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A major obstacle for effective utilization of therapeutic
oligonucleotides such as siRNA, antisense, antimiRs etc. is to
deliver them specifically to the target tissues. Toward this goal,
nucleic acid aptamers are re-emerging as a prominent class of
biomolecules capable of delivering target specific therapy and
therapeutic monitoring by various molecular imaging
modalities. This class of short oligonucleotide ligands with high
affinity and specificity are selected from a large nucleic acid
pool against a molecular target of choice. Poor cellular uptake
of therapeutic oligonucleotides impedes gene-targeting
efficacy in vitro and in vivo. In contrast, aptamer-
oligonucleotide chimeras have shown the capacity to deliver
siRNA, antimiRs, small molecule drugs etc. toward various
targets and showed very promising results in various studies
on different diseases models. However, to further improve the
bio-stability of such chimeric conjugates, it is important to
introduce chemically-modified nucleic acid analogs. In this
review, we highlight the applications of nucleic acid aptamers
for target specific delivery of therapeutic oligonucleotides.

Introduction

Technological advancement in targeting and delivery of thera-
pies to the site of action within a patient could greatly improve
both the standard of living for a patient, as well as decrease costs
associated with wasted therapeutics. Toward this goal, nucleic acid
aptamers, often termed as chemical antibodies, are an emerging
class of synthetic ligands, recently attracted significant attention in
various fields.1,2 This class of short single-stranded functional
nucleic acids can fold into complex 3-dimensional shapes that can
adopt binding pockets and clefts for specific high-affinity recogni-
tion of defined molecular targets ranging from small molecules to

large proteins and even whole cells. These characteristics make
aptamers an attractive platform for applications relating to drug
delivery, biosensing and theranostics. During the first decade after
the discovery, aptamers gained their foothold in therapeutic devel-
opment.1,2 In 2004, vascular endothelial growth factor (VEGF)
targeting RNA aptamer (Mucagen or Pegaptanib sodium) was
approved by the Food and Drug Administration (FDA) for age
related macular degeneration.3

Aptamers are typically generated from a large oligonucleotide
pool (»1015 members) via an in vitro reiterative combinatorial
selection process called Systematic Evolution of Ligands by EXpo-
nential enrichments (SELEX, Fig. 1).4-9 Although this process
generally takes around 2–6 months, there are few reports of single
or limited step aptamer selection protocols.10-13 It is noteworthy
mentioning that aptamer selection procedure may sound simple
enough, however, it may not be as straightforward. In some cases,
often there may not be any aptamers depending on the diversity
of the starting nucleic acid pool, or sometimes the developed
aptamers may not be as specific as necessary even with proper neg-
ative control selections. Aptamers may possess several advantages
over conventional antibody-based therapeutic approaches. First of
all, aptamers do not require live animals for production as these
can easily be synthesized in a synthetic laboratory setting in very
large scale.14 Aptamer synthesis is not vulnerable to bacterial or
viral contaminations. They generally have longer shelf-lives and
are non-immunogenic, because aptamers are small in size, can eas-
ily access protein epitopes and also show better internalization,
which is more difficult for large molecules such as antibodies.15,16

Additionally, aptamers offer freedom to introduce chemical modi-
fications for conjugating additional chemical functionalities and
also for systematic truncations of the parent aptamer itself.

Extremely promising approaches that has evolved during the last
decade are the use of RNA interference (RNAi)17,18 using short
interfering RNA (siRNA),19 antisense oligo (ASO)20 for silencing
gene expression, and targeting microRNAs (miRNA)19-21 that are
responsible for several diseases including tumor development.
However, while siRNA, antisense and miRNA targeting therapies
provide alternatives to conventional chemotherapies, significant
hurdles related to the delivery and efficacy of treatment must still
be overcome before this technology can be fully utilized. Indeed, in
an in vivo setting, the application of nucleic acid-based technologies
have been complicated by poor serum stability (due to the presence
of nucleases), off-target effects and inability to gain sufficient
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concentration at the required target site. Thus, it is clear that inno-
vative methods of both packaging, delivery and targeting oligonu-
cleotide therapies are required to advance this technology that has
shown such huge promise in vitro. One promising strategy would
be to develop and use aptamers targeting cell-surface receptors for
effective cellular uptake via receptor-mediated endocytosis.22 In
this regard aptamer selection against particular cells in vitro (Cell–
SELEX)22-26 and against particular tissues in vivo (in vivo Selec-
tion,27 Fig. 2) would be very advantageous.

Aptamers as Tools for siRNA Delivery

RNA interference (RNAi) is a biological process that occurs at
the molecular level and mediates gene silencing among the post-
transcriptional modification process.18 RNAi has been harnessed
for several years to cease the function of several genes for

therapeutic purposes toward
various diseases.17,28,29 A
major obstacle for develop-
ing siRNA as therapeutic
agents is to deliver them spe-
cifically to particular tis-
sues.30 Many scientists
aimed to solve this problem
by investigating different
guidance systems for siRNA,
ranging from small mole-
cules, lipids, peptides and
synthetic nanostructures.31-
34 Aptamers, chemical (non-
protein) antibodies, are
emerging as a promising
tool for delivering siRNA.35

With the dawn of new
millennium, the application
of aptamers was further
extended to target specific
delivery of therapeutic com-
pounds.36 Due to their low
immunogenicity, ease of
production, freedom for
chemical alteration and high
target specificity, the scien-
tific community quickly
accepted this concept. Since
then, the application of
aptamers for delivering
siRNA has been widely
explored. For example, in
cancer therapy, aptamers
have shown great potential
to deliver siRNA specifically
to tumor cells, minimizing
the cytotoxicity to normal
cells and harsh side effects of

chemotherapeutic drugs.37 Functional aptamer-siRNA chimera
toward a wide range of diseases have been developed in recent
years, making aptamer-siRNA chimeras one of the most rapidly
growing class of therapeutics (Fig. 3 describes a possible mecha-
nism of aptamer-siRNA chimera mediated gene silencing).

Chu and colleagues were among the first to perform a func-
tional delivery of siRNA using an aptamer in 2006.38 In this
work, they used aptamers against prostate-specific membrane
antigen (PSMA). The aptamers A9 and A10 were reported to be
capable of transporting nanoparticle into the cells expressing
PSMA.39 Streptavidin–biotin interaction was utilized to con-
struct an aptamer-siRNA chimera in which 2 biotinylated anti-
PSMA aptamers were connected to 2 biotinylated siRNAs. These
conjugates were not only able to deliver the siRNA efficiently to
PSMA-expressing LNCaP cells in vitro but also decreased the
amount of target mRNA expression level. In the same year,
McNamara and colleagues reported the delivery of siRNA

Figure 1. Schematic illustration of aptamer selection procedures by SELEX.
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targeting polo-like kinase
1 (PLK1) and BCL2 to
PSMA-positive LNCaP
prostate cancer cells by
using PSMA binding
RNA aptamer A10.40 This
remarkable work clearly
demonstrated that the
aptamer-guided siRNA
delivery system efficiently
decreased the proliferation
of prostate cancer cells and
apoptosis.

In 2008, Zhou and col-
leagues developed an
aptamer-siRNA delivery
system with dual inhibi-
tory function for HIV-1
therapy.41 The dual inhib-
itory function means that
both the aptamer and the
siRNA components have
potent anti-HIV activities,
making this capable of tar-
geting the disease at 2 dif-
ferent levels. In this work,
they used an anti-gp120
RNA aptamer, targeting the gp120 glycoprotein, a surface pro-
tein on the virion that largely determines the entry of HIV into
cells, its cellular tropism as well as elements of its pathogenesis.41-
44 The aptamer itself is able to bind this protein and neutralize
the strains.45 The other part of the chimera contains an anti-tat/
rev siRNA that inhibits HIV replication. Zhou et al. showed
that the aptamer-siRNA chimera was able to utilize gp120
expressed on HIV infected cells for the delivery of its anti-HIV
siRNA. This study demonstrates vast potential of aptamer-
siRNA chimeras, because it uses the full capacity of an aptamer
and leading the technology from just a target specific ligand to a
full therapeutic tool to significantly increase the therapeutic
efficacy.

For efficient endocytosis, it has been suggested that multiple
ligands to receptor binding may be needed to meet the required
free energy for complete wrapping of the membrane.46,47 In
regard to this theory, Yoo et al. reported a rod-shaped comb-type
aptamer-siRNA chimera.48 In this study, a mucin 1 (MUC1) tar-
geting DNA aptamer was conjugated to the siRNA. MUC1 is a
cell surface associated protein, highly over-expressed in malignant
adenocarcinomas.49,50 The anti-MUC1-aptamer carrying sense
strands of siRNA was hybridized complementary to the multi-
meric antisense strand to fabricate comb-like-aptamer-siRNA
conjugate (Comb-Apt-siR). The intracellular uptake of Comb-
Apt-siR in MUC1-positive MCF-7 cells was visually compared
to conventional aptamer-siRNA and dimeric aptamer-siRNA
conjugates using a red fluorescent dye, POPO-3. Comb-Apt-siR
exhibiting the strongest fluorescence, and showed enhanced inter-
nalization compared to di- and monomeric aptamer-siRNA

conjugates. The enhanced internalization of Comb-Apt-siRNA
was explained by its ability to bind multiple receptors on the cell
membrane initiating cluster formation leading to efficient endo-
cytosis. The siRNA was designed to target the green fluorescent
protein (GFP) gene expression. Despite an enhanced cell uptake,
only Comp-Apt-siR inhibited the expression of the GFP gene
efficiently, suggesting that the multivalent aptamer-siRNA conju-
gations might have improved the internalization capabilities
compared to the monomers. The mechanism involved in the
endosomal release of the chimera after cell entry is not fully
understood.

To further improve the efficacy of aptamer-siRNA chimeras,
endosome rupturing nanocarrier conjugation can be an alterna-
tive. However, Walter et al. showed that the positive net charge
of nanomaterials could block the correct folding of an aptamer
by triggering it to unfold on the surface.51 Such a conformational
change will inhibit any interaction between the aptamer and its
target, ultimately destroying its siRNA guiding property. To
overcome this problem, Bagalkot and Gao developed a 2-step
process using aptamer and siRNA separately to build a functional
chimera.52 First, they applied siRNA molecules with a thiol-reac-
tive terminal group to a polyethylene imine coated nanoparticle.
This non-covalent interaction reduces some of the positive charge
on the carrier. Next, the aptamer containing a single thiol–group
was added to form a functional chimera with the nanocarrier
bound siRNA. Their approach showed significantly increased
gene silencing efficacy compared with conventional one-step
assemblies. Recently, a new strategy using a simple protein tag
was used to improve the endosome disruption.53 In comparison

Figure 2. Principles of in vivo aptamer selection.
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with nanoparticles, this small protein tag consisted of 2 func-
tional domains; a dsRNA binding domain and a polyhistidine.
The dsRNA binding domain binds selectively to the siRNA part
of the chimera, and depending on the pH, the polyhistidine
induces endosomal membrane disruption. Table 1 summarizes
recent efforts on aptamer mediated siRNA delivery for enhanced
gene silencing efficacy.

Aptamer Targeted Delivery of shRNA

Similar to siRNA approach, shRNA (short hairpin RNA) can
be used to initiate target gene silencing. shRNAs consist of 2
complementary RNA sequences linked by a short loop region
and mimics the naturally-occurring miRNA precursor in miRNA
biogenesis. A ribonuclease III family member called Dicer cleaves
the shRNAs into small interfering RNA duplexes with symmetric
2–3 nucleotides 30-overhangs for creating conventional siR-
NAs.86 In order to trigger high gene silencing efficiency,
shRNAs, like conventional siRNAs, are designed to match their
target perfectly.

Aptamers can be utilized to further improve the target gene
silencing efficacy and the major benefit of using shRNAs-aptamer
chimeras is that the whole complex can be synthesized in one

step, avoiding the anneal-
ing of 2 separated sense
and antisense RNA
strands, usually required
for siRNA. Recently, Ni
and colleagues58 used
shRNA-aptamer chimeras
to target the catalytic sub-
unit of DNA-activated
protein kinase, catalytic
polypeptide (DNAPK).
The aptamer-shRNA con-
jugate was designed as a
single intact nuclease-stabi-
lized 20-fluoro-modified
pyrimidine transcript. The
treatments with the chi-
mera lead to significant
reductions in DNAPK
mRNA levels. This report
not only showed the
enhanced RNAi capabili-
ties of aptamer-shRNA
chimera, but also the sim-
plicity of the chimera
synthesis.

Aptamers as Tools
for Delivering
microRNAs

The discovery of micro-
RNA (miRNA), short endogenous-initiated non-coding RNA
molecules, is considered an important breakthrough in the
molecular genetics field.21 It was initially revealed as regulator of
the larval developmental stages of Caenorhabditis elegans.87 Stud-
ies on miRNA received great attention and this area is growing
rapidly. The reason for that is the involvement of miRNAs in the
regulation of various important gene networks that play a role in
the development of various diseases.88-90 miRNAs function as
gene modulators inducing either degradation or translational
repression of a target mRNA (mRNA). Depending on the degree
of complementarity of the miRNA to the target mRNA, negative
regulation occurs via the cleavage or by translational biogenesis
and regulated repression of the target mRNA. The perfect or
almost perfect binding of the miRNA to the target site induces
the cleavage of mRNA. This way of interfering is most common
in plants, but it was also reported for animals.91 The major regu-
lation pathway in animals as well as in humans, is the transla-
tional repression induced by imperfect binding of the miRNA to
complementary sites within the 30 untranslated regions of
mRNA blocking the translation into a protein.92,93 As imperfect
target binding (compromised Watson-Crick base pairing rules)
can block translation, one miRNA is able to regulate multiple

Figure 3. Aptamer-siRNA mediated gene silencing approach.
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mRNAs, making miRNAs an interesting tool for multi-target
inhibition.

In comparison with normal cells, tumor cell lines often show a
broad deregulation of miRNA expression.94 In most cancer type,
miRNA down-regulation correlates with a lack of tumor sup-
pressing functions, indicating their role as tumor suppressors. On
the other hand some cancer types exhibit an increased expression
of specific miRNAs that target tumor suppressor genes. There-
fore, manipulating miRNAs would be a rational therapy consid-
ering their diverse roles in tumorigenesis and inducing tumor
formation. An increasing number of studies have revealed that
depending on the cellular context, one miRNA can act as tumor
suppressor as well as an oncomir. One example for this 2-faced
activity is miR-221. While being up regulated in most cases of
epithelial tumors, miR-221 also play tumor suppressor role in
erythroleukemic cells.95 Such examples will further complicate
the use of miRNAs as therapeutic agents and demonstrates the
requirement for cell specific delivery, further justifying the use of
aptamers as a delivery tool.

The miRNAs miR-15a and miR-16-1 are known to act as
tumor suppressors in prostate cancer.96-98 In 2011, Wu and col-
leagues99 used this tumor suppressing character to create a polya-
midoamine (PAMAM)-based aptamer conjugation as a target-
specific intracellular delivery carrier of miR-15a and miR-16-1 to
treat prostate cancer. PAMAM was conjugated to the aptamer
using a polyethylenglycol (PEG) linker. ATP-PEG-PAMAM-
miRNA complexes were created by an electrostatic interaction
between miRNA and PAMAM. By utilizing the aptamer A10-
3.2 targeting prostate-specific membrane antigen (PSMA), they
were able to deliver the miRNAs specifically to PSMA expressing
LNCaP cells and induce cancer cell death.

Another example of utilizing aptamers to deliver miRNA was
performed by Dai and colleagues. They conjugated MUC1-
aptamers (anti-MUC1 protein) to miRNA-29b to generate the
chi-29b chimera for the purpose of re-expressing the tumor-sup-
pressor gene, PTEN. The chi-29b chimera was delivered specifi-
cally to OVCAR-3 cells, which express MUC1 protein guided by
the aptamer and up-regulated the mRNA of the PTEN gene in
the OVCAR-3 cells.100 chi-29b chimera successfully showed
anti-tumor effects in ovarian cancer xeno-graft mice models. In
another study, MUC1 aptamer was used for target specific deliv-
ery of let-7i miRNAs to reverse the paclitaxel-induced chemo-
resistance of OVCAR-3-cells in the ovarian carcinomas. The pac-
litaxel-induced chemo-resistance has been successfully reversed by
the MUC1/let-7i chimera, which has down-regulated the expres-
sions of Dicer1, cyclin D1, cyclin D2 and PGRMC.101

Aptamers as Tools for Delivering antimiRs

AntimiRs, short piece of single-stranded nucleic acids target-
ing miRNA are a recent tool for inhibiting miRNA activity.
AntimiRs are mostly modified oligonucleotides binding comple-
mentary to the target miRNA preventing from binding to its bio-
logical target. For example, Elmen et al. demonstrated the

function of LNA-modified antimiRs in vivo, demonstrating anti-
miRs as an important therapeutic tool.102

In 2012, Kim et al. have developed an AS1411 aptamer-tar-
geted theranostic platform composed of miRNA-221 targeting
molecular beacon fused to a magnetic fluorescent nanoparti-
cle.103 The beacon consisted of a perfect reverse compliment
sequence to mature miRNA-221. Aptamer and the miRNA bea-
con were covalently linked to the nanoparticle using the coupling
reagent, N-(3-dimethylaminopropyl)-N’-ethyl-carbodiimide
hydrochloride. While the aptamer conducts cell specific delivery
of the antimiR beacon, the nanoparticle enables tracking and
visualization of the complex. They successfully demonstrated a
functional system for simultaneous targeting of cancer cells,
imaging and oncomir inhibition.

Very recently, Pofahl et al. reported the first successful
aptamer based antimiR delivery to the deregulated miRNA target
miR-21 in breast cancer cells.104 The antimiR sequence should
in principle be specifically delivered to the cancer cells and
strongly bind to the target miRNA sequence to inhibit its func-
tion. In their study, nucleolin targeting aptamer AS1411105 was
used to deliver the antimiR sequence. The antimiR sequence was
chemically modified by using phosphorothioate linkages and also
by incorporating locked nucleic acid (LNA) nucleotides to
enhance the antmiR-miR-21 interaction and to improve the sta-
bility. To test antimiR interference, an enhanced green fluores-
cent protein (EGFP)-expressing MCF-7 cell line was generated.
In those cells, the EGFP expression was inhibited by miR-21.
The study revealed that the chimera was successfully internalized
in MCF-7 cells and exhibited antiproliferative properties while
preventing miR-21 dependent EGFP inhibition. They coined
the term AptamiR for this type of chimeras for combining
aptamer and antimiR.

Aptamer-Oligonucleotide Chimeric Construction
Using Oligonucleotide Synthesizer

To link therapeutic oligonucleotides like siRNA, antimiRs,
antisense to nucleic acid aptamers, many different approaches
can be used (see Table 1). Most procedures adopt appropriate
post-oligo conjugation chemistries or interactions including bio-
tin-streptavidin linkages. These approaches often involve time
consuming multiple synthesis steps, purification steps and often
result in low yields. Some of these chimeras can also be generated
by enzymatic methods like ligation, in vitro transcription (recom-
mended for long RNA aptamer siRNA conjugation, e.g. 40mer)
and polymerase chain reaction for all DNA constructs. Ideally, it
would be convenient to generate the aptamer-oligonucleotide
chimera in one step using an oligonucleotide synthesizer via stan-
dard phophoramidite chemistry (Fig. 4). There are various meth-
ods one can think of; however, the appropriate ones could be to
link the 2 functional regions via a disulphide linkage (SS), trie-
thyleneglycol (TEG)/poly carbon (for e.g., C6 linkage or by using
polynucleotide linkage (for e.g. –dTdTdT-). All of these amidites
are commercially available from different sources, and these
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synthetic methods do not use large biological molecules like
streptavidin, and thus can be less immunogenic.

Polynucleotide linkage might be the easiest way to link
aptamer and therapeutic oligonucleotides. In this case, a spe-
cial phosphoramidite that may affect the total synthetic yield
is not required. It is noteworthy mentioning that polynucleo-
tide linkers are able to engage in base paring with other
nucleotides within the sequence or other sequences. There-
fore, the linker has to be chosen carefully and also to avoid
its influence on the secondary structure of the aptamer. In
addition, the polynucleotide linker can make the chimera less
flexible compared to other chemistries.

A polyethylene glycol (PEG) based phosphoramidite can be
used to establish a PEG linkage between aptamer and oligonu-
cleotides. PEG is hydrophilic, which decreases aggregation and
increases solubility of the complex, non-toxic, non-immunogenic
and a usual approach for increasing the bioavailability in vivo.
Furthermore, a PEG linkage is highly flexible and thus it could
be a useful method for conjugation. Disulphide linkages are com-
monly found in bacterial protein toxins.106 These toxins utilize
the cleavage of covalently linked disulphide bond by reducing it
to thiol groups. The disulphide bond is mostly stable in serum,
due to the oxidizing character of the extracellular space, but if
exposed to the reducing intracellular space, the disulphide bond
is cleaved. This will facilitate the cleavage of the aptamer-oligo-
nucleotide complex and release of the interfering oligonucleotide
upon cell entry. Using this approach, coagulation of aptamer and
siRNA/miRNA can be avoided and the efficacy of the interfering
oligonucleotide can be improved.

Chemically Modified Aptamer-Oligonucleotide
Chimera

Stability of oligonucleotides is key for successful therapeutic
efficacy in vivo. Virtually every organism possesses various
enzymes to synthesize, modify or hydrolyze nucleic acids. Nucle-
ases are important for nucleic acid turn over and as a defense
mechanism against pathogens, such as bacteria and viruses. Con-
sequently, aptamer- therapeutic oligonucleotide chimera com-
posed of naturally occurring DNA or RNA nucleotide
monomers have serious limitations toward therapeutic develop-
ment, as they exhibit shorter half-life in vivo because of their
poor nuclease resistance and bio-availability. To tackle these limi-
tations, a number of modified nucleotides have been developed
in recent years (Fig. 5).

Some of the most prominent examples are 20-fluoro (20-
F),107,108 20-O-methyl (20-OMe),109 20-methoxyethyl (20-
MOE),110,111 20-fluoroarabino (20-FANA),112 locked nucleic
acid (LNA),113,114 unlocked nucleic acid (UNA),115,116 cyclo-
hexenyl (CeNA) nucleic acid,117,118 peptide nucleic acid
(PNA),119 phosphoramidate morpholino (PMO)120 etc.
Although many of the modified nucleotides have been success-
fully utilized in various nucleic acid-based therapeutic technolo-
gies, their relatively poor or no enzymatic recognition properties
often pose a major challenge toward the development of biostable
aptamers.

In principle 2 different approaches are used to incorporate
modified nucleotides into aptamers. First, fabrication of a pre-
selected aptamer introducing modified nucleotides at various

Figure 4. Aptamer-oligonucleotide chimera in one step using an oligonucleotide synthesizer.
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positions during solid phase oligonucleotide chemical synthesis
(‘post-SELEX’). In this approach, incorporation of a modified
nucleotide can result in unfavorable shift or even in total loss of
the binding affinity which highlight the importance of a system-
atic incorporation and analysis. A post-SELEX approach has
been used during the development of the first aptamer drug Mac-
ugen� (Pegaptanib).3 Pegaptanib is a human vascular endothelial
growth factor (VEGF)-binding RNA aptamer containing 20-F

pyrimidine and 20-OMe
purine nucleotides. While
the aptamer origins from a
20-F pyrimidine-contain-
ing library via conven-
tional SELEX, the 20-
OMe modifications were
introduced post-SELEX
by substituting purines to
enhance nuclease resis-
tance and serum stability.
Kuwahara et al. recently
reviewed various success-
ful post-SELEX modified
aptamers.121

The second approach is
by conventional aptamer
selection via SELEX
approaches whereby a new
aptamer is developed from
an oligonucleotide library
containing modified
nucleotides (in-SELEX
approach). The 20-OH
group is a suitable location
for introducing chemical
modifications, since the
modification can be intro-
duced equally in purines
and pyrimidines. Further-
more, 20-modifications is
known to increase the sta-
bility against chemical and
enzymatic degrada-
tion.122-125 Very recently,
Lauridsen et al. reported a
review article describing
the enzymatic recognition
capabilities of various 20-
modified nucleotides.126

Stemming from their ini-
tial enzymatic recognition
studies, 20-amino pyrimi-
dines, 20-fluoro pyrimi-
dines and 20-O-Methyl
nucleotides have been suc-
cessfully applied in
aptamer development by

conventional SELEX-based methodologies.127-134 LNA is one of
the successful nucleotide analogs extensively utilized in various
fields because of their remarkable properties.113,114 In LNA the
sugar ring is conformationally locked by a O20-C40methylene
linkage to adopt N-type sugar puckering.135-137 Toward develop-
ing LNA-modified aptamers, Veedu et al. reported the enzymatic
recognition capabilities of LNA nucleotides using DNA and
RNA polymerases.138-144 In 2013, Kuwahara and co-workers

Figure 5. Examples of successful chemically-modified nucleotide analogs.
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reported an LNA (BNA) aptamer against thrombin using capil-
lary electrophoresis-based SELEX (CE-SELEX) method.145,146

Summary and Outlook

Since their invention, aptamers have been applied to various
applications including therapy, diagnosis, imaging and delivery.
Aptamer selection is normally performed with a goal of generating
a candidate sequence with very high target binding affinity (low
nanomolar level) and specificity to a given molecular target. High
affinity would be desirable for most applications, however for
aptamers targeting proteins that are overexpressed in a particular
disease condition (both intra-cellular and extra-cellular including
cell-surface receptors), highest target binding affinity might not be
necessary as it could increase the probability of binding to the
same proteins needed for normal cellular functions. Aptamers are
conventionally selected with a nucleic acid library with primer
binding regions flanked to the randomized region. Secondary
structures responsible for target binding may usually be expected
from the random region; however, it is important to use the full-
length oligonucleotide aptamer sequences (with primer flanks) for
initial target binding analysis. Systematic truncation of the success-
ful binding aptamer can then be performed using secondary struc-
ture prediction algorithms (e.g., mfold).147

In recent years, a number of studies showed the potential of
aptamers to improve the efficacy of therapeutic oligonucleotide
candidates for target specific gene silencing and generate a better
clinical outcome. Endosomal release of aptamer-therapeutic oligo-
nucleotide chimeras could be another problem in addition to cel-
lular uptake, with high amounts of chimeras required to produce
relevant changes in gene expression. Attaching endosome

disrupting molecules such as a nanoparticle or a protein/peptide
tag to the aptamer-oligonucleotide chimera may prove useful to
circumvent this limitation. In previous years, the main focus was
on aptamer-targeted delivery of siRNA. But, the scope of miRNA
targeting and antisense therapy continues to rise and this will
surely broaden the applications of aptamers based delivery systems.

A classical approach for targeting mRNA is to use antisense
oligonucleotides (ASOs),148 short pieces of single-stranded DNA
sequence that anneal to the target mRNA. This RNA:DNA het-
ero-duplex then recruits the enzyme RNAse H, which specifically
cleaves the target mRNA and block translation. Chemically-
modified nucleotide-based ASOs are also widely applied for
enhanced targeting efficacy and stability, and in this case a steric-
block mechanism is also applied for preventing translation. Most
importantly, the first therapeutic oligonucleotide entered the
clinic is Vitravene (Formivirsen), an ASO for the treatment of
cytomagaloviral (CMV) retinititis in patients with HIV infec-
tion.149 This approach has been widely explored for its applica-
bility as therapeutics in various disease conditions both in vitro
and in vivo. Target specific delivery is very important for high
therapeutic efficacy and aptamers can be a vital tool for more effi-
cient delivery of ASOs. However, to the best of our knowledge so
far, there are no reports on aptamer-mediated delivery of ASOs.

To summarize, the relatively new field of aptamer-therapeutic
oligonucleotide chimera is currently advancing its potential for
various therapeutic applications. Aptamer-guided delivery of
therapeutic oligonucleotides could be one of the most exciting
approaches toward the treatment of diseases and its broad appli-
cability is limited by our knowledge and imagination.
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