types [28]; and multiple criteria decision analysis to be applied after mergers of different
fire brigades [29].

Fires in the Mediterranean basin include a significant percentage of the total fires
occurring worldwide [14,30,31]. In particular, during the last decade, the province of
Valencia in Spain has suffered some extremely serious fires. So much so that, in 2012,
Valencia province suffered two devastating fires: one in the municipality of Cortes de Pallás
and the other one in Andilla. The first one is considered the most catastrophic fire of the 21st
century in Spain, which burned more than 30,000 hectares. Even so, Andilla’s fire was not
less important, because it is considered the third most destructive fire of the century [32]. In
total, adding both, it is estimated that about 20 municipalities were affected [33]. Although
there was already some work on fire prevention done by the Valencian Government,
also known as Generalitat Valenciana (GVA), such as their integrated system for forest fire
management (SIGIF) [34], these fires might have increased the awareness level in this field.

In this context, the aim of this paper is to propose a new redistribution of forest fire
stations in the province of Valencia in order to optimize their locations by means of artificial
intelligence techniques. An intelligent relocation of stations could maximize the protection
of villages while reducing the wildfires’ impact in the environment. The proposed approach
is aimed at avoiding the fast spread of forest fires through reducing the time it takes to
reach them. The time to reach a fire may be straightforwardly reduced by increasing
the number of stations, but this would also imply high deployments costs. This paper
aims to find a balance between shortening the arrival time and avoiding high investment
costs due to station redistribution. To this end, the minimization of arrival time was done
approximately by a clustering algorithm. The outcomes of applying k-means clustering
with different numbers of clusters determined a predicted tradeoff between reducing the
time and the cost of more stations.

2. Materials and Methods

This section presents first how the information about the municipalities in the province
of Valencia is represented to enable its processing in the proposed approach. We refer
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to this step as land mapping. After that, the representation of fire data is described by
means of a matrix. Then, the bases for the two clustering methods used in the proposed
approach are detailed, and the algorithm to calculate the distances between the different
municipalities and from them to their nearest fire station is described.

2.1. Land Mapping

Figure 1 represents the province of Valencia and its surrounding provinces. The
first step is to represent the region of interest in a way that is useful for carrying out
the proposed optimization of station positions. Considering the extension of the land,
which is 10,763 km2, it was decided to select 266 points within the province, one for each
municipality in the province. These points were selected according to two conditions: (1)
they had to belong to the urban area of their corresponding municipality and (2) they had
to lie on a main street or road. From a set of points that met these criteria for the same
municipality, a representative point was chosen randomly.

Once the points were selected, a directed graph was used, wherein the province’s
municipalities and corresponding points are its vertices, and their edges are the distances
between them. At the same time, an identifier ranging from 0 to 255 was assigned to
each municipality, so that a 266× 266 matrix M representing the graph distances could be
established. In this way, to find out how long it takes to go from point 0 to point 1, the
position (0,1) of the matrix M must be looked at.

Figure 1. Shape of the province of Valencia.

The next step was to obtain the distance between each pair of municipalities (i.e., the
entries of M). To this end, widely used online map applications such as Google Maps
are very useful, where time and distance are easily obtained by defining the starting and
finishing points. After the application returns time and distance of paths, only the fastest
given path is selected. In case two paths have the same duration, the shortest one is
selected. However, note that if that mechanism is followed, there would be more than
70,000 application requests to be done (more specifically, 265 for each municipality), which
would result in a very cumbersome task. For this reason, instead of complete routes
between municipalities, point-to-point distances was used. Here is an example to illustrate
how point-to-point measurements are done. Figure 2 represents in a realistic map the
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fastest route between the two villages of Navarrés and Bicorp. It can be observed that,
since the route passes through the urban area of another village (Quesa), the time to go
directly from Navarrés to Bicorp was be requested; rather, it was calculated as the sum of
the time to go from Navarrés to Quesa and the time to go from Quesa to Bicorp. Following
this reasoning, algorithms aimed at finding the shortest paths between all the points on a
map could be used, in order to provide accurate results.

Figure 2. Shortest path between Navarrés and Bicorp.

The following step was aimed at preparing the data for the subsequent execution of
the clustering method. The province was then represented by means of a new matrix P,
which, in this case, allowed us to map each municipality to a matrix position according to
its actual location. As shown by Figure 1, the province of Valencia does not have a regular
(e.g., square or rectangular) shape, which would naturally fit within a matrix structure,
even less since the region named El Rincón de Ademuz also belongs to it. For this reason, it
is assumed that the matrix P will be not only composed of cells from the whole area of the
province, but also of certain regions of the adjacent provinces, taking into account the big
sea area covered by it as well.

To establish the boundaries of the matrix, four villages were considered: the most
north-lying (Castielfabib), the most south-lying (Bocairent), the most east-lying (Oliva) and
the most west-lying (Villargordo del Cabriel). After that, both the width and the height of
the matrix had to be determined. On the one hand, the distance along the north–south axis
was measured as the distance in a straight line between the latitude of Castielfabib and the
latitude of Bocairent, fixing the same longitude for both coordinates. On the other hand,
the same system was used for the east–west axis, but just exchanging latitude by longitude
and considering Oliva and Villargordo del Cabriel. The territory was into square areas
or cells, which were mapped to the entries of a matrix P, considering a correspondence
between the east–west axis and the matrix columns, and between the north–south axis
and the rows. As a result, the top left and bottom right corners of the map are represented,
respectively, by the (0,0) and (255,255) matrix positions.

It was observed that the target region is around 150 km long and 117 km wide. To
avoid the usage of large matrices, square areas of quasi 7.5 km2 were defined, resulting
in a matrix P of size 55× 43. The cell size was selected because of the following reasons.
Assuming a straight line running through the cell horizontally or vertically, the line would
be approximately 2.7 km long. Taking this into account, and for an average road speed of
100 km/h, the line could be traveled from end to end in less than two minutes. Obviously,
the roads are not completely straight in reality, so it could be assumed that it takes about
two minutes to go through a cell, as is shown by Figure 3. In reality, the route between
Ayora and Teresa de Cofrentes takes about four minutes. According to the assumptions
made, a two-cell journey should cost the same. That is why this cell size is considered to be
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a suitable way to map the territory, since it has a certain extension, but it can be crossed
quickly under normal circumstances.

Figure 3. Small part of the province divided as the matrix P would do. The numbers at the bottom
indicate the column numbers and those on the right the row numbers. Painted in red, there is the
road linking two villages: Ayora and Teresa de Cofrentes.

In this way, each municipality was assigned to the matrix entry in P according to its
corresponding point’s location. It can happen that, in some cases, the point is right on the
border between two or four square areas. In that case, the matrix position must be assigned
to guarantee that most of the urban area of the municipality is located in that square area.
Applying this method, every municipality would have its corresponding coordinates with
a certain reliability.

2.2. Management of Fire Data

Although the GVA has a larger fire archive, only the fires that occurred between the
1st of January 2000 and the 31st of December 2015 have been considered in this work. Data
have only been chosen in this time interval, because the information from some regions
was missing when going back in time, and from 2016 on, there were still some fire reports
that were incomplete.

To organize the necessary information, each fire was assigned to the municipality in
which it started. The matrix P was used to organize the number of fires in each municipality
too. Thus, if, for instance, 15 fires began in the village linked to the matrix P position (10,10),
the matrix entry would have the value 15, representing the fires that began at the mentioned
position. To adapt this problem to the algorithms, the fires in each municipality would act
as data points and each fire station would correspond to a cluster. Therefore, varying the
number of clusters would change the number of fire stations in the same way.

2.3. Data Clustering Algorithms

Clustering is a widely known type of unsupervised learning technique in the field of
machine learning [35]. It may be useful when there is no labeled data. Several clustering
algorithms are found in the literature [36]. Next, we detail two of these algorithms which
have been used in the proposed approach of this paper: a partition-based clustering
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algorithm which needs the initial number of clusters (k-means),and a density-based one
(DBSCAN).

2.3.1. Partition-Based Clustering: k-Means

The k-means clustering algorithm is one of the many existing algorithms where the
clustering process consists of partitioning a set of data points into subsets of clusters, so
that points within the same cluster are similar to each other, while those are not that similar
belong to other clusters [37]. k-means has been widely used in multimedia programming,
computer vision and machine learning for vector grouping and quantification [38].

The standard k-means method, also known as Lloyd’s algorithm, is an iterative
refinement method that effectively minimizes the distance between each point and its
assigned cluster center (centroid) [39]. This method requires as input parameters the
number of clusters (k) and the distance metric that will be used (in our case, the squared
Euclidean distance).

The set of n samples is denoted as X, which are assigned to k disjoint clusters C. The
k-means algorithm is first initialized with k random seeds to choose the initial centroids.
Then, two steps are iteratively performed: assignment and refresh. The assignment step
finds the nearest cluster for each point by checking the distance between that point and
each centroid. The refresh step recalculates the cluster centers based on the average of all
data points assigned to each centroid. Hence, k-means aims to calculate the centroids such
that variance is minimized (i.e., the within-cluster sum of squares is minimized):

n

∑
j=0

min
µi∈C

(||xj − µj||2) (1)

where µj is the mean of the samples in cluster (centroid of cluster Cj). Thus, the distance
between each point and the centroid is obtained. Centroids are iteratively recalculated
and all data points are relabeled until no significant changes in the centroids location are
observed at the new step.

2.3.2. Density-Based Spatial Clustering: DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is another
well-known clustering algorithm commonly used in machine learning [40]. In contrast
to k-means, this technique does not initially require one to set the number of clusters (k),
since DBSCAN groups together points close enough to be considered a cluster, if there is a
minimum number to form one.

DBSCAN requires two parameters to define the density: the maximum distance
between two data points to be considered as neighbors (ε), and the minimum number of
neighbors to form a core sample (minPoints). Core samples are described as areas of high
density, whereas a cluster is defined as a set of core samples which are close to each other.

Thus, DBSCAN algorithm considers as different clusters the diverse high-density
areas separated by low-density areas. The algorithm starts with a point x of the data set X,
and obtains all neighbors of x which are located at a distance lower than ε. If the number of
neighbors is greater the number of minPoints, then x is considered a core sample and a new
cluster is created, formed by x and its neighbors. Then, the algorithm iteratively collects
the neighbors within ε distance from the different core samples. The process finishes when
all the data points have been processed.

DBSCAN parameters can be estimated by several techniques, such as k-distance graph
or an OPTICS (ordering points to identify the clustering structure) plot [41]. According to
them, DBSCAN marks as outliers the points that are in low-density regions. This algorithm
facilitates clusters found by DBSCAN to be of any arbitrary shape, as opposed to k-means,
which assumes that clusters are convex-shaped.
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2.4. Floyd–Warshall Algorithm

In this section, the focus is on presenting an efficient way to estimate the time to reach
all the municipalities from their nearest fire stations. This calculation was necessary and
very useful for evaluating the performance of the proposed fire station relocation.

A similar problem often arises when making a table of distances between all pairs
of cities to establish a road map [42]. This is done by adapting the map as a directed
and weighted graph G = (V, E) with a cost function w = E → R, which represents the
real-valued distance of each edge. For each pair of vertices u, v ∈ V, the goal is to find the
fastest route, where the value of the route is the sum of all costs of the edges that compose
it. The output of this problem is often presented as a table where the entry in row u and
column v should be the shortest path between these two edges. Well-known methods
for shortest-path calculations are Dijkstra’s and Bellman–Ford algorithms [42], which are
classified as single-source because they require multiple runs (V), one for each vertex acting
as a source. Single-source algorithms represent the graph by means of an adjacency list.

In this work we make use of the Floyd–Warshall algorithm, which is more efficient
than the aforementioned single-source algorithms. In this algorithm, the graph features
are represented through an adjacency matrix instead of an adjacency list. In particular, it
is assumed that each vertex is numbered within the range [1, V], so that a matrix W with
size V ×V represents the edge weights of a directed graph G = (V, E). In that case, the
weights for each i, j ∈ V fulfill that:

Wij =


0, if i = j,
weight of (i, j), if i 6= j and (i, j) ∈ E,
∞, if i 6= j and (i, j) /∈ E,

(2)

where a zero value is used to represent the connection of one vertex with itself, whereas an
infinity value is used where there is no connection among the two vertices.

The Floyd–Warshall algorithm bases its assumption on the fact that there is a subset
of intermediate vertices κ = {1, 2, ..., k} for any pair of vertices i, j ∈ V [42]. According to
this statement, all paths from i to j whose intermediate vertices are in the subset κ must be
considered. Thus, following the same scheme as in the previous equation, and being x any
vertex in the subset κ, the matrix elements are obtained as follows:

Wij =

{
Wij, if Wij ≤Wix + Wxj,
Wix + Wxj, if Wij ≥Wix + Wxj.

(3)

Note that after executing the previous instruction with all possible combinations of
the three variables i, j and k within the range [1, V], the shortest path for all possible cases
would be found.

As it will be elaborated in the next section, the Floyd–Warshall algorithm will be
applied over the matrix representing the graph distances for all the municipalities.

3. Proposed Approach

With the aim of minimizing the impact of forest fires in Valencia province, an opti-
mized distribution of forest fire stations is proposed, which is able to reduce the average
travel time between fire stations and the different municipalities. The proposal considers
the following relevant input information:

• Location information about existing forest fire stations. This information was obtained
from public records published by the Valencian Agency for Safety and Emergency
Response.

• Historical data about forest fires in the Valencia province. This information was
also obtained from public records, more specifically from the integrated forest fire
management system developed by the fire prevention service of the GVA.
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• Distances between all pairs of adjacent municipalities measured in travel time. This in-
formation was collected from publicly available online map applications. In particular,
Google Maps has been used.

Once the relevant input information was collected, we proceeded to apply the clus-
tering methods to obtain the new fire station locations. Then, the shortest path to reach
each one of the different municipalities from these optimized locations by means of the
Floyd–Warshall algorithm was calculated. A detailed description of these two processes is
included in the next two subsections.

3.1. Fire Station Relocation

In order to get optimized locations of the forest fire stations, two different clustering
algorithms were evaluated. In this case, results for k-means and DBSCAN have been
obtained. To this end, the corresponding packages of the standard Scikit-learn library in
Python [43] have been used in the proposed implementation.

Figure 4 shows the block diagram of the fire station relocation proposal. In a first step,
matrix P is obtained using the historical fire data. Then, the new fire station placement is
calculated through either the k-means or the DBSCAN clustering technique.

Get municipalities
coordinates

Define 
matrix P

Insert fire
data into P

Run clustering
algorithm

Fire
data

Map centroids
to fire station

positions

Figure 4. Block diagram of the proposed approach for fire station relocation.

Both clustering methods provide consistent solutions, in which the obtained centroids
or core samples correspond to the optimized fire station positions. However, the procedure
to get the results is different from one algorithm to another.

In the k-means algorithm, the number of clusters is chosen at the beginning of the
execution. However, the solutions may differ in distinct executions with the same number
of clusters, because the centroids are initialized randomly. For this reason, it was decided
to run each algorithm 1000 times and extract the results based on the most repeated
matrix positions.

Concerning the execution of the DBSCAN method, its peculiarity is that, instead of
the desired number of clusters, it requires as input parameters the maximum distances
between data points to be considered as neighbors (ε), and the minimum number of data
points needed to define an independent cluster (minPoints). Then, the algorithm returns the
optimum number of clusters together with their core samples. To optimize the selection
of the input parameters, an exhaustive experimentation was carried out to maximize the
F1-score [44] while minimizing the distance between the different data points and the
cluster center. In particular, ε was given values ranging between 1.0 (the minimal distance
between two fires considering the cells’ distribution) and 21.6 (the average distance),
whereas minPoints took values varying from 2 to 17 (the minimal number of fires per point).

Thus, as previously indicated, fire stations are initially located on each one of the
obtained centroids or core samples. Even so, there is one main factor to be considered
once the definitive positions of all centroids are obtained—that is, the road. There are two
possibilities: either the centroid position is accessible by road or it is not. For instance, if
a centroid lies within a green or poorly communicated area, this station will have to be
relocated to the closest possible area that is accessible by road, despite its original position
being the optimum one according to the algorithm criteria. Otherwise, the time costs for
accessing the municipalities would significantly increase.
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Once the road points where the fire stations must be located near by have been fixed,
two new possibilities appear. On the one hand, the chosen point could be within the urban
area of a municipality. In those cases, the time to reach the respective municipality is set to
0. On the other hand, if the selected point is not in any urban area, the time to reach the
adjacent municipalities needs to be obtained. It is then when the Floyd–Warshall algorithm
must be executed to obtain the definitive distances among all the selected points in the
map, and thus, to allow measuring the time it takes to reach each municipality. This is
detailed in the next subsection.

3.2. Shortest Path Calculation

Once the new fire stations locations were determined, the distances between them
and their adjacent villages were collected by using Google Maps. In addition to providing
route times, Google Maps considers the road sections that are usually congested, and in
those cases, shows a slower route time than it would be if the traffic were fluid. These
point-to-point distances were stored in matrix M, which was introduced in Section 2.1
as the matrix representing the graph distances for all the municipalities. After this, the
distances between pairs of non-adjacent villages or fire stations were obtained by means of
the Floyd–Warshall dynamic programming algorithm for shortest-path calculation. This is
depicted in the block diagram shown in Figure 5.

Calculate
adjacent
distances

New fire station
positions

Define 
matrix M

Insert
distances

into M

Run Floyd-
Warshall
algorithm

Municipalities
information

Shortest paths
for all the

municipalities

Figure 5. Block diagram of the proposed approach for shortest path calculation.

4. Results

This section presents the obtained results in terms of time to reach a fire and the
optimized locations of forest fire stations according to the proposed approach. In a first
step, results are presented with full freedom to redistribute all fire stations. After that,
we discuss the results and propose an alternative constrained approach with limited
redistribution of fire stations, while setting some restrictions to reduce the economic impact
of the whole fire station redistribution.

4.1. Time to Reach a Fire

The calculation of the average time tavg to reach a fire consists of adding up the time
of arrival to each village tn and dividing it by the number of municipalities Nm.

tavg =
1

Nm

Nm

∑
n=1

tn. (4)

The calculation of the weighted time tw considers the probability of a fire occurring in
each municipality (pn). These probabilities are approximated as relative frequencies, i.e.,
calculated as pn = fn/N f , where fn is the number of fires produced in the n-th municipality
and N f is the total number of fires in the province between 2000 and 2015. The resulting
weighted time is calculated as:

tw =
Nm

∑
n=1

pntn (5)

Given that the province of Valencia currently has 26 forest fire stations, we have
studied different distributions by varying the number of stations from 20 to 30, aiming at
finding a number of fire stations that provides the shortest time to reach each fire compared
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to the rest. Table 1 represents both the average and weighted times to reach a municipality
after running k-means and DBSCAN for different numbers of clusters.

Table 1. Average and weighted times to reach a fire obtained with k-means and DBSCAN for different numbers of clusters
between 20 and 30. Missing values for DBSCAN indicate that any optimized distribution was found with said number
of clusters. Results with 26 clusters are highlighted in bold font to be compared with the existing distribution of stations
(nowadays tavg = 12′37′ ′ and tw = 10′05′ ′).

Number of Fire Stations
Distribution Time

20 21 22 23 24 25 26 27 28 29 30

tavg 11′22′ ′ 11′10′ ′ 11′02′ ′ 10′43′ ′ 10′42′ ′ 10′25′ ′ 10′17′ ′ 10′11′ ′ 9′55′ ′ 9′52′ ′ 9′47′ ′
k-means tw 9′33′ ′ 9′19′ ′ 9′11′ ′ 8′48′ ′ 8′47′ ′ 8′29′ ′ 8′18′ ′ 8′08′ ′ 7′58′ ′ 7′53′ ′ 7′49′ ′

tavg 20′44′ ′ - 20′08′ ′ 19′52′ ′ 19′30′ ′ 19′26′ ′ 19′21′ ′ 19′12′ ′ 19′07′ ′ - -
DBSCAN tw 19′13′ ′ - 18′07′ ′ 18′02′ ′ 17′40′ ′ 17′38′ ′ 17′35′ ′ 17′34′ ′ 17′33′ ′ - -

It can be observed in Table 1 that the results provided by k-means present faster times
than the current fire station distribution with 26 stations, whose average and weighted
times are 12′37′ ′ and 10′05′ ′, respectively. This occurs even if the number of fire stations is
reduced to 20. Furthermore, if we compare the DBSCAN results with the ones obtained
using k-means, this last one undoubtedly provides a better fire stations redistribution.

From the results, it can be also seen that the density-based logic of DBSCAN does
not provide an adequate solution to the proposed problem, since the algorithm provides
slower times than the current distribution. In this case, the distribution of the data is not
the most appropriate to apply a density-based clustering algorithm. On the one hand, the
province of Valencia contains some areas where the density of villages is very high. These
areas are characterized by a low to medium number of fires per village, which implies that
in the corresponding entries for the matrix P, practically every cell is associated with one
or more villages. Therefore, almost all cells could contain fire data points, although the fire
incidence is not too high. On the other hand, there are other areas where villages are more
separated from each other and also tend to have a higher number of fires. For this reason,
the cells corresponding to the most separated villages have high densities of points. This
fact can, in some way, mislead the algorithm’s logic, causing inaccurate results. Thus, in
the remainder of the manuscript we will focus only on results provided by the k-means
clustering method .

As the number of clusters increases, the different k-means distributions produce faster
times to reach fires with a clear trend. While in the interval [20, 25] there is a gain of 57′ ′ in
terms of tavg, in the interval [25, 30] this gain is reduced to 38′ ′. In order to display this data
in a more visual way, Figure 6 represents the time saved for different numbers of clusters,
each of them obtained with respect to the distribution with one cluster less.

According to Figure 6, in general, each time a new station is added, the expected
time saved is less significant than the previous one. Given that the province of Valencia
currently has 26 forest fire stations, which lies in the interval [25, 30], it can be affirmed that
increasing the number of stations does not imply a great benefit. Therefore, it is believed
that the research should focus on finding an optimized distribution for a number of stations
between 20 and 26. Analyzing this interval, two important jumps can be identified. There
are gains of 19′ ′ and 23′ ′ when adding the twenty-third station in tavg and tw, respectively.
Those jumps are only comparable to the addition of the twenty-fifth station—17′ ′ and 18′ ′

faster than the 24-station model. Thus, according to this reasoning, it was decided that the
number of stations should be 23 or 25.
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Figure 6. Evolution of time saved with respect to having one cluster less for different numbers of
clusters.

4.2. Optimized Location of Forest Fire Stations

Given that the current disposition of forest fire stations in the province of Valencia
includes 26 units, the resulting distribution after executing k-means with 26 clusters has
been chosen for an initial comparison, although it is believed that a model containing 23 or
25 clusters could provide practically the same results. For the sake of completeness, and to
further show that the DBSCAN algorithm does not provide a suitable station relocation
setup, its resulting distribution with 26 clusters has been also analyzed in this section. In
order to provide a visual comparison between those two models and between each model
and the current fire station deployment, Figure 7 presents two maps of the province where
current fire stations are marked using a red X. The map on the left includes blue Xs to
represent the cluster centers obtained through k-means. Similarly, green Xs are used to
present the theoretically optimized placements according to DBSCAN on the right. Black Xs
are used to represent the overlap of a real station with an optimized one. Areas surrounded
by a violet ovals are the most unprotected regions in cases of fire, as there would be no
stations nearby after each redistribution. Note that the unprotected areas are particularly
large in the distribution proposed by DBSCAN.

Figure 7. In the left image, the real stations (red Xs) are compared with those calculated by k-means
(blue Xs), and in the right image, the same comparison is made with the results of running DBSCAN
(green Xs).
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As it can be seen (especially on the left image of Figure 7), some optimized stations are
located in positions that are very close to some existing ones. For this reason, several pairs
of homologous stations could be established, because they are located, practically, in the
same area. This reasoning will be thoroughly detailed in Section 4.3, where a comparison
between the current fire stations and the optimized ones is included.

4.3. Optimized Forest Fire Station Planning

The relocation of fire stations according to the results obtained in the previous section
may involve high deployment costs, which in turn makes it an impractical solution. This
is why it was also decided to propose an alternative model where the current position of
the stations is compared with those optimized locations obtained by running the k-means
method with 26 clusters.

As commented above, in many cases the clustering results provide centroids in po-
sitions that are close to the real fire stations, so pairs of homologous stations can be
determined. Table 2 depicts a comparison between the current fire stations’ locations and
the optimized locations provided by the k-means algorithm. When the current stations and
the new ones are close to each other (i.e., homologous), both were placed in the same row.
Nevertheless, there are also some new stations that are very far from any current ones and
vice versa. For these cases, pairs of homologous stations were determined randomly, since
there is apparently no relationship between the real stations and the optimized ones.

Table 2. Comparison of current fire station coordinates in the province with the centroid positions
obtained through k-means.

Position in P (Row,Column)
Fire Station Name

Current k-Means Comparison
La Font de la Figuera (53,18) (49,22) Too different

Ontinyent (52,26) (52,27) Almost equal
Castelló de Rugat (49,33) (48,32) Similar

Ròtova (47,37) (47,39) Similar
Enguera (46,23) (45,24) Similar
Xàtiva (45,29) (46,30) Similar
Ayora (43,12) (42,12) Almost equal
Zarra (41,11) (41,28) Too different

Navarrés (41,23) (40,22) Similar
Alzira (38,32) (38,31) Almost equal

Cortes de Pallás (35,15) (36,12) Too different
Yátova (29,19) (41,36) Too different

Los Isidros (28,4) (26,2) Similar
Buñol (28,20) (28,21) Almost equal

Requena (25,10) (25,10) Equal
Villargordo del Cabriel (24,0) (33,27) Too different

La Vallesa (23,29) (24,29) Almost equal
Bétera (21,30) (21,26) Too different

Pedralba (20,22) (20,19) Similar
Gilet (17,34) (17,35) Almost equal

Calles (16,14) (15,19) Too different
Olocau (16,28) (16,29) Almost equal
Sinarcas (15,6) (27,33) Too different
Chelva (15,13) (14,12) Similar

Titaguas (10,10) (9,12) Similar
Ademuz (2,4) (2,4) Equal
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Positions of the different fire stations in Table 2 are expressed in terms of the row and
column indices in the matrix P. Given two matrix positions a = (ar, ac) and b = (br, bc), the
distance between both positions can be obtained through the Euclidean distance calculation:

dist(a, b) =
√
(ac − bc)2 + (ar − br)2. (6)

Note that the result returned is not the real distance between two points, since this
calculation assumes that the distance between two horizontally or vertically adjacent
cells is 1, but in real maps it will depend on the road distance (in km) between adjacent
municipalities. A fair option to convert dist(a, b) into a realistic distance is to multiply it by
approximately 2.74 km, which corresponds to the average distance between cell centers in
the considered map.

The fourth column in Table 2 indicates a qualitative distance measurement between
each pair of fire stations: the currently existing and the optimized ones (calculated by
k-means). According to the differences between the real stations’ positions and the ones
calculated by k-means, the resulting stations were classified in three levels: equal/almost
equal (dist(a, b) ≤ 1), similar (dist(a, b) ≤ 3) and too different (dist(a, b) > 3).

To illustrate the considered grouping levels, two examples are presented in Figure 8.
Two existing fire stations (red Xs) and their corresponding optimized ones (blue Xs) appear.
Visually, the red X in (15,13) and the blue X in (14,12) are diagonally adjacent, but they are
not close enough to be classified as equal or almost equal, so they are classified as similar.
On the other hand, there is apparently no relationship between the real station at (16,14)
and the proposed one located at (15,19). By Equation (6), they are 5.1 far away (which in
road distance means 13.97 km). Thus, they are labeled as too different due to the large
distance between them.

Figure 8. Small part of the province divided as the matrix P would do. The numbers at the bottom
imply the column numbers and those on the left border the row numbers. The red Xs are placed
where the current forest fire stations are, and the blue Xs represent the same stations in their optimized
locations.

As it can be observed in Table 2, there are eight stations of the current distribution that
are located at very different coordinates when compared to the distribution proposed by
k-means. These correspond to those labeled as too different and should be undoubtedly
relocated.

Regarding the remaining fire stations, the best option would be certainly to also move
all those ones that are not exactly in the same cell. Nevertheless, it is also true that the nearer
the current and optimized stations, the shorter the gain in time in reaching a fire when
moving the stations. In this way, we propose a sub-optimized fire station redistribution
so that every fire station proposed to be located near an existing one will be moved to the
position of such a real station in order to save relocation costs, at the expense of slightly
reducing the overall performance.

Thus, 18 out of 26 forest fire stations could remain at their current places, so that only
8 stations are moved. Indeed, a model with 23 or 25 stations was found to be better than
the one having 26 in Section 4.1. This way, at least one station could also be removed.
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In order to remove three stations from the model obtained for 26 clusters in Table 2,
we directly performed k-means with 23 clusters and removed the three stations that do
no longer appear in the model. In this case, fire stations near centroids located at (24,29),
(45,24) and (46,30) positions were removed by the clustering method, while the other fire
stations were mainly placed at the same positions. As a result, the proposed final model is
composed of 23 stations, and eight original stations should be moved, as they are classified
as too different. These stations are the same as the ones labeled as too different in Table 2;
the remaining ones could stay at their current locations.

4.4. Discussion of Results

In this section, the performance of the constrained model with 23 stations proposed
at the end of the previous section (final proposal) is analyzed and compared with the
previously presented results using k-means with full freedom to redistribute all stations.
Table 3 compares the average and weighted times to reach a fire for the current distribution
with 26 stations; the k-means distribution with either 23 or 26 stations; and the final
proposal with 23 stations.

Table 3. Average and weighted times for the current distribution, the k-means distribution with two
different numbers of stations and the proposal. The number of fire stations for each distribution is
shown in parentheses.

Distribution Current (26) k-Means (26) k-Means (23) Proposal (23)

tavg 12′37′ ′ 10′17′ ′ 10′43′ ′ 10′46′ ′

tw 10′05′ ′ 8′18′ ′ 8′48′ ′ 8′31′ ′

Currently, there are 26 stations, so if a logical rule was followed, one could expect that
the fewer stations there are, the less protection there is. However, as already discussed,
the use of k-means enhances the distribution of stations even when three stations less are
deployed.

Regarding the proposed constrained distribution, it can be first observed that this
model is not the fastest one in terms of tavg. Nevertheless, its performance is still com-
petitive, since its deviation with the k-means distribution with 23 stations is negligible
(3′ ′). According to the tw results, the proposed distribution is considerably faster than the
provided by k-means, with the advantage of avoiding the relocation of all the stations.
These results have been obtained based on the parameters used to calculate distances, so
the proposed distribution might be slightly different when varying those parameters.

The finally proposed distribution of fire stations is shown in Figure 9. We believe that
the proposed relocation involves several economic benefits compared to unconstrained
intelligent models. Indeed, the GVA might not be willing at first to make a high investment
only to reach the forest fires a little bit faster. For this reason, we consider as an additional
motivation the reduction of costs. To this end, a decrease in the number of fire stations from
26 to 23 is a first good measure to reduce the total maintenance cost. Furthermore, a great
economic benefit could be obtained by selling the land where there used to be a station. In
our view, these economic reasons could be a convincing argument to compensate for the
necessary investment to move 8 stations.

Apart from that, it could be interesting to discuss about the scope that the project
might have. Although the proposed model is tailored to the province of Valencia, the same
process could be applied to any other region in order to obtain an optimized distribution
of fire stations, as long as the necessary information about forest fires is available. A good
road infrastructure allowing a rapid connection between different areas and fire stations
is a fundamental part of this project. Therefore, in countries with an underdeveloped
road network, it would probably be better to focus on optimizing the distribution of aerial
means for fire fighting, where the aerial bases’ locations could be optimized following
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our proposed approach. Overall, we believe that the proposed method could be used on
several areas of the planet, being of special interest for arid or fire-prone areas.

Figure 9. Distribution of forest fire stations in the province according to the proposed model.

5. Conclusions

In this paper, we proposed an optimized redistribution of fire stations in the province
of Valencia (Spain) aimed at minimizing the impact of forest fires. Using historical data
about fires in the province, together with the location information about existing fire
stations and municipalities, two different clustering techniques were applied to relocate
the stations. Economic constraints have also been taken into account when making the
final redistribution proposal.

The times to reach a fire obtained after relocating the fire stations using two clustering
algorithms indicate that there are two opposite faces. On the one hand, we can conclude
that the DBSCAN method is not useful for this problem, since it increases the times of the
current distribution, even when the number of stations is greater than the number existing
(26). The high density of data points in some regions, combined with the low density in
others, worsens the whole performance. On the other hand, k-means clustering does fit
well with the problem at hand, generally ensuring a faster arrival to the municipalities,
according to the considered parameters, compared to the current distribution. Since it
calculates cluster centers based on distances and not on the density, it is not affected by the
latter problem.

However, as it was stated in the previous sections, the results of k-means should be
modified to some extent, in order to obtain an economically viable proposal. We estimate
that reducing the number of stations and not relocating current stations that are close to
where they should be according to k-means would significantly reduce the project cost.
Once the economical constraints have been considered in the final distribution, we believe
that the proposal could help with the mitigation of forest fires through more rapid arrival
at them. Furthermore, although the model is tailored to the province of Valencia, the
same method could be used in almost any part of the world, thereby helping to combat
wildfires globally.
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