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Abstract: Chitosan (CS) is a natural polysaccharide, widely studied in the past due to its unique
properties such as biocompatibility, biodegradability and non-toxicity. Chemical modification of CS
is an effective pathway to prepare new matrices with additional functional groups and improved
properties, such as increment of hydrophilicity and swelling rate, for drug delivery purposes. In the
present study, four derivatives of CS with trans-aconitic acid (t-Acon), succinic anhydride (Succ),
2-hydroxyethyl acrylate (2-HEA) and acrylic acid (AA) were prepared, and their successful grafting
was confirmed by FTIR and 1H-NMR spectroscopies. Neat chitosan and its grafted derivatives
were fabricated for the encapsulation of fluticasone propionate (FLU) and salmeterol xinafoate
(SX) drugs, used for chronic obstructive pulmonary disease (COPD), via the ionotropic gelation
technique. Scanning electron microscopy (SEM) micrographs demonstrated that round-shaped
microparticles (MPs) were effectively prepared with average sizes ranging between 0.4 and 2.2 µm,
as were measured by dynamic light scattering (DLS), while zeta potential verified in all cases their
positive charged surface. FTIR spectroscopy showed that some interactions take place between the
drugs and the polymeric matrices, while X-ray diffraction (XRD) patterns exhibited that both drugs
were encapsulated in MPs’ interior with a lower degree of crystallinity than the neat drugs. In vitro
release studies of FLU and SX exposed a great amelioration in the drugs’ dissolution profile from all
modified CS’s MPs, in comparison to those of neat drugs. The latter fact is attributed to the reduction
in crystallinity of the active substances in the MPs’ interior.

Keywords: chitosan microparticles; modified chitosan; salmeterol xinafoate; fluticasone propionate;
chronic obstructive pulmonary disease; sustained release; dissolution enhancement

1. Introduction

Lung drug delivery is a significant field of research in the handling of chronic inflammatory
pulmonary diseases, such as asthma and chronic obstructive pulmonary disease (COPD) [1]. COPD is
a life-threatening lung disease characterized by progressive, persistent airflow limitation and airways
inflammation leading to excessive production of mucus as well as progressive decline in lung
function [2]. It is a multi-system condition comprising, among others, systemic inflammation, oxidative
stress, bony muscle malfunction and cardiovascular symptoms [3]. The principal factors causing the
appearance of the aforementioned disease include the continual inhalation of toxic particles and fumes
among with tobacco smoking, while the polluted atmosphere, age and genetic predisposition also
illustrate a catalytic role [4,5].
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The management of COPD requires a multidisciplinary tactic in a risk factor-limiting framework,
while patients’ lifestyle demands reconsideration. However, in many cases, the handling of COPD
requires the appropriate inhaled medication to enhance the patient’s quality of life through
symptom limitation [6]. Regarding pharmacological treatment, inhaled corticosteroids (ICS) is a
class of compounds believed to reduce the chronic inflammatory effects in the bronchial area and
thus ameliorating limited airflow. Fluticasone propionate (Figure 1a) is a synthetic trifluorinated
glucocorticoid which has the role of topical eosinophil inhibitor, administrated for preventing the
release of inflammatory agents in the bronchial epithelium [7], as well as for the handling and long-term
management of various inflammatory conditions [8–10]. However, research studies have occasionally
indicated the benefits of co-administrating ICS and long-acting beta2-agonists (LABA), since the
mortality in COPD sufferers is diminished, with negligible non-desirable effects [6,11–13]. An example
of β2-adrenoceptor agonist is salmeterol xinafoate (SX) (Figure 1b), an agent protecting against
bronchoconstriction via an airway smooth muscle relaxation pathway [14,15]. In more detail, salmeterol
xinafoate is a selective long-acting β2-agonist with a period of bronchodilation lasting more than
12 h [16]. It is a salt existing in two crystalline polymorphic forms, I and II, displaying an enantiotropic
correlation [17]. As mentioned above, the combination of β2-agonists such as salmeterol xinafoate
with inhaled corticosteroids enhances lung function while controlling the severity of symptoms and
the number of acute exacerbations due to the synergistic effect of the two agents [18,19].
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The assets of inhalation therapy are abundant and include the decrease in undesirable side effects
as a result of the reduced systemic action. In addition, inhalation of drugs by the respiratory route
dwindles dosage frequency, while ensuring a sustained release in lung tissue. However, pulmonary
delivery efficiency of particles depends on various parameters including the type of formulation,
the composition, and the inner shape of the particles along with their aerodynamic diameter [1]. It is
proven that particles with size ranging between 1 and 5 µm perform as the finest system to attain
successful pulmonary deposition, since particles with a diameter larger than 10 µm deposit in the
oropharynx region whereas smaller particles could easily be exhaled [20]. Several classes of polymeric
materials, e.g., poly(lactic-co-glycolic acid) (PLGA), poly(ethylene glycol) (PEG) and chitosan (CS),
have been suggested as candidate microcarriers for pulmonary drug delivery systems [21]. However,
PLGA and PEG have limitations concerning the type of active compounds that can be encapsulated
and further released in the target area of the lungs. In contrast, due to its amphiphilic character,
chitosan can accommodate both hydrophobic and hydrophilic drugs [22]. Concerning specifically
the inhalation delivery of SX and fluticasone propionate (FLU), many research groups studied the
amelioration of their co-administration utilizing polymeric excipients. Murnane et al. produced SX and
FLU microcrystals by antisolvent crystallization utilizing poly(ethylene glycol), resulting in particles
appropriate for inclusion in dry powder inhaler (DPI) formulations [23]. Westmeier et al., examined
the formulation and aerodynamic properties of combined particles containing the two APIs via a
precipitation pathway, while the obtained suspension was spray-dried afterwards [24]. However,
in most cases, the co-administration of both APIs utilizing polymeric excipients does not ensure the
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release enhancement of these hydrophobic drugs, and therefore, innovative strategies such as improved
encapsulation procedures are desired; this concept was studied in the present work.

Generally, chitosan (CS) is a cationic linear polysaccharide [25], produced by chemical or enzymatic
deacetylation of chitin. The deacetylated product is a biocompatible, mucoadhesive, biodegradable and
non-toxic polymer with constitutional antibacterial properties [26,27]. Concerning its physicochemical
properties, chitosan shows efficient solubility in weak aqueous acid solutions, whereas it remains
insoluble in neutral and alkaline environments as well as in many organic solvents. This limitation
can be improved by chemical modification. The CS macromolecular backbone has a large number
of hydroxyl and amino groups, where chemical modification can be carried out. Among the various
methods of modification (carboxymethylation, thiolation, succinylation) [28,29], graft copolymerization
has been the most applied by researchers, as it allows the formation of functional derivatives by covalent
binding of a molecule onto chitosan matrix [30]. In particular, grafting of a polymer’s structure by
adding carboxylic groups, i.e., trans-aconitic acid and succinic anhydride [31–34], or vinylic monomers,
i.e., acrylic acid and 2-hydroxyethylacrylate ester [35] (Figure 2) via radical polymerization, enhances
its complexing capacity and results in improved swelling ratio, hydrophilicity and bacteriostatic
characteristics, without affecting other significant properties. In fact, via radical polymerization, CS is
grafted with short oligomeric chains, leading to derivatives with a short number of repetitive units.Molecules 2020, 25, x FOR PEER REVIEW 4 of 26 
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Various techniques have been used to formulate chitosan-based microparticles including ionotropic
gelation, spray drying or self-assembly [36]. Amongst these methods, ionotropic gelation is generally
adopted due to its comparative simplicity, its convenience and mainly owing to the use of non-toxic
solvents or excipients and the avoidance of high temperature [37,38]. The simplicity of the technique
also renders feasible the encapsulation of hydrophobic compounds during the formulation of the
nanoparticles, while many groups have examined the encapsulation of numerous hydrophobic
substances in their interior [39]. Furthermore, various polyanions have been reported in the literature
for the preparation of chitosan microparticles; however, sodium tripolyphosphate (TPP) is the
preferred one. Koukaras et al. [40] demonstrated that the size of the resulting particles relies on the
quota between chitosan and the used polyanion. The entrapment of active substances, which are
mainly compounds of high crystallinity, in chitosan microparticles results in their amorphization,
thus improving their bioavailability.

In the present study, the basic purpose was the design of effective biocompatible carriers for
SX and FLU poorly water-soluble drugs for pulmonary delivery, as well as the enhancement of
their in vitro release properties and bioavailability. For this purpose, modification of chitosan was
performed by grafting hydrophilic groups of different compounds onto CS polymeric backbone
in order to ameliorate its inherent properties. Four different materials were synthesized in total,
using trans-aconitic acid (t-Acon), succinic anhydride (Succ), 2-hydroxyethyl acrylate (2-HEA) and
acrylic acid (AA) as grafting agents (Figure 2). Furthermore, chitosan and modified CS microparticles
were formulated via the ionic gelation technique, and SX and FLU were successfully incorporated
in the interior of the microparticulate systems, implemented for the first time. Hence, particles with
diameter sizes of 1–2 µm were attempted for the respective purposes.

2. Results and Discussion

The results will be discussed in two parts. The first part focuses on the synthesis and characterization
of chitosan derivatives as well as on the investigation of the evolved interactions between the used
monomers and the chitosan backbone. In the second part, the evaluation of these derivatives
as appropriate carriers of salmeterol and fluticasone drugs, in the form of particles, is examined.
Additionally, emphasis is given to the interactions between the APIs and the polymer matrices, as well
as to evaluate the effect of other physical characteristics of derivatives and physical state of the drugs
in MPs on drug release procedures.

2.1. Characterization of Modified-CS Systems

It is a well-known fact that both carboxylic and hydroxyl groups can ameliorate the hydrophilicity
of a material, which is very important for drug delivery systems. One of the principal aims of the present
study was the modification of chitosan backbone by introducing –OH and –COOH groups [30,41–43].
For this reason, four different monomers—trans-aconitic acid, succinic anhydride, 2-hydroxyethyl
acrylate and acrylic acid—were tested as candidates for chitosan modification.

The structures of the modified chitosan derivatives were studied by FTIR spectroscopy. As can be
noticed (Figure 3a), the main bands of neat CS are recorded at 3000–3600 cm−1 (a broad band attributed
to –OH with maximum at 3457 cm−1 and a shoulder at 3200–3270 cm−1 due to –NH2 stretching, area a),
1659 cm−1 (amide I), 1585 cm−1 (amide II, area c), 1419 cm−1 (C–H and O–H vibrations), 1152 cm−1

(anti-symmetric stretching of the C–O–C bridge) and finally at 1078 cm−1 (skeletal vibrations involving
the C–O stretching), which are characteristic of its polysaccharide nature [44]. Regarding the modified
derivatives, most of the typical peaks of neat CS are recorded similarly in their spectra. As depicted
in Figure 3b, new peaks are located at 1700–1740 cm−1 (b area) owing to the addition of carboxylic
and ester derivatives on the chitosan backbone; a fact indicating the effective modification of chitosan,
whereas the decrease in intensity of the peak located in 1657 cm−1 demonstrated the N-position
reaction. Additionally, a small shift was recorded in chitosan’s amino groups from 3255 to 3260 cm−1

to about 3240 to 3250 cm−1, proving that these groups interacted with the added carboxyl groups.
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In more detail, concerning the formulated derivatives individually, many comments could be created.
t-Acon possesses several peaks, with the most representative being those between 1727 and 1700 cm−1

owing to the –COOH fragments. CS-tAcon derivative exhibits the carbonyl group peak at 1718 cm−1,
implying the successful introduction of t-Acon group to the CS structure [45]. In parallel with the
previous data, CS-Succ displays a new peak at 1728 cm−1 matching to the free carboxyl groups after
the modification of –NH2 CS groups with succinic anhydride, while the successful modification of CS
chains is revealed by the formation of new amide bonds [46]. For CS-g-PHEA, a relatively strong peak
at 1722 cm−1 corresponding to ester moieties is visible. Herein, the sharper peak exhibited at 3420 cm−1

is attributed to the additional, due to the modification, hydroxyl groups of the derivative, while peak
shifting in comparison to the acrylic monomer (Figure S1) is attributed to the hydrogen bonds formed
between the amino and hydroxyl groups of CS and the ester groups of HEA units [35]. Finally, as for
the CS-g-PAA derivative, the bands observed at 1646 and 1573 cm−1 correspond to amide I and II,
respectively, while a new shoulder detected at 1719 cm−1 reveals the evolved interactions taking place
between the amino groups of neat CS with the carbonyl groups of the acrylic acid [47]. For a further
confirmation of the successful preparation of the four CS derivatives, the samples were subjected to
nuclear magnetic resonance (NMR) spectra.
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Figure 3. FTIR spectra of the synthesized chitosan derivatives in the range of (a) 4000–450 cm−1 and (b)
2000–1450 cm−1.

In agreement with FTIR, 1H-NMR spectra confirmed the successful grafting of chitosan. Figure 4
illustrates the recorded data of pure CS as well as the four produced CS derivatives. Briefly, in the case
of CS-tAcon, the presence of the acid is evidenced by the peak at 6.72 ppm. This peak is attributed to
the vinylic proton of trans-aconitic acid. The methylene group of the acid cannot be noticed separately
because it overlaps with the chitosan protons at 3.6–3.9 ppm [32]. Concerning CS-Succ, the successful
modification is demonstrated by the peak at 3.02 ppm, representing the two slightly differentiated CH2

groups from the insertion of the succinic groups. The intensity of this peak indirectly indicates the
degree of succinylation of the final material, as Golysev et al. reported [48]. In addition, the effective
grafting of chitosan with 2-hydroxyethyl acrylate ester (CS-g-PHEA) is proved. The hydrogen atoms
of CS main structure, like methylene protons, present signals around 3.5–3.8 ppm. Consequently,
the signals present in the CS-g-PHEA derivative at 4.18 and 4.25 ppm are attributed to CH2 protons of
the hydroxyethyl group, confirming the successful formulation of CS-g-PHEA, as Mun et al. reported
in a recent study [49]. Finally, the formation of chitosan grafted-copolymer with acrylic acid (CS-g-PAA)
is evidenced by the presence of peaks at 2.1 and 2.6 ppm, corresponding to the CH2 and CH protons of
the acrylic acid backbone, respectively [35]. The peak at 4.8 ppm present in all the 1H-NMR spectra is
related to the used solvent.
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The grafting percentages (GP) as well as the grafting efficacy (GE) of all the materials were
calculated according to Equations (1) and (2). The GP specifies the increase in CS weight when
subjected to grafting while GE indicates the ability of the monomer to graft onto the CS backbone,
as calculated from the weight of the grafted monomer. The synthesis yields (%) were relatively high
for all materials. More specifically, concerning the CS-tAcon derivative produced with the aid of EDC,
providing the activation of the carboxylic groups of trans-aconitic acid, the GP was 21% while its
GE was 84%. N-succinyl-grafted-CS (CS-Succ) derivative was prepared by a ring opening reaction
of chitosan with succinic anhydride, a cyclic anhydride. The CS-Succ modification’s GP was 2.5%,
whereas its GE was 16.7%. Concerning the acrylic derivatives, the preparation of CS derivatives
with short oligomeric chains grafted on CS backbone was intended. Consequently, short-time free
radical reactions took place, avoiding the extended PHEA and PAA chains. Regarding CS-g-PHEA
derivative, its GP was calculated at 19%, thus the GE was 76%. Finally, concerning CS-g-PAA material,
the resulting GP was 8%, while its GE was 73.4%. Regarding the acrylic derivatives, a similar grafting
behavior is observed, whereas CS-tAcon and CS-Succ demonstrate a rather different intermediate
comportment. CS-tAcon revealed a superior grafting percentage compared to CS-Succ, probably
attributed to the presence of three carboxylic groups on the monomer’s structure in comparison to the
succinic anhydride.

The crystalline phase of the prepared CS-modified derivatives was investigated using XRD
(Figure 5). Regarding neat CS, the XRD pattern exhibited an amorphous region with two quite broad
peaks at 2θ = 11◦ and 20◦, which are the typical fingerprints of the semi-crystalline character of the
studied polymer [35,43,44]. Regarding the prepared grafted CS derivatives, XRD data displayed that all
derivatives are almost amorphous, since only one broad peak was recorded at approximately 2θ = 21◦.
The abovementioned peak is wider and slightly shifted in comparison with CS’s diffractogram,
revealing that the inclusion of the added groups into the CS backbone affected its semi-crystalline
character. This was expected since the addition of small molecules on the polymeric chains of CS
decreases its folding ability, and thus, the crystal structure formation. Analogous results were found in
our previous works on CS derivatives [31,32,35,44,46].
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Following the above XRD analysis, TGA curves were recorded in order to examine the effect of
the modifications on the thermal stability of chitosan. The thermal degradation of chitosan could
be described as a two-stage procedure. Briefly, in the case of neat chitosan, the first step occurred
at temperatures between 50 and 180 ◦C corresponding to a mass loss of 8–10 wt% associated with
the loss of absorbed or bound water. Indeed, at this temperature range, a collapse of the strong
hydrogen bonding between active groups (amine, hydroxyl) of chitosan backbone and water molecules
occurs [50]. The second step was reported in the temperature range of 180–410 ◦C and was linked to
the chitosan degradation and, to a small extent, to its deacetylation [51]. Concerning the derivatives’
thermograms (Figure 6), it is obvious that the change in the structure of the polymeric matrix, by the
addition of new active carboxylic groups, affects the thermal character of the produced material,
since the thermal profile of the formulated modified structures indicates a multiple-step mass loss.
In particular, the degradation profile of CS-tAcon and CS-Succ showed different curve patterns with
smaller, multiple mass loss stages, showing a gradual decomposition. Moreover, CS-g-PAA exhibits
another profile. The first stage starts at 50 ◦C and continues up to 130–140 ◦C, during which there
was 7–10% mass loss, associated to the unbound water. The second stage from 190 to 300 ◦C and the
third stage from 310 to 600 ◦C may be related to the degradation of chitosan and the decomposition of
different structure of the grafting product, respectively [52]. The case of CS-g-PHEA seems interesting,
as the derivative displays a degradation profile similar to that of chitosan. In all cases, the derivative
materials demonstrate reduced thermal stability in comparison to neat chitosan, while the thermal
degradation of the polymer backbone outsets at a lower temperature range. This observation is
attributed to the susceptibility to abstraction of carboxyl and carboxyethyl groups in comparison to
amino groups of CS, as was reported in an analogous study of Metzler et al. [53]. Finally, the percentage
of mass residue at 600 ◦C is high, typical for CS materials, while the mass residue is observed at a greater
percentage in CS derivatives’ thermograms, attributed to the addition of the supplementary groups.

One significant characteristic of polymeric systems destinated for pharmaceutical purposes is
their inherent property of swelling. Polymeric networks can be swollen due to alterations in their
external environment. Additionally, polymeric materials containing hydrophilic groups swell to a
higher degree compared to those containing hydrophobic groups since the chemical structure of a
polymer directly affects its swelling capacity [45]. As a result, hydrophobic groups lead to a breakdown
in the appearance of water [54]. In fact, the swelling of a polymer is basically forced by electrostatic
repulsions between functional groups with similar charges. Figure 7 presents the degree of swelling
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data for neat chitosan, CS-tAcon, CS-Succ, CS-g-PHEA and CS-g-PAA in their sponge form after
freeze-drying, in regard to the swelling time, at pH = 7.4. It can be observed that efficient hydrophilic
materials have been prepared with high gelling ability, since in all materials the swelling degree
ranged from 1000 to 4000%. Matrix swelling of the prepared materials is much higher than that of
neat CS. Regarding neat CS, it exhibits a low degree of swelling ranging between 50 and 200%, mainly
affected by the degree of deacetylation, molecular weight and pH [55]. In a further step, as shown
in Figure 7, the four studied derivatives of CS reveal a two-phase swelling profile, comprised of an
initial burst swelling phase (fast water uptake) followed by an erosion stage leading lastly to a steady
swelling phase in all materials. After comparison of the four different derivatives, CS-tAcon showed,
as expected, the highest degree of swelling, since the degree of grafting, and thus the number of the
added characteristic –COOH groups, is greater in comparison to the other materials.
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2.2. Characterization of MPs

Microparticles were formulated via ionotropic gelation technique, with sodium tripolyphosphate
utilized as physical cross-linker. In detail, the MPs were prepared as a result of the ionic interactions
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between the negative charged TPP groups and the cationic amino groups of CS. Relative projects
studying the aforementioned technique have been reported previously by our research team, including
the synthesis of nanoencapsulated budesonide particles for pulmonary delivery [56], deferoxamine
mesylate-laden CS nanoparticles for iron chelator release [57], timolol maleate-loaded particles for ocular
delivery [31] as well as paliperidone incorporation in polymeric carriers for intranasal delivery [58].

A significant factor affecting the final size of the formulated particles is the ratio between chitosan
and TPP. Previous studies determined the correlation among the CS/TPP ratio and the size of the
prepared particles, proper for each different application [31]. The control of microparticles’ size is
crucial, as it affects the degradation rate of the polymeric matrix and the entrapment percentage as well
as the release profile of the active substances. Moreover, since SX and FLU are mainly used for inhaled
delivery systems, the CS/TPP ratio was optimized in order to obtain particles ideal for lung delivery.
As has been reported, microparticles greater than 5 µm are mainly accumulated in the oropharynx
region [59], smaller particles <0.5 µm are easily exhaled, whereas microparticles 1–5 µm in size are
amassed in the upper respiratory system. In the framework of the present study, the formulated
particles should fluctuate between 1 and 5 µm to achieve efficient pulmonary deposition [20].

Herein, blank particles with different CS/TPP ratios were synthesized and characterized via
dynamic light scattering (DLS) analysis in order to select the appropriate ratio for the specific
application. The studied CS/TPP w/w ratios were 2/1–7/1. As shown in Table 1, in all blank particles,
the appropriate ratio between the used polymer and the crosslinker, leading to larger sizes, differentiates.
In the case of neat CS, the larger particles were obtained for the 4/1 ratio, formulating particles with
450 nm size. This outcome is in contrast with Koukaras et al.’s results [39]. This difference is attributed
to the different molecular weight of CS as well as to the different experimental conditions, namely
faster stirring speed during the preparation. Regarding the CS derivatives, the larger particles were
attained for CS-tAcon/TPP 7/1, CS-Succ/TPP 5/1, CS-g-PHEA/TPP 6/1 and CS-g-PAA/TPP 6/1 ratios.
It could be observed that in the case of acrylic modifications, the bigger particles are obtained with
the same polymer/crosslinker ratio, whereas for CS-tAcon the particles size is almost proportionately
affected by the abovementioned ratio. Finally, for CS-Succ modification, a similar behavior to the
CS-tAcon derivative is observed.

Table 1. Particle size distributions of various CS/Sodium Tripolyphosphate (TPP) w/w ratio for the
blank particles determined by dynamic light scattering (DLS).

CS/TPP
w/w Ratio

Particles Diameter (nm)

CS CS-tAcon CS-Succ CS-g-PHEA CS-g-PAA

2/1 292 904 505 272 566
3/1 364 237 276 276 640
4/1 450 423 392 297 550
5/1 427 389 518 381 584
6/1 359 597 503 833 972
7/1 304 957 491 560 829

Among the different CS/TPP ratios, the 6/1 ratio resulted in the largest particles in most cases
(Table 1); it was therefore chosen for the formulation of drug-loaded particles. The prepared blank
particles are in the nanometric scale and thus are too small for delivery by inhalation; however,
upon loading with FLU and SX, the obtained drug-loaded particles are bigger and thus more
appropriate for inhalation administration. This observation is in agreement with the literature [60,61].
More specifically, as presented in Table 2, the DLS results indicate that the size of drug-loaded
microparticles ranges approximately between 1.2 and 2.2µm for all CS derivatives except CS-g-PAA-TPP.
The diminished size is probably attributed to the presence of the grafted polyacrylic acid moieties. In the
literature, nanoparticles formulated with CS and polyacrylic acid have been studied extensively. It was
observed that at pH 4.5, the carboxylic and amino groups are both partially ionized and consequently,
able to interact between each other, formulating polyelectrolyte complexes [62]. This effect, in addition
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to the presence of TPP, results in CS-g-PAA particles with nano-scale diameter. Furthermore, the results
given in Table 2 reveal a correlation between the percentage of the encapsulated drug and the size of
the arising microparticles. More specifically, increasing the amount of the added drug results in larger
particle size. The increment of concentration results in a higher percentage of drug encapsulation and
eventually, the formation of bigger microparticles. Moreover, the presence of the active compounds
burdens the interaction between the polymeric matrix and the polyanion groups, additionally leading
to greater size of the formulations. This observation is in agreement with the outcome from a previous
work from our team where budesonide was encapsulated in CS nanoparticles and the size of the
formulated particles increased while increasing budesonide’s concentration [56]. Modification of the
CS backbone, in most cases, significantly affects the size of the resulting particles. The addition of
new compounds in the polymer’s structure results in the augmentation of hydrophobic interactions,
affecting the final size of the formulated particles.

Table 2. Size and zeta potential value of FLU/SX loaded microparticles of chitosan (CS) and
CS derivatives.

Sample Z-Average (d.nm) Zeta Potential (mV)

CS-TPP-10% FLU/SX 1234 +51.9
CS-TPP-20% FLU/SX 1247 +47.8
CS-TPP-30% FLU/SX 1923 +45.7

CS-tAcon-TPP-10% FLU/SX 1210 +21.0
CS-tAcon-TPP-20% FLU/SX 1400 +21.4
CS-tAcon-TPP-30% FLU/SX 1943 +21.5

CS-Succ-TPP-10% FLU/SX 1451 +38.0
CS-Succ-TPP-20% FLU/SX 1507 +38.5
CS-Succ-TPP-30% FLU/SX 1708 +38.8

CS-g-PHEA-TPP-10% FLU/SX 754 +26.7
CS-g-PHEA-TPP-20% FLU/SX 1005 +22.6
CS-g-PHEA-TPP-30% FLU/SX 2216 +26.6

CS-g-PAA-TPP-10% FLU/SX 481 +34.3
CS-g-PAA-TPP-20% FLU/SX 438 +41.6
CS-g-PAA-TPP-30% FLU/SX 784 +39.4

Zeta potential is a factor indicating the surface charge of the nanoparticles in the colloidal system
impacting its stability [63]. Microparticles with zeta potential values lower than −30 mV or higher
than +30 mV are characterized as stable colloidal systems and do not form aggregates [64]. SX and
FLU are two active compounds with neutral charge [65,66]. Consequently, the positive surface charge
of the prepared microparticles is attributed solely to the polymeric matrixes. Zeta potential is affected
by the presence of the added carboxylic and hydroxyl groups in the CS modified backbone, leading
to lower zeta potential values due to the presence of anionic charges. Despite the added anionic
groups, the positive surface charge of the formulated microparticles is attributed to the remaining
free unreacted amino groups, since after the preparation of the CS derivatives, free amino groups are
present in the polymeric backbones. Moreover, the reduction in the positive zeta potential values is
an additional indication of the successful grafting of the monomers or the acrylic oligomers on free
amino groups. Interestingly, CS-tAcon microparticles reveal the lowest zeta potential values among
the samples. This is attributed to the enhanced grafting percentage as well as to the presence of three
carboxylic groups in trans-aconitic acid monomer, leading to a CS derivative with increased anionic
charge. Nevertheless, in all cases, the zeta potential value reveals stable colloidal systems of the
resulting microparticles.

SEM was further utilized to examine the morphological characteristics of the obtained
microparticles. As can be seen in Figure 8a–i as well as in Figure S2a–f, the size of the formulations is
in agreement with DLS measurements. As depicted in SEM micrographs, in any ratio between the
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active substances and the polymer matrix, the final samples are formulated as individual particles of
spherical shape with smooth morphology in most cases.Molecules 2020, 25, x FOR PEER REVIEW 12 of 26 
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TPP-20% FLU/SX, (c) CS-tAcon-TPP-30% FLU/SX, (d) CS-Succ-TPP-10% FLU/SX, (e) CS-Succ-TPP-20%
FLU/SX, (f) CS-Succ-TPP-30% FLU/SX, (g) CS-g-PAA-TPP-10% FLU/SX, (h) CS-g-PAA-TPP-20% FLU/SX
and (i) CS-g-PAA-TPP-30% FLU/SX.

FTIR analysis was utilized again to further study the ionic interactions between CS, CS derivatives
and TPP, while the dynamic hydrogen bond formation among the polymeric network and drugs in
the microparticles’ interior (Figure S3 and Figure 9a–d) was also examined. Regarding CS and CS
derivatives’ spectra, all the characteristic peaks of them were observed. Nevertheless, consistent with
previous works, particles formulated with TPP polyanion via an ionic gelation technique show shifts
in their FTIR spectra in the region of amides (amide I and II) and phosphate groups of TPP, with the
latter recorded at 897 cm−1 [67]. Not only for CS/TPP laden particles, but also for CS derivatives’
formulations, the abovementioned peak was accordingly shifted to lower wavenumbers indicating
the interactions between amino and phosphate groups. From APIs’ perspective, neat SX displays
its principle peaks at 1409 cm−1 (bend for hydroxylic group), 1580 cm−1 (>NH), 1650 cm−1 (C=C,
aromatic ring), 883 cm−1 (C–O for ether group), 1080 cm−1 (C–O–C), 884 cm−1 (C–H bend for aromatic
benzene ring), and 1320 cm−1 (C–N stretch for aromatic ring), whereas fingerprints of FLU are observed
at 1661 cm−1 (C=C), 1409 cm−1 (–OH), 991 cm−1 (S–H), 1024 cm−1 (C–F), 883 cm−1 (C–O for ether
group), 1715 cm−1 (C=O for ketones) and 3000 cm−1 (C-H for aldehyde). In SX and FLU-encapsulated
microparticles, the detection of any alteration to –OH absorbance band is not achievable since the
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peak presenting the CS’s hydroxyl groups is wide and may overlap the corresponding peak of the
drug formulations. Nevertheless, there is a small shift of the peak absorption of C=O of FLU from
1743 to 1738 cm−1, while the other peaks at 1650 cm−1 for alkenes C=C remains stable. With a careful
consideration, in the range between 1658 and 1740 cm−1, small peaks are observed in all microparticles
as shoulders; peaks absent in neat CS and CS derivatives. The aforementioned shifts and new peak
absorbances may emerge because of the interactions of API’s groups with –NH2 or –OH of CS, probably
via hydrogen bonding.
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xinafoate and fluticasone propionate-loaded particles containing drug in different ratios 10%, 20%,
30% w/w.

Figure 10c–f presents the XRD diffractograms of the prepared microparticles and the used drugs in
order to examine the physical state and the interactions of salmeterol and fluticasone in microparticles’
interior. As referred above, CS is a semi-crystalline polymeric material with two typical peaks at
2θ = 11◦ and 21◦. On the other hand, the two APIs are highly crystalline compounds, as clear XRD
peaks appear at 2θ = 10.9◦, 13.1◦, 14.1◦, 17.5◦, 19.1◦, 20.6◦, 22.5◦, 24.8◦ and 10.2◦, 11.6◦, 13.1◦, 14.8◦,
16.1◦, 17.0◦, 18.2◦, 19.7◦, 21.0◦, 22.1◦, 23.1◦ and 24.7◦ for SX and FLU, respectively (Figure 10a,b) [17,24].
XRD patterns of the formulated CS microparticles showed that both salmeterol and fluticasone are
probably incorporated in their crystalline form (Figure S4). In brief, in all prepared formulations,
there are some sharper peaks present at 10.2◦, 13.2◦, 14.9◦, 16.4◦, 17.2◦, 18.3◦, 20.9◦, 22.5◦, and 24.8◦,
while the relative intensity of CS peaks is diminished. Comparing these peaks with neat drug
patterns, it is very difficult to distinguish if both drugs are in crystalline form or if one of them is in
amorphous phase, since both drugs have peaks at almost the same positions (Figure 10a,b). However,
their intensities are completely different. FLU has a high intensity peak at 10.2◦, while in SX the
sharpest peak was recorded at 24.8◦. Thus, based on these, it is possible that FLU was encapsulated
in its crystalline form in CS microparticles, while SX was amorphous. Furthermore, a reduction in
the crystalline phase of CS is also interpreted by the reposition of inter and intramolecular polymeric



Molecules 2020, 25, 3888 13 of 25

network owing to the crosslinking procedure with the TPP ions. Additionally, the proportionate
reduction in the drugs’ fingerprint peaks after their encapsulation in the polymeric network is noticeable,
while the intensity of these peaks lessens as the drug content is reduced. Regarding the microparticles
of the modified CS derivatives, a similar behavior can be observed in CS-tAcon-TPP-FLU/SX and
CS-Succ-TPP-FLU/SX concerning the peak intensities and their positions as in the case of neat CS.
There are some small peaks, mainly at 20 and 30 wt% of encapsulated drugs, which are recorded at the
same positions mentioned above for neat CS, and thus it could be concluded that only FLU drug was
encapsulated in crystalline form, while SX was encapsulated in amorphous form (Figure 10c,d). In the
other derivatives, CS-g-PHEA-TPP-FLU/SX and CS-g-PAA-TPP-FLU/SX, it is clear that such peaks
have not been recorded and therefore the drugs have been encapsulated in an amorphous form in both
derivatives (Figure 10e,f).Molecules 2020, 25, x FOR PEER REVIEW 14 of 26 
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Figure 10. XRD diffractograms of neat (a) salmeterol xinafoate, (b) fluticasone propionate and XRD
diffractograms of particles loaded with salmeterol xinafoate and fluticasone propionate in different
ratios, 10%, 20%, 30% w/w, of (c) CS-tAcon, (d) CS-Succ, (e) CS-g-PHEA and (f) CS-g-PAA.

DSC measurements were additionally performed in order to estimate the physical state of the
active substances inside the polymeric microcarriers, namely the developed interactions between
them. At first, the examination of the thermal behavior of the drugs was performed. The results
given in Figure 11a,b confirm that both salmeterol xinafoate and fluticasone propionate are crystalline
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compounds. More specifically, SX is a compound which, as reported in the literature, has two
characteristic melting endothermic peaks at 128.9 and 142.5 ◦C, representing the two different types of
crystal which it is composed of [65]. Concerning FLU, an endothermic melting peak is observed at
300.68 ◦C.
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Figure 13. DSC thermograms of (a) CS-tAcon- FLU/SX, CS-Succ- FLU/SX and (b) CS-g-PHEA- 
FLU/SX, CS-g-PAA- FLU/SX microparticles. 

The encapsulation efficiency (EE %) of SX and FLU in the interior of chitosan and modified 
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augmented bioavailability [69]. Table 3 outlines the yield (%), drug loading efficacy (%) and 
encapsulation efficiency (%) of all the prepared particles. Regarding yields, they varied from 29.1% 

Figure 11. DSC curves of (a) salmeterol xinafoate and (b) fluticasone propionate.

The crystallinity of the two drugs inside the microparticles interior was further studied by
DSC (Figure 12; Figure 13) to complement the XRD results. It is well-known that neat CS does not
demonstrate a melting peak visible in DSC analysis [68]. As it can be seen, DSC thermograms are
similar for all drug-loaded microparticles. Briefly, CS or CS derivative samples loaded with drugs
in all percentages do not reveal any endothermic Tm peak concerning the SX drug, confirming that
the active substance is in an amorphous state inside the microparticles, a result that agrees with XRD
data. Neat FLU presents an endothermic melting peak at 300.68 ◦C, whereas in all DSC thermographs,
an exothermic peak was recorded at 268 ◦C, which should be attributed to the thermal decomposition of
CS. According to TGA data, the decomposition of CS is initiated approximately at 250 ◦C. Consequently,
a melting peak is not detectable for FLU as it is located after the thermal degradation of the polymeric
chains of chitosan or its derivatives.
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Figure 13. DSC thermograms of (a) CS-tAcon- FLU/SX, CS-Succ- FLU/SX and (b) CS-g-PHEA- FLU/SX,
CS-g-PAA- FLU/SX microparticles.

The encapsulation efficiency (EE %) of SX and FLU in the interior of chitosan and modified chitosan
particles is a distinctive parameter which directly influences the release profile inducing an augmented
bioavailability [69]. Table 3 outlines the yield (%), drug loading efficacy (%) and encapsulation efficiency
(%) of all the prepared particles. Regarding yields, they varied from 29.1% to 50.2%, indicating high
process efficacy when the drugs’ content increases in all cases. The aforementioned relation is similar
to drug loading efficacy in the majority of samples. In general, the hydrophobic character of both SX
and FLU greatly affects their loading efficacy. Hydrophobic interactions take place between drugs’
molecules, contributing to a lower encapsulation efficacy for formulations containing 30 wt% FLU/SX,
whereas 10 wt% samples exhibited the higher encapsulation percent.

Table 3. Salmeterol and fluticasone-loaded microparticles′ yield, drug loading and encapsulation efficiency.

Sample Yield (%)
Drug Loading (%)

EE (%)
Salmeterol Xinafoate Fluticasone Propionate

CS-TPP-10% FLU/SX 30.25 2.1 4.8 38.2
CS-TPP-20% FLU/SX 40.25 4.9 11.2 20.5
CS-TPP-30% FLU/SX 38.22 6.4 14.8 19.8

CS-tAcon-TPP-10% FLU/SX 34.23 1.68 12.01 55.47
CS-tAcon-TPP-20% FLU/SX 49.87 6.09 12.71 50.15
CS-tAcon-TPP-30% FLU/SX 50.21 7.56 11.79 47.8
CS-Succ-TPP-10% FLU/SX 29.12 4.77 13.44 17.1
CS-Succ-TPP-20% FLU/SX 35.12 6.29 19.8 11.25
CS-Succ-TPP-30% FLU/SX 42.54 5.08 25.2 11.13

CS-g-PHEA-TPP-10% FLU/SX 31.29 5.45 3.04 24.4
CS-g-PHEA-TPP-20% FLU/SX 39.75 8.6 10.28 19.5
CS-g-PHEA-TPP-30% FLU/SX 48.72 10.38 15.05 18.14
CS-g-PAA-TPP-10% FLU/SX 30.58 5.52 5.02 17.3
CS-g-PAA-TPP-20% FLU/SX 30.9 9.07 11.83 12.5
CS-g-PAA-TPP-30% FLU/SX 31.63 11.18 14.48 12.3

Dissolution studies, in Figure 14, showed that in all cases there is an enhancement of drug release.
As can be observed, both drugs exhibited low dissolution rate and extent, reaching only 25 and 9.5%
release, for SX and FLU, respectively, even after 100 h. These low release data could be attributed to
the inadequate water solubility and high hydrophobic nature of both APIs and are in good agreement
with those reported in literature [67,70]. The dissolution of the APIs from CS microparticles (Figure S5)
does not ameliorate the release behavior of FLU or SX. Contrary to this, all the modified microparticles’
formulations presented much higher dissolution release rate as well as extent. As it can be seen from
Figure 14, both SX and FLU are released from the formulated microparticles following a two-step
release profile, comprised of an initial burst release appearing approximately in the first 20–30 h,
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owing to the surface-bonded active compounds, succeeded by a sustained release profile until the
end of the study. This biphasic release profile may be associated with the adsorption on the surface of
the active substances and their amorphization (first phase), as well as polymeric structure’s swelling
and erosion abilities (second phase). Additionally, the microparticles containing 20 wt% SX and FLU
exhibited superior performances regarding drug release. These samples exhibited the higher release
rate, reaching almost 50% of SX release (a kind of doubling effect) and 36% of FLU release (almost four
times higher than neat FLU). Microparticles containing 30 wt% of drugs presented a poorer release in
comparison to 20 wt% samples, due to the possible hydrophobic interactions taking place between
the drugs’ molecules or due to the higher amount of drug in the microparticles. Indeed, according to
the literature, when hydrophobic active substances are entrapped in polymeric matrices, an inversely
proportional relationship between drug concentration and drug release was reported [71–73]. When the
drug amount becomes higher, the drug release is reduced.
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and (b) CS-g-PHEA-FLU/SX, CS-g-PAA-FLU/SX microparticles, and of fluticasone propionate from 
(c) CS-tAcon-FLU/SX, CS-Succ-FLU/SX and (d) CS-g-PHEA-FLU/SX, CS-g-PAA-FLU/SX 
microparticles. 
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higher dissolution rates than crystalline forms [71–73]. In the case of FLU, there are some important 
differences in the release profiles between the derivatives. As it can be observed in Figure 14c,d, the 
drug release is much lower in both CS-tAcon and CS-Succ derivatives compared with CS-g-PHEA 
and CS-g-PAA. This behavior could be attributed to the microencapsulation of FLU in CS-tAcon and 
CS-Succ derivatives in crystalline form, while it was microencapsulated in amorphous form in CS-g-
PHEA and CS-g-PAA. This was confirmed by XRD patterns (Figure 10). It seems that the interactions 
between the polymeric matrix and FLU are much higher in these derivatives due to the PHEA and 
PAA macromolecules that formed as grafted chains in CS backbone, which could not only increase 
drug–network interactions but also the matrix flexibility [74]. 
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3.1. Materials 

Chitosan was supplied by Kraeber and Co GmbH (Ellerbek, Germany), possessing a molecular 
weight of 18,000 g/mol and a degree of deacetylation > 94%, as was determined by viscometry and 
1H NMR, respectively, in our previous study [56]. Trans-aconitic acid, succinic anhydride and 1-ethyl-

Figure 14. In vitro release rate of salmeterol xinafoate from (a) CS-tAcon-FLU/SX, CS-Succ-FLU/SX
and (b) CS-g-PHEA-FLU/SX, CS-g-PAA-FLU/SX microparticles, and of fluticasone propionate from (c)
CS-tAcon-FLU/SX, CS-Succ-FLU/SX and (d) CS-g-PHEA-FLU/SX, CS-g-PAA-FLU/SX microparticles.

Regarding the correlation between the modified structures and the drugs’ release of SX and
FLU, it is clear that it depends on the encapsulated drug as well as the used CS derivative. For SX,
it seems that the drug amount plays the most important role in drug release, since the obtained release
percentages are almost similar for all derivatives with very small differences for the same encapsulated
amount. This is because, as verified by XRD and DSC, SX was encapsulated in an amorphous form in all
microparticles. It is well known that amorphous drugs have up to 1000 times higher dissolution rates
than crystalline forms [71–73]. In the case of FLU, there are some important differences in the release
profiles between the derivatives. As it can be observed in Figure 14c,d, the drug release is much lower
in both CS-tAcon and CS-Succ derivatives compared with CS-g-PHEA and CS-g-PAA. This behavior
could be attributed to the microencapsulation of FLU in CS-tAcon and CS-Succ derivatives in crystalline
form, while it was microencapsulated in amorphous form in CS-g-PHEA and CS-g-PAA. This was
confirmed by XRD patterns (Figure 10). It seems that the interactions between the polymeric matrix
and FLU are much higher in these derivatives due to the PHEA and PAA macromolecules that formed
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as grafted chains in CS backbone, which could not only increase drug–network interactions but also
the matrix flexibility [74].

3. Materials and Methods

3.1. Materials

Chitosan was supplied by Kraeber and Co GmbH (Ellerbek, Germany), possessing a molecular
weight of 18,000 g/mol and a degree of deacetylation > 94%, as was determined by viscometry
and 1H NMR, respectively, in our previous study [56]. Trans-aconitic acid, succinic anhydride and
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) used in synthesis of carboxylated
derivatives were supplied by Aldrich Chemicals Co. (Stainheim, Germany). 2-hydroxyethyl acrylate
was purchased from Alfa-Aesar (Karlsruhe, Germany) and the hydroquinone inhibitor was removed by
passing 2-hydroxyethyl acrylate, at least twice, through disposable inhibitor–remover packed column
supplied from Aldrich, before any use. Acrylic acid and potassium persulfate were purchased from
Sigma-Aldrich Co. (Saint Louis, MO, USA). Sodium tripolyphosphate (TPP) used as ionic crosslinker
(85% purity) and acetonitrile HLPC purity (ACN) were supplied from Aldrich chemicals (Steinheim,
Germany). Fluticasone propionate and salmeterol xinafoate drugs (99.99% purity) were kindly donated
by Medicair Bioscience S.A. (Athens, Greece). All other reagents used were of analytical grade.

3.2. Synthesis of CS Derivatives

3.2.1. Chitosan Modified with Trans-Aconitic Acid (CS-tAcon)

The synthesis of modified chitosan with trans-aconitic acid (CS-tAcon) was carried out according
to Michailidou et al. [44]. Briefly, 1 g of trans-aconitic acid was dissolved in methanol in the presence
of EDC (1.15 g EDC per 75 mL MeOH) and then gradually added into a chitosan solution (4 g chitosan
in 260 mL acetic acid 2% v/v). The amount of trans-aconitic acid used was addressed to the 0.5/1
molar ratio of reactive groups COOH/NH2. The reaction took place for 12 h at room temperature,
under continuous mechanical stirring. The product was frozen, freeze-dried (Scanvac, Coolsafe 110-4
Pro, Labogen Scandinavia) and treated further with Soxhlet extraction using acetone as a solvent for
purification and the removal of unreacted reagents.

3.2.2. Chitosan Modified with Succinic Anhydride (CS-Succ)

The synthesis of CS-Succ was set up as reported by Skorik et al. [75]. In brief, 2 g of chitosan
were dissolved in 100 mL of aqueous acetic acid solution (1% v/v), followed by the addition of 0.3 g of
succinic anhydride, diluted in a small volume of acetone. The molar ratio between carboxyl to amino
groups corresponded to 0.5/1. The reaction was carried out for 7 h at room temperature. The product
was precipitated from the viscous reacting mixture by adding 100 mL acetone and was isolated by
filtration. The product was washed thoroughly in 100 mL of an aqueous 3% w/v NaHCO3 solution.
The resulting solution was dialyzed against distilled water for 3 days, freeze-dried and finally a
cotton-white material was obtained.

3.2.3. Chitosan Grafted with 2-Hydroxyethyl Acrylate (CS-g-PHEA)

The graft copolymerization of 2-hydroxyethyl acrylate on chitosan was carried out in a two-necked
round-bottom glass reactor [48,76]. In a typical grafting method, 10 g of CS were dissolved in 400 mL
acetic acid (2% v/v), and potassium persulfate (KPS) (37.5 mg) was transferred into the reactor and
stirred magnetically at 300 rpm for 10 min. Then, 2.5 g of 2-HEA were added dropwise, resulting
in a final mole ratio CS/2-HEA 5/1. The grafting reaction was carried out at 60 ◦C for 4 h under
a nitrogen atmosphere. Then, the chitosan derivative was washed several times with deionized
water, and freeze-dried under reduced pressure at −60 ◦C so as to obtain the cotton-like final product
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(CS-g-PHEA). The product was purified using a Soxhlet apparatus and methanol to remove the
unreacted HEA and PHEA homopolymer formed during the reaction.

3.2.4. Chitosan Grafted with Acrylic Acid (CS-g-PAA)

For the preparation of chitosan grafted with acrylic acid derivative [46], 10 g of CS were initially
dissolved in 2% v/v aqueous acetic acid solution, followed by the addition of AA solution. The amount
of acrylic acid used (1 mL) corresponded to 1:2 molar ratio of reactive groups COOH/NH2. Then,
KPS (0.16 g) was added as an initiator. The final solution was poured into a 1000 mL flask, and then
placed in a thermostated water bath at 60 ◦C for 2 h under a nitrogen atmosphere. After rapid
cooling down to room temperature, a purification stage ensued by extraction with methanol in a
Soxhlet apparatus for 3 days, allowing the removal of the unreacted acrylic acid, initiator and the
formed homopolymer.

3.3. Preparation of MPs via Ionic Gelation

Chitosan and modified CS particles were prepared according to the widely spread ionotropic
gelation technique, utilized frequently and extensively by our group [31,56,57]. Briefly, blank particles
were obtained upon the dropwise addition of TPP aqueous solution to a CS acetic acid 2% v/v solution,
under magnetic stirring. According to Koukaras et al., the CS/TPP ratio is critical and tailors the size as
well as the size distribution of the prepared particles [39]. Thus, different concentrations of CS and TPP
were applied to control the CS/TPP ratios, providing stable particles with sufficient size, appropriate
for the target of this study (CS/TPP ratios 2/1, 3/1, 4/1, 5/1, 6/1 and 7/1 w/w). The particles were kept in
stirring for 4 h and centrifuged at 11,000 rpm for 20 min (Heraeus™ Pico™ 17 Microcentrifuge, Thermo
Fisher Scientific, Waltham, MA, USA) and the precipitant was resuspended in water. As expected, the
formation of particles was a result of the ionic interactions between the negative groups of TPP and the
positively charged amino groups of CS. The same procedure and TPP ratios were also used for the
preparation of particles with CS-tAcon, CS-Succ, CS-g-PHEA and CS-g-PAA derivatives. The ratio
formulating the larger blank particles was chosen, hence, the selected ratios were namely: CS/TPP 4/1,
CS-tAcon/TPP 7/1, CS-Succ/TPP 5/1, CS-g-PHEA/TPP 6/1 and CS-g-PAA 6/1.

For the preparation of drug-loaded particles, the same procedure was followed while the
fluticasone propionate and salmeterol xinafoate ethanolic solution (fluticasone propionate/salmeterol
xinafoate ratio was 2/1) was added in the CS or its derivatives solutions before the addition of the
crosslinker. The final concentrations of drug solutions were 10, 20 and 30 wt% in total drug to CS
polymeric matrix. The resulting solutions were magnetically stirred for 30 min followed by probe
sonication (100 W, 30 kHz, Hielscher Ultrasonics, Teltow, Germany) for 2 min, to avoid aggregation.
The particles were stirred for 4 h, and centrifuged at 11,000 rpm for 20 min. The non-entrapped drug
was removed afterwards by washing the particles with ethanol and further centrifugation, while the
precipitate was resuspended in deionized water and lyophilized by a freeze-drier system to obtain a
dried product.

3.4. Characterization of Materials and MPs

3.4.1. Grafting Percentage and Grafting Efficacy

The final grafting percentage (GP, %) of the materials was calculated on the basis of the percentage
mass increase in the final product relative to the initial mass of chitosan (Min and Mfin denote the
mass of chitosan before and after the grafting process, respectively)

GP =
(Mfin−Min

Min

)
× 100 (1)
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Meanwhile, the grafting efficiency was calculated according to the equation

GE = (
w2−w1

w3
) (2)

where w1, w2 and w3 are the initial weight of neat CS, the grafted weight of CS derivative and the
weight of the added monomer respectively [67].

3.4.2. Fourier-Transformed Infrared Spectroscopy (FTIR)

The chemical structures of modified CS and the synthesized MPs were determined with FTIR
spectroscopy. FTIR spectra were recorded with an FTIR spectrometer (model FTIR-2000, Perkin
Elmer, Waltham, MA, USA) using potassium bromide (KBr) discs (thickness of 500 µm after pressure).
The spectra were collected in the range from 4000 to 400 cm−1 at a resolution of 4 cm−1 (total of 16
co-added scans), while the baseline was corrected and converted into absorbance mode.

3.4.3. Nuclear Magnetic Resonance (NMR)

NMR spectra were recorded in a deuterated aqueous solution of acetic acid 2% v/v. An Agilent
500 spectrometer was utilized (Agilent Technologies, Santa Clara, CA, USA) at room temperature.
Spectra were internally referenced with tetramethylsilane (TMS) and calibrated using the residual
solvent peaks.

3.4.4. Wide-Angle X-ray Scattering (XRD)

X-ray powder diffraction (XRD) patterns were reported using an XRD-diffractometer
(Rigaku-Miniflex II, Chalgrove, Oxford, UK), with a CuKα radiation for crystalline phase identification
(λ = 0.15405 nm). All the samples were scanned over the range 2θ from 5◦ to 50◦ through a scan speed
of 1◦/min.

3.4.5. Dynamic Light Scattering (DLS)

The size of the resulting formulations was examined by dynamic light scattering (ZetaSizer 5000,
Malvern company, Worcestershire, United Kingdom). One hundred microliters of the microparticle
suspension were diluted in 900 µL of double distilled water. All measurements were executed
in triplicate.

3.4.6. Differential Scanning Calorimetry (DSC)

Thermal analysis studies were carried out by a Perkin–Elmer Pyris 1 differential scanning
calorimeter (DSC) (Waltham, MA, USA) calibrated with indium and zinc standards in order to examine
the crystallinity ratio of the active substances in the final formulations. About 5 mg of each sample
were placed in sealed aluminum pans and heated up from 30 to 105 ◦C with a heating rate 20 ◦C/min
in inert atmosphere (N2, flow rate 50 mL/min), were the current temperature was held for 1 min in
order to remove the absorbed water, then samples were cooled to 30 ◦C and heated up again from 30
to 300 ◦C. The thermograms addressed were collected from the second heating scan.

3.4.7. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA) was performed in a Perkin–Elmer Pyris 1 TGA
thermogravimetric analyzer (Waltham, MA, USA). Samples of 10 ± 0.5 mg were placed in alumina
pans. An empty alumina pan was used as a reference. Heating was controlled by rotating temperature
up to 600 ◦C in a 50 mL/min flow of N2. The heating rate was set at 20 ◦C/min and steady marks of
sample temperature, sample weight, and heat flow were measured.



Molecules 2020, 25, 3888 20 of 25

3.4.8. Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) images were obtained with an electron microscope JEOL
2011 (Akishima, Tokyo, Japan). A small amount of each microparticles’ suspension was dropped to the
holder and left to evaporate. The resulting samples were coated with carbon in order to administer
a satisfying conductivity of the electron beam. Operating conditions were set at expediting voltage
20 kV, probe current 45 nA and counting time 60 s.

3.4.9. Swelling Capacity

Regarding the controlled release systems, it was reported in previous studies that a material’s
swelling ability affects the drug release mechanism [77]. Thus, swelling capacity for the four different
CS derivatives was obtained. In detail, swelling ability was assessed by calculating the water sorption
capacity in phosphate buffer with pH = 7.4 [77,78]. Swelling studies were carried out with sponges of
neat and modified CS derivatives. Initially, each sponge was carefully weighed (W0) and immersed
in buffer for several hours. At predetermined time intervals (i.e., 10, 15, 20, 30, 40, 60, 90, 120 and
180 min), the swollen samples were removed from the buffer, wiped with a filter paper to remove the
excess surficial water, and weighed once more with the purpose of determining the swelling weight
(Wn). The percent weight alteration of the polymeric matrix throughout the swelling experiment
(i.e., cumulative weight changes due to matrix swelling and erosion, S(ti)%) was measured through the
following formula:

S(ti)% =
(Wn−W0

W0

)
× 100 (3)

3.4.10. High-Pressure Liquid Chromatography (HPLC), Quantitative Analysis and Drug Loading

Quantitative analysis and drug loading were conducted utilizing a Shimadzu HPLC (Kyoto,
Japan) system consisting of a degasser (DGU-20A5, Kyoto, Japan), a liquid chromatograph (LC-20
AD, Kyoto, Japan), an autosampler (SIL-20AC, Kyoto, Japan), a UV/Vis detector (SPD-20A, Kyoto,
Japan) and a column oven (CTO-20AC, Kyoto, Japan). The samples were eluted with an isocratic
method described by Jetzer et al., where simultaneous determination of both active compounds takes
place. [79]. Specifically, the column was a type of CNW Technologies Athena C18, 120 A, 5 µm, 250 mm
× 4.6 mm set at room temperature. In brief, the mobile phase consisted of ACN/H2O/TFA (58/42/0.1
v/v/v), while fluticasone and salmeterol xinafoate were detected at the wavelength of 225 nm. The flow
rate through the HPLC system was 1 mL/min, whereas the adjusted injection volume was 20 µL.
Quite sharp peaks were obtained at approximately 14 min (fluticasone propionate), 7.0 min (Salmeterol)
and 4.5 min (xinafoate). Calibration curves were developed by diluting a 100 ppm stock methanol
solution of each drug to concentrations of 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0 10.0, 20.0 and 30.0 ppm
using ultrapure water.

For the further demonstration of the drug loading capacity of the microparticles, 10 mg of the
formulated particles was dissolved in 10 mL of aqueous acetic acid solution (1% v/v): methanol (50/50
v/v). The subsequent solution was stirred for 24 h and filtered through nylon filters (0.45 nm pore size).
The microparticles’ yield, drug loading and drug entrapment efficiency (EE) were calculated using the
following equations:

Yield (%) = [Weight of microparticles/Initial weight of polymer and drug] × 100 (4)

Drug loading (%) = [Weight of drug in microparticles/Weight of microparticles] × 100 (5)

EE (%) = [Weight of drug in microparticles/Initial weight of drug] × 100 (6)
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3.4.11. In Vitro Dissolution Studies

In vitro release studies took place with the aid of DISTEK Dissolution Apparatus I
(North Brunswick, NJ, USA) equipped with an autosampler (Evolution 4300, North Brunswick
Township, NJ, USA) utilizing the basket method (USP I method). Microparticles placed into dialysis
tubing cellulose membranes (MW cut-off 12,000–14,000, Servapor) were inserted in the apparatus
baskets, while the dissolution operation was performed at 37 ± 1 ◦C, with a rotation speed of 100 rpm.
The dissolution medium was 300 mL of a phosphate buffer adjusted at pH = 7.4, with the addition of
Tween 80 (0.1% w/w). At predefined time intervals, 2 mL of aqueous solution was withdrawn from the
release media and further analyzed for drug content by HPLC, as previously described.

4. Conclusions

In the present study, four different derivates of CS were synthesized after the modification of its
backbone with trans-aconitic acid (t-Acon), succinic anhydride (Succ), 2-hydroxyethyl acrylate (2-HEA)
and acrylic acid (AA). The success of the grafting was confirmed via FTIR and 1H-NMR spectroscopies.
The new modified structures revealed a higher amorphous character, and higher swelling degrees than
neat CS, due to the new functional groups that were incorporated in CS chains. Afterwards, CS and
the formulated derivatives were utilized for FLU and SX microencapsulation, via ionotropic gelation.
SEM images evidenced the spherical shape of the produced particles, while DLS measurements
exhibited that all of them were ranging in the micrometric scale, which is appropriate for COPD
formulations. FTIR spectra confirmed that some interactions take place between the characteristic
groups of CS derivatives and the used drugs. The FLU and SX loading process in these formulations
indicated increased drug encapsulation within the MPs’ networks with increasing drugs’ concentration.
In a further step, XRD analysis showed that the inclusion of SX drug in all derivatives resulted in
amorphous inclusions. FLU was also microencapsulated in amorphous form in the acrylic derivatives,
while in CS, CS-tAcon and CS-Succ, the encapsulation was induced mainly in crystalline form. Finally,
in vitro release studies revealed a substantial dissolution enhancement of both drugs from all CS
derivatives. The release rate is much higher for SX drug due to its complete amorphization, following
a similar release rate pattern in all derivatives. In the case of FLU, the release rate is higher only
in CS-g-PHEA and CS-g-PAA derivatives, inducing them into advantageous candidates for SX and
FLU co-encapsulation. From this study, it is clear that the four prepared CS derivatives can be used
for microencapsulation of FLU and SX drugs, since all of them led to formulations characterized by
enhanced drug release rates; nevertheless, CS-g-PHEA and CS-g-PAA derivatives possessed a more
promising character due to their advanced FLU release profile.

Supplementary Materials: The following are available online, Figure S1: FTIR spectra of the four monomers
used for the modification of CS’s backbone, Figure S2: SEM image of: (a) CS-TPP-10% FLU/SX, (b) CS-TPP-20%
FLU/SX, (c) CS-TPP 30% FLU/SX, (d) CS-g-PHEA-TPP-10% FLU/SX, (e) CS-g-PHEA-TPP-20% FLU/SX, (f)
CS-g-PHEA-TPP-30% FLU/SX, Figure S3: FTIR spectra of drug loaded CS nanoparticles, Figure S4: XRD
diffractograms of salmeterol and fluticasone loaded nanoparticles, Figure S5: In vitro release rate (a) of salmeterol
xinafoate from CS-FLU/SX microparticles, and (b) of fluticasone propionate from CS-FLU/SX microparticles.
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53. Metzler, M.; Chylińska, M.; Kaczmarek, H. Preparation and characteristics of nanosilver composite based on
chitosan-graft-acrylic acid copolymer. J. Polym. Res. 2015, 22, 1–10. [CrossRef]

54. Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J.
Pharm. Biopharm. 2000, 50, 27–46. [CrossRef]

55. Gupta, K.C.; Jabrail, F.H. Glutaraldehyde cross-linked chitosan microspheres for controlled release of
centchroman. Carbohydr. Res. 2007, 342, 2244–2252. [CrossRef]

56. Michailidou, G.; Ainali, N.M.; Xanthopoulou, E.; Nanaki, S.; Kostoglou, M.; Koukaras, E.N.; Bikiaris, D.N.
Effect of Poly(vinyl alcohol) on Nanoencapsulation of Budesonide in Chitosan Nanoparticles via Ionic
Gelation and Its Improved Bioavailability. Polymers 2020, 12, 1101. [CrossRef] [PubMed]

57. Lazaridou, M.; Christodoulou, E.; Nerantzaki, M.; Kostoglou, M.; Lambropoulou, D.A.; Katsarou, A.;
Pantopoulos, K.; Bikiaris, D.N. Formulation and in-vitro characterization of chitosan-nanoparticles loaded
with the iron chelator deferoxamine mesylate (DFO). Pharmaceutics 2020, 12, 238. [CrossRef] [PubMed]

58. Nanaki, S.; Tseklima, M.; Christodoulou, E.; Triantafyllidis, K.; Kostoglou, M.; Bikiaris, D.N. Thiolated
chitosan masked polymeric microspheres with incorporated mesocellular silica foam (MCF) for intranasal
delivery of paliperidone. Polymers 2017, 9, 617. [CrossRef]

59. Gagnadoux, F.; Hureaux, J.; Vecellio, L.; Urban, T.; Le Pape, A.; Valo, I.; Montharu, J.; Leblond, V.;
Boisdron-Celle, M.; Lerondel, S.; et al. Aerosolized chemotherapy. J. Aerosol Med. Pulm. Drug Deliv. 2008, 21,
61–70. [CrossRef]

60. Zhang, L.; Hu, Y. Alphastatin-Loaded Chitosan Nanoparticle Preparation and Its Antiangiogenic Effect on
Lung Carcinoma. Int. J. Polym. Sci. 2019, 2019, 2751384. [CrossRef]

61. Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and
nanoparticles in drug delivery. J. Control. Release 2004, 100, 5–28. [CrossRef]

62. Hu, Y.; Jiang, X.; Ding, Y.; Ge, H.; Yuan, Y.; Yang, C. Synthesis and characterization of Chitosan-poly(acrylic
acid) nanoparticles. Biomaterials 2002, 23, 3193–3201. [CrossRef]

63. Bhattacharjee, S. Review article DLS and zeta potential—What they are and what they are not?
J. Control. Release 2016, 235, 337–351. [CrossRef] [PubMed]

64. Abouelhag, H.A.; Sivakumar, S.M.; Bagul, U.S.; Eltyep, E.M.; Safhi, M.M. Preparation and Physical
Characterization of Cisplatin Chitosan Nanoparticles by Zeta Nanosizer “Prime Step for Formulation and
Development”. Int. J. Pharm. Sci. Res. 2017, 8, 4245–4249. [CrossRef]

65. Amore, E.; Manca, M.L.; Ferraro, M.; Valenti, D.; La Parola, V.; Di Vincenzo, S.; Gjomarkaj, M.; Giammona, G.;
Bondì, M.L.; Pace, E. Salmeterol Xinafoate (SX) loaded into mucoadhesive solid lipid microparticles for
COPD treatment. Int. J. Pharm. 2019, 562, 351–358. [CrossRef]

66. Craparo, E.F.; Ferraro, M.; Pace, E.; Bondì, M.L.; Giammona, G.; Cavallaro, G. Polyaspartamide-based
nanoparticles loaded with fluticasone propionate and the in vitro evaluation towards cigarette smoke effects.
Nanomaterials 2017, 7, 222. [CrossRef]

http://dx.doi.org/10.1016/j.biortech.2013.11.046
http://dx.doi.org/10.1007/s11172-015-0994-3
http://dx.doi.org/10.1016/j.reactfunctpolym.2007.07.012
http://dx.doi.org/10.1016/j.carres.2013.01.017
http://dx.doi.org/10.1016/j.ijbiomac.2017.10.002
http://dx.doi.org/10.1016/j.polymdegradstab.2014.12.006
http://dx.doi.org/10.1016/j.carbpol.2014.06.078
http://dx.doi.org/10.1007/s10965-015-0781-8
http://dx.doi.org/10.1016/S0939-6411(00)00090-4
http://dx.doi.org/10.1016/j.carres.2007.06.009
http://dx.doi.org/10.3390/polym12051101
http://www.ncbi.nlm.nih.gov/pubmed/32408557
http://dx.doi.org/10.3390/pharmaceutics12030238
http://www.ncbi.nlm.nih.gov/pubmed/32156022
http://dx.doi.org/10.3390/polym9110617
http://dx.doi.org/10.1089/jamp.2007.0656
http://dx.doi.org/10.1155/2019/2751384
http://dx.doi.org/10.1016/j.jconrel.2004.08.010
http://dx.doi.org/10.1016/S0142-9612(02)00071-6
http://dx.doi.org/10.1016/j.jconrel.2016.06.017
http://www.ncbi.nlm.nih.gov/pubmed/27297779
http://dx.doi.org/10.13040/IJPSR.0975-8232.8(10).4245-49
http://dx.doi.org/10.1016/j.ijpharm.2019.03.059
http://dx.doi.org/10.3390/nano7080222


Molecules 2020, 25, 3888 25 of 25

67. Agarwal, M.; Agarwal, M.K.; Shrivastav, N.; Pandey, S.; Das, R.; Gaur, P. Preparation of Chitosan Nanoparticles
and their In-vitro Characterization. Int. J. Life-Sci. Sci. Res. 2018, 4, 1713–1720. [CrossRef]

68. Jana, S.; Trivedi, M.K.; Tallapragada, R.M.; Jana, S.; Trivedi, M.K.; Tallapragada, R.M.; Branton, A.; Acta, A.
Characterization of Physicochemical and Thermal Properties of Chitosan And Sodium Alginate after Biofield
Treatment To cite this version: HAL Id: Hal-01450066 Pharmaceutica Characterization of Physicochemical
and Thermal Properties of Chitosan and Sodiu. Pharm. Anal 2017, 6. [CrossRef]

69. Ong, S.G.M.; Ming, L.C.; Lee, K.S.; Yuen, K.H. Influence of the encapsulation efficiency and size of liposome
on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics 2016, 8, 25. [CrossRef]

70. Rahmati, M.R.; Vatanara, A.; Parsian, A.R.; Gilani, K.; Khosravi, K.M.; Darabi, M.; Najafabadi, A.R. Effect of
formulation ingredients on the physical characteristics of salmeterol xinafoate microparticles tailored by
spray freeze drying. Adv. Powder Technol. 2013, 24, 36–42. [CrossRef]

71. Kanaze, F.I.; Kokkalou, E.; Niopas, I.; Georgarakis, M.; Stergiou, A.; Bikiaris, D. Dissolution enhancement of
flavonoids by solid dispersion in PVP and PEG matrixes: A comparative study. J. Appl. Polym. Sci. 2006, 102,
460–471. [CrossRef]

72. Papageorgiou, G.Z.; Bikiaris, D.; Kanaze, F.I.; Karavas, E.; Stergiou, A.; Georgarakis, E. Tailoring the release
rates of fluconazole using solid dispersions in polymer blends. Drug Dev. Ind. Pharm. 2008, 34, 336–346.
[CrossRef] [PubMed]

73. Karavas, E.; Georgarakis, E.; Sigalas, M.P.; Avgoustakis, K.; Bikiaris, D. Investigation of the release mechanism
of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of
drug, particle size distribution and drug-polymer interactions. Eur. J. Pharm. Biopharm. 2007, 66, 334–347.
[CrossRef] [PubMed]

74. Sriamornsak, P.; Thirawong, N.; Weerapol, Y.; Nunthanid, J.; Sungthongjeen, S. Swelling and erosion of
pectin matrix tablets and their impact on drug release behavior. Eur. J. Pharm. Biopharm. 2007, 67, 211–219.
[CrossRef] [PubMed]

75. Skorik, Y.A.; Kritchenkov, A.S.; Moskalenko, Y.E.; Golyshev, A.A.; Raik, S.V.; Whaley, A.K.; Vasina, L.V.;
Sonin, D.L. Synthesis of N-succinyl- and N-glutaryl-chitosan derivatives and their antioxidant, antiplatelet,
and anticoagulant activity. Carbohydr. Polym. 2017, 166, 166–172. [CrossRef]
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