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Background: Association studies of epigenome-wide DNA methylation and disease can 
inform biological mechanisms. DNA methylation is often measured in peripheral blood, 
with heterogeneous cell types with different methylation profiles. Influences such as 
adiposity-associated inflammation can change cell-type proportions, altering measured 
blood methylation levels. To determine whether associations between loci-specific 
methylation and outcomes result from cellular heterogeneity, many studies adjust for 
estimated blood cell proportions, but high correlations between methylation and cell-type 
proportions could violate the statistical assumption of no multicollinearity. We examined 
these assumptions in a population-based study.

Methods: CDKN2A promoter CpG methylation was measured in peripheral blood from 
812 adolescents aged 17 years (Western Australian Pregnancy Cohort Study). Loge 
adolescent BMI was used as the outcome in a regression analysis with DNA methylation 
as predictor, adjusting for age/sex. Further regression analyses additionally adjusted 
for estimated cell-type proportions using the reference-based Houseman method, and 
simulations modeled the effects of varying levels of correlation between cell proportions 
and methylation. Correlations between estimated cell proportions and CpG methylation 
from Illumina 450K were measured.

Results: Lower DNA methylation was associated with higher BMI when cell-type 
adjustment was not included; for CpG4, β = −0.004 logeBMI/%methylation (95% CI 
−0.0065, −0.001; p = 0.003). The direction of association reversed when adjustment for 
six cell types was made; for CpG4, β = 0.004 logeBMI/%methylation (−0.0002, 0.0089; 
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INTRODUCTION

Association studies of DNA methylation and human disease can 
yield insights into biological mechanisms. Methylation is often 
measured in peripheral blood; however, blood is a heterogeneous 
collection of cell types, each with a different methylation profile. 
Inter-individual differences in DNA methylation may therefore 
be driven at least in part by differences in cell populations within 
the measured tissue type. Distinguishing between the “intrinsic 
methylation signal,” i.e., that independent of cellular heterogeneity 
and that caused by differential mixtures of cell types, is especially 
problematic when studying methylation changes associated with 
disorders exemplified by chronic inflammation (Holbrook et al., 
2017). For example, in obesity and type 2 diabetes, inflammatory 
responses can change cell proportions within blood, altering 
methylation levels. There has been much debate in recent years 
(Houseman et al., 2015; Horvath et al., 2016; Holbrook et al., 
2017; Quach et al., 2017) as to whether proportion of cell types 
is a confounder to be removed from an analysis, or a source of 
valuable information about disease etiology and comorbidity.

To identify the variation in loci-specific DNA methylation 
associated with disease phenotype rather than variation related 
to differences in cell populations, it is common to adjust for 
estimated blood cell proportions during statistical analysis. 
The reference-based Houseman method (Houseman et al., 
2012) uses data from 100 CpG sites shown to be differentially 
methylated between FACS-sorted leukocyte subgroups and 
measured on Infinium Beadarray (the sites contained within 
the HumanMethylation27, HumanMethylation450 and EPIC 
arrays) (Illumina Inc., San Diego, CA) methylation platform to 
estimate the proportion of leukocyte subtypes in unfractionated 
whole blood. The advantage of this method is that it does not 

require sorted cells but relies on the prior reference data to 
estimate proportions in the sample under study. The reference 
set was based on 46 white blood cell samples, with an additional 
27 whole blood samples used as controls to estimate batch effects. 
Hitherto, there have however been no formal examinations of 
whether including cell-type proportions in regression equations 
might violate regression assumptions and lead to challenges in 
interpreting findings. This study therefore examined for evidence 
of multicollinearity in a population-based epigenetic study, 
alongside simulations to model the effects of varying levels of 
correlation between cell proportions and methylation.

MATERIALS AND METHODS

The Raine Study: Participants
The Raine Study (Straker et al., 2017) enrolled pregnant women 
≤18th week of gestation (1989–1991) (N = 2,900) through the 
antenatal clinic at King Edward Memorial Hospital and nearby 
private clinics in Perth, Western Australia. Detailed clinical 
assessments were performed at birth. Birth information (including 
birth weight and height) was obtained from midwife records. The 
children were followed up at multiple time points, including at 17 
years of age (Generation 2) when physical assessments including 
weight, height, and skin fold assessments were performed as 
described previously (Huang et al., 2015a). Socioeconomic status 
was assessed by maternal education. Maternal weight and height 
were measured by a trained midwife at 18 weeks’ gestation. 
Early pregnancy weight was obtained at recruitment around 18 
weeks’ gestation. Gestational age was based on the date of the last 
menstrual period unless there was discordance with ultrasound 
biometry at the dating scan. Characteristics of the Generation 2 
Raine Study participants are shown in Supplementary Table 1.

Ethics Approval and Consent to Participate
The Human Ethics Committees (King Edward Memorial Hospital 
and/or Princess Margaret Hospital) approved all protocols 

p = 0.06). Correlations between CpG methylation and cell-type proportions were high, 
and variance inflation factors (VIFs) were extremely high (25 to 113.7). Granulocyte count 
was correlated with BMI, and removing granulocytes from the regression model reduced 
all VIFs to <3.1, with persistence of a positive association between methylation and 
BMI [CpG4 β = 0.004 logeBMI/%methylation (−0.0002, 0.0088; p = 0.06)]. Simulations 
supported major effects of multicollinearity on regression results.

Conclusions: Where cell types are highly correlated with other covariates in regression 
models, the statistical assumption of no multicollinearity may be violated. This can result 
in reversal of direction of association, particularly when examining associations with 
phenotypes related to inflammation, as CpG methylation may associate with changes in 
cell-type proportions. Removing predictors with high correlations from regression models 
may remove the multicollinearity. However, this might hinder biological interpretability.

Keywords: epigenomics, houseman cell-type adjustments, statistical assumptions, multicollinearity, reversal of 
direction of association, Illumina 450K

Abbreviations: DMR, differentially methylated region; DNA, deoxyribonucleic 
acid; BMI, body mass index; CAR, companion to applied regression; CI, confidence 
intervals; CpG, 5′-C-phosphate-G-3′; FACS, fluorescence-activated cell sorting; 
NK cells, natural killer cells; PC, principal components; RNA, ribonucleic acid; 
VIF, variance inflation factor
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(RA/4/1/6613). Informed, written consent to participate in the 
study was obtained from the mother of each child at enrolment 
and at each subsequent follow-up.

Pyrosequencing
The levels of DNA methylation in the promoter of the long non-
coding RNA ANRIL that is encoded within the CDKN2A gene locus 
were measured in peripheral blood from Generation 2 adolescents 
from the Raine Study by sodium bisulfite pyrosequencing, as 
previously described (Murray et al., 2016; Lillycrop et al., 2017). This 
region of CDKN2A (genomic locations listed in Supplementary 
Table 2) is not covered by Illumina 27K, 450K, or EPIC(850K) 
methylation arrays and was first identified through a genome-wide 
screen of methylation differences at birth associated with % fat mass 
of children aged 6 years in the UK Southampton Women’s Survey, 
along with similar findings in birth tissues from ethnically diverse 
neonates and in adipose tissue from adults (Lillycrop et al., 2017). 
Further studies also showed an association between the methylation 
status of CpGs 4–9 within this DMR in peripheral blood of 17-year-
old adolescents with measures of concurrent adiposity in the Raine 
study (Lillycrop et al., 2017).

Houseman Cell-Type Estimation From 
450K Methylation Array Data
DNA was extracted from whole blood samples obtained at 
17-year-old (Raine Study Generation 2) follow-up. Bisulfite 
conversion was prepared from whole blood cells by standard 
phenol:chloroform extraction and ethanol precipitation. 
Processing of the Illumina Infinium HumanMethylation450 
BeadChips was carried out by the Centre for Molecular Medicine 
and Therapeutics (CMMT) (http://www.cmmt.ubc.ca) for 1,192 
samples and 58 technical replicates. DNA methylation beta-values 
were normalized using Beta-mixture quantile dilation (BMIQ) as 
described by Teschendorff et al. (2013). Three samples identified 
as outliers and one sample for sex inconsistency during quality 
control were excluded. Cell-type correction was determined using 
the reference-based Houseman method in the minfi package 
(van Iterson et al., 2014) using R. This method estimates the relative 
proportions of white blood cell subtypes [six were measured in our 
study: CD4+ T-lymphocytes, CD8+ T-lymphocytes, NK (natural 
killer) cells, B-lymphocytes, monocytes, and granulocytes], based 
on a standard reference population. Spearman correlations were 
calculated between each estimated cell type and CpG methylation.

Statistical Analysis
Statistical analysis was carried out using Stata (Statacorp) versions 
11.2 to 14.2 and R version 3.3. Histograms of continuous variables 
were plotted to check for normality. The distribution of BMI in 
this cohort was positively skewed and therefore transformed 
using a loge transformation. Regression models were built using 
adolescent’s loge BMI measurement at 17 years (Generation 2) as 
the outcome and CpG methylation as the predictor. Models were 
adjusted for adolescent’s sex and exact age at measurement. Results 
are presented as regression coefficients (β), which represent the 
(mean) change in outcome (logeBMI) for a one unit (%) increase 

in methylation, with their standard errors, 95% confidence 
intervals (CIs) and associated p values. Further regression analysis 
was performed adjusting for six estimated cell-type proportions 
(CD8 T cells, CD4 T cells, NK cells, B cells, monocytes, and 
granulocytes) to account for differences in cellular heterogeneity 
in blood, in addition to age and sex.

The correlations between observed DNA methylation values 
at the nine CpG dinucleotides and six estimated Houseman cell 
types were examined using Pearson correlation coefficients (see 
Supplementary Table 3). As these correlations were found to 
be high, to assess possible violation of regression assumptions 
(Gujarati and Porter, 2009; Barton et al., 2013), variance inflation 
factors (VIFs) were calculated in R using the car (Companion 
to Applied Regression) package (Weisberg and Fox, 2011) 
for all coefficients in regression equations for each CpG (see 
Supplementary Table 4). VIFs measure how much the variances 
of the regression coefficients (βs) are inflated compared to no 
correlation between predictor variables. The percentage of 
variance explained by the other independent variables can be 
calculated using the formula (1 − (1/VIF))*100. A VIF of 5 or 
less, corresponding to 80% of the variance explained by other 
independent variables, is generally thought to be acceptable 
(Gujarati and Porter, 2009). Regression models were re-run 
excluding the cell type with the highest VIF (granulocytes) 
in order to reduce multicollinearity. In addition principal 
components (PCs) of the six estimated cell-type proportions 
(CD8 T cells, CD4 T cells, NK cells, B cells, monocytes, and 
granulocytes) were calculated using the “prcomp” package in R, 
and models were run including the first two PCs instead of all 
six estimated cell types, in order to reduce multicollinearity. A 
stepwise approach was also used, regressing out each cell type 
variable from the CpG methylation measurements to minimize 
multicollinearity at each step, and then the methylation residuals 
were regressed against loge BMI. To further investigate this 
relationship, we conducted Spearman correlation between five of 
the six estimated cell counts (CD8T, CD4, B cells, monocytes, and 
granulocytes) with the CpG probes from the Illumina Infinium 
HumanMethylation450 array in R.

A simulation was constructed to estimate how high correlation 
between predictors could be without inducing multicollinearity 
into the regression. Datasets were constructed by sampling from 
a Normal distribution with the same mean and standard deviation 
as loge BMI, CpG4, and granulocyte counts, specifying correlations 
between loge BMI, CpG4, and granulocytes to be the same 
correlations observed in our study. One thousand regressions were 
run using this simulated data, and we measured how often the 
regression coefficient for CpG4 was observed to be positive. The 
correlation between CpG4 and granulocytes was then changed 
from a high correlation (r = −0.783, as in our original data) to a 
mid-range correlation (r = −0.5) and a low correlation (r = −0.25), 
and the simulations were re run 1,000 times for each scenario.

RESULTS

Lower CDKN2A DNA methylation was associated with higher 
BMI in the Raine Study when cell-type adjustment was not 
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included for CpGs 4 to 9 (Lillycrop et al., 2017) (Table 1, rows 
1–4). However, when adjustment for estimated proportions of 
CD8 T cells, CD4 T cells, B cells, natural killer cells, monocytes, 
and granulocytes (estimated using the Houseman method) were 
included in the regression model, the direction of association was 
reversed for all of these CpGs (4 to 9), with CpGs 4 and 8 being 
no longer significantly associated with loge BMI (Table 1, rows 
5–7). For all CpGs except CpG2, the standard error of regression 
coefficients increased when cell-type adjustments were included 
in the model.

Correlations between CDKN2A CpG methylation and 
cell-type proportions were found to be high (Supplementary 
Table  3), and the outcome, loge BMI, was also correlated with 
cell-type proportions, particularly granulocytes (r = 0.16, 
Supplementary Table 5). As loge BMI is the outcome in the 
regression, this will not result in multicollinearity and will not 
alter the regression coefficients of the predictors. Table 2 shows 
correlations between CpG4 and estimated cell proportions. 
Therefore, VIFs were calculated for all predictors in the regression 

models (Supplementary Table 4); VIFs, 1/VIF (tolerance), and 
percentage variance explained by the other independent variables 
for the model including CpG4 are shown in Table 3.

Table 3 shows that some VIFs were found to be extremely 
high, particularly the VIFs for granulocytes (113.71) and for 
CD4 T cells (61.21), and that these cell types did not contribute 
much to the models as most of their variance was explained by 
other independent variables in the model. Removing one cell 
type with the largest VIF (granulocytes) from the regression 
model reduced all VIFs to acceptable levels (< 3.13), as shown on 
the right-hand side of Table 3. However, omitting granulocytes 
from the regression did not reduce multicollinearity sufficiently 
to allow accurate estimation of regression coefficients for CpG 
methylation as shown in Table 1, rows 8–10. The regression 
coefficients of CpGs 4–9 are still negative and the standard errors 
are inflated. Rows 11–13 of Table 1 show that including the first 
two PCs of all six Houseman cell-type adjustments does not 
reduce multicollinearity either. This was because correlations 
between the first two PCs and CpGs were very high (for PCV1: 

TABLE 1 | Regression results for Loge BMI with DNA methylation % as predictor adjusted for age and sex: i) without Houseman cell-type adjustment; ii) with six 
Houseman cell-type adjustments; iii) with Houseman cell-type adjustments but excluding granulocytes; iv) with the first two principal components of six Houseman cell-
type adjustments; v) cell-type adjustments residuals, each cell type individually; vi) cell-type adjustment residuals all cell types together. se, standard error.

Row CpG CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 CpG7 CpG8 CpG9

1 N 780 758 723 812 790 778 740 801 760
2 β 0 0.004 −0.004 −0.004 −0.003 −0.004 −0.004 −0.004 −0.004 loge BMI
3 Se 0.001 0.0029 0.0019 0.001 0.001 0.0012 0.001 0.0012 0.0012
4 P value 0.915 0.98 0.06 0.003 0.012 0.003 0.008 0.001 0.006 (Age and sex adjusted only)
5 β 0.005 0.003 0.001 0.004 0.006 0.005 0.007 0.005 0.006 loge BMI
6 se 0.0017 0.0014 0.0024 0.0023 0.0022 0.0022 0.0024 0.0025 0.0024
7 P value 0.01 0.041 0.608 0.061 0.007 0.028 0.005 0.063 0.009 (Age, sex, and Houseman cell-

type adjustments)
8 β 0.005 0.003 0.001 0.004 0.006 0.005 0.007 0.005 0.006 loge BMI
9 se 0.0017 0.0010 0.0024 0.0023 0.0022 0.0022 0.0024 0.0025 0.0025
10 P value 0.010 0.041 0.610 0.064 0.007 0.031 0.004 0.062 0.009 (Age, sex, and Houseman 

cell-type adjustments without 
granulocytes)

11 β 0.005 0.003 0.001 0.004 0.006 0.005 0.007 0.005 0.006 loge BMI
12 se 0.0017 0.0014 0.0024 0.0023 0.0022 0.0022 0.0024 0.0025 0.0024
13 P value 0.01 0.041 0.608 0.061 0.007 0.028 0.005 0.063 0.009 (Age, sex, and principal 

components 1 and 2 of 
Houseman cell-type adjustments)

14 β 0.096 0.062 0.014 0.043 0.067 0.049 0.064 0.048 0.089 loge BMI
15 se 0.0436 0.0361 0.0598 0.0536 0.0524 0.0508 0.0553 0.0584 0.0564
16 P value 0.028 0.087 0.820 0.427 0.199 0.331 0.246 0.415 0.115 (Age, sex, and Houseman cell-

type residuals one at a time)
17 β 0.121 0.084 0.045 0.109 0.147 0.120 0.173 0.132 0.172 loge BMI
18 se 0.0446 0.0368 0.0619 0.0592 0.0578 0.0568 0.0620 0.0664 0.0640
19 P value 0.007 0.022 0.468 0.065 0.011 0.035 0.005 0.047 0.007 (Age, sex, and Houseman cell-

type residuals all at the same 
time)

TABLE 2 | Pearson correlation between CpG4 and estimated cell proportions.

CpG4 CD8 T cells CD4 T cells NK cells B cells Monocytes Granulocytes

Pearson correlation .611** .553** .371** .215** –.402** –.783**

Significance 
(two-tailed)

 <2.2 × 10−16  <2.2 × 10−16  <2.2 × 10−16 8.19 × 10−13  <2.2 × 10−16  <2.2 × 10−16

N 1081 1081 1081 1081 1081 1081
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r  = −0.329 to −0.751, p < 2.22 × 10−13) as shown in Table 4, 
and this correlation induced further multicollinearity into the 
regression.

Simulation results showed that when a simulated granulocyte 
variable was not included in the models, 0.5% of the regression 
coefficients for CpG4 were positive. As the correlation between 
CpG4 methylation and loge BMI is negative, we would expect the 
regression coefficient of CpG4 methylation vs. BMI to be negative 
(see Figure 1). When granulocyte counts were included in the 
simulation models with a correlation coefficient of −0.783 with 
CpG4, 83% of the regression coefficients for CpG4 were positive. 

For correlation between CpG4 and granulocyte count of r = −0.5, 
27.7% of the regression coefficients for CpG4 were positive, and 
for a correlation of r = −0.25, 6% of the regression coefficients 
for CpG4 were positive. This indicates that very high correlations 
between predictors are likely to cause multicollinearity and 
apparent reversal of direction of effect.

Examining the wider potential for collinearity effects relating to 
blood cell proportions, we examined the correlations between the 
DNA methylation status of CpG sites on the HumanMethylation 
450K BeadChip, a commonly used platform for EWAS studies, 
and Houseman cell-type estimates in 1,192 samples. 11,193 
(2.36%) CpGs on this array were highly correlated (rs ≥ |0.700|) 
with the peripheral blood granulocyte count; 6,023 (1.27%) 
CpGs were highly correlated with CD4 T cell count; 146 (0.03%) 
were highly correlated with B cell count; 25 (0.0053%) were 
highly correlated with CD8 T cell count; and 1 CpG (0.00021%) 
was highly correlated with monocyte count (cg13430807 in 
MTMR11). Estimated natural killer cell proportions were 
very low in these data and therefore correlations between NK 
cells and CpG methylation were not calculated. CpGs that are 
highly correlated with cell-type estimates are likely to cause 
multicollinearity when included as adjustments in regressions 
with these CpGs as predictors. The 50 CpGs that were most 
strongly correlated with granulocytes, CD4 T cells, B cells, and 
the 25 CpGs that were correlated with CD8 T cells (rs ≥ |0.700|) 
are listed in Supplementary Tables 6, 7, 8, and 9.

DISCUSSION

Our findings show that including Houseman cell-type 
adjustments in regression models can introduce multicollinearity 
into the models and lead to unstable estimates and inflated 
standard errors of regression coefficients. This resulted in 
models where both the direction of effect of predictors and the 
significance of regression coefficients changed. It is important 
that multicollinearity in regression equations is detected and 
steps are taken to minimize it, to ensure regression coefficients, 
and subsequent interpretations, are correct.

Multicollinearity (also referred to as collinearity) occurs when 
one predictor in a multiple regression model can be linearly 
predicted from the other predictors with a substantial degree of 

TABLE 3 | Variance inflation factors (VIFs), 1/VIF, and percentage variance explained by the other independent variables, for the model including CpG4. The left-hand 
side of Table 3 shows VIFs, 1/VIF, and percentage variance explained by the other independent variables for the model including six Houseman cell types; the right-
hand side of Table 3 shows results for the model including five Houseman cell types but omitting granulocytes.

loge BMI VIFs 1/VIF % Variance 
explained

VIFs without 
granulocytes

1/VIF % Variance 
explained

Sex 1.20 0.831 16.87 1.19 0.84 16.11
Age 1.03 0.975 2.53 1.02 0.98 1.64
CpG4 3.17 0.316 68.43 3.13 0.32 68.06
CD8 T cells 24.95 0.040 95.99 1.83 0.55 45.35
CD4 T cells 61.21 0.016 98.37 2.09 0.48 52.06
NK cells 30.26 0.033 96.70 2.02 0.49 50.57
B cells 14.67 0.068 93.18 1.33 0.75 25.08
Monocytes 11.32 0.088 91.17 1.50 0.67 33.19
Granulocytes 113.71 0.009 99.12 NA NA NA

TABLE 4 | Pearson correlation between CpGs and first two principal 
components (PCs) of six Houseman cell-type adjustments.

PC1 PC2

CpG1 Pearson correlation −.470** .258**
Significance (two-tailed)  < 2.22 × 10−13  < 2.22 × 10−13

N 781 781
CpG2 Pearson correlation −.329** .297**

Significance (two-tailed)  < 2.22 × 10−13  < 2.22 × 10−13

N 759 759
CpG3 Pearson correlation −.493** .311**

Significance (two-tailed)  < 2.22 × 10−13  < 2.22 × 10−13

N 724 724
CpG4 Pearson correlation −.671** .447**

Significance (two-tailed)  < 2.22 × 10−13  < 2.22 × 10−13

N 813 813
CpG5 Pearson correlation −.653** .464**

Significance (two-tailed)  < 2.22 × 10−13  < 2.22 × 10−13

N 791 791
CpG6 Pearson correlation −.700** .456**

Significance (two-tailed)  < 2.22 × 10−13  < 2.22 × 10−13

N 778 778
CpG7 Pearson correlation −.645** .496**

Significance (two-tailed)  < 2.22 × 10−13  < 2.22 × 10−13

N 741 741
CpG8 Pearson correlation −.751** .415**

Significance (two-tailed)  < 2.22 × 10−13  < 2.22 × 10−13

N 802 802
CpG9 Pearson correlation −.727** .436**

Significance (two-tailed)  < 2.22 × 10−13  < 2.22 × 10−13

N 761 761

** Correlation is significant at the 0.01 level (two-tailed).
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accuracy. Thus, the method used to derive cell-type proportions 
in our study assumes that there are only six cell types present in 
blood and therefore the proportions should add to 1 (Houseman 
et al., 2012). Therefore, in theory, including all six cell types as 
predictors in a regression should result in one of the cell-type 
coefficients being inestimable and a warning message generated 
by the statistical software. In practice, due to noise and error in 
the method, the six estimated cell types often sum to greater 
than 1 and the warning message is not generated. In theory, 
omitting one of these six cell types for the regression should 
solve this problem, but typically it is the lowest estimated cell 
type that is omitted and this may not resolve the issue. In our 
study, as the remaining cell types were still highly correlated with 
CpG methylation, the issue of multicollinearity remained.

Multicollinearity can also occur when two or more predictors in 
a regression model are highly correlated, as it results in the same or 
very similar information being entered into the model two or more 
times (Gujarati and Porter, 2009). One of the assumptions of the 
classical linear regression model is that there is no multicollinearity 
among the predictors included in the regression model. If this 
assumption is not met, estimates of regression coefficients of the 
highly correlated predictor variables are difficult to determine 
and their standard errors are inflated. Multicollinearity can cause 
the regression coefficients to change signs, reversing the apparent 
direction of effect of a predictor. However, multicollinearity does 
not affect model fit or the ability of the model to predict and so 
need not necessarily be a problem (Gujarati and Porter, 2009). It 
is common to have some degree of multicollinearity in regression 
models and mild to moderate multicollinearity can often be 

tolerated. However, when multicollinearity is severe and estimates 
of regression coefficients are required for inference, this can be a 
major issue. In the epigenetic analyses that we undertook, we found 
that VIFs were particularly high for two components of cell-type 
adjustments (granulocytes and CD4 T cells), which are frequently 
used as adjustment covariates in population DNA methylation 
studies. Omitting granulocytes and CD4 T cells either individually 
or together did not attenuate multicollinearity sufficiently to allow 
accurate estimates of CpG regression coefficients as the remaining 
cell types were also highly correlated with CpG methylation.

High correlation between cell-type estimates and the outcome 
of interest (logeBMI in our study) will not lead to multicollinearity 
as they are on opposite sides of the regression equation. High 
correlation between the cell-type estimates themselves could 
cause multicollinearity in the regression, but this will only be an 
issue if an estimate of the regression coefficient of the Houseman 
cell type is of interest. However, outcomes such as height that are 
not related to cell type are less likely to result in multicollinearity 
in the regressions as it is less likely that cell types will be correlated 
to CpG sites associated with height.

We also observed that proportions of some cell types were 
low in our data, for example, natural killer cells. Including this 
cell type as a predictor will not add much information to the 
model but also has the potential to cause multicollinearity if the 
correlation between the cell-type estimate and CpG methylation 
is high (see Supplementary Table 3).

The main question to address is not whether multicollinearity 
is present or absent in a regression equation, but the extent of 
possible multicollinearity and whether it is affecting the estimates 

FIGURE 1 | Scatterplot of CpG4% methylation against loge BMI at age 17 in the Raine cohort.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Cell Type Adjustments in Epigenomic ModelsBarton et al.

7 September 2019 | Volume 10 | Article 816Frontiers in Genetics | www.frontiersin.org

of regression coefficients of interest. Multicollinearity is not, in 
general, easy to detect. It is always good practice to plot each 
predictor variable against each other and against the outcome to 
look for high levels of linear correlation between variables. This 
can be a good indication that multicollinearity is likely to be an 
issue. VIFs can also be calculated to indicate multicollinearity as 
described in the Materials and Methods section, and condition 
indices (Gujarati and Porter, 2009), though more complicated to 
interpret, can also be useful. However, unfortunately, there are 
no hard and fast rules about how much multicollinearity can 
be tolerated using these or other measures. The most reliable 
methods, which are somewhat subjective, tend to be i) looking 
for regression models where the variance explained by the model 
(R2) is high and yet few or none of the predictors are significantly 
associated with the outcome, ii) unexpected changes in regression 
coefficients and standard errors when small changes are made 
to the model, and/or iii) looking for high correlation between 
predictor variables.

There are ways to deal with multicollinearity, but none 
are entirely satisfactory. One possible approach to reduce 
multicollinearity is by calculating PCs among the cell-type 
proportions and using some of the PCs as predictors instead of 
the individual estimates of cell type proportions in the regression 
models. Although this reduces multicollinearity between the 
estimates of cell type proportion, in our data, it did not resolve the 
problem of collinearity between CpG4 and cell-type proportion 
as the first two PCs were also highly correlated with CpG 
methylation and therefore induced further multicollinearity. 
Another approach is to individually regress out cell-type 
adjustments from the methylation measurements to minimize 
multicollinearity at each step, and then to regress the residuals 
against outcome (loge BMI). This was done regressing out each 
cell type individually (Table 1, rows 14–16) and regressing out 
all cell types at the same time (Table 1, rows 17–19). Neither 
approach resolved the problem in our data due to the complex 
relationship between cell-type estimates and difficulty in 
establishing a sequence of importance for the cell-type estimates 
(Graham, 2003).

The data used for our study measures both CpG methylation 
and BMI at age 17 in the Generation 2 Raine study participants, 
and this makes it difficult to assign causality. However, in some 
circumstances, it might be possible to use CpG methylation 
as the outcome and loge BMI as a predictor, but as loge BMI is 
also correlated with five out of the six Houseman cell types (see 
Supplementary Table 5), multicollinearity may still be present in 
the regressions in our study. It can also be statistically problematic 
using methylation measurements as an outcome in a regression 
because the distributions of these measurements are rarely 
normally or approximately normally distributed. Transformation 
to M values instead of beta values (Du et al., 2010) will not be 
beneficial as the correlation between CpG methylation and cell 
types is still very high when M values are used.

It is therefore very hard to detect whether multicollinearity 
could be an issue in published papers where results of regression 
equations are only presented fully adjusted and it is suspected that 
many of the predictors could be highly correlated. Even authors 
who correctly try and determine the extent of multicollinearity 

using VIFs can still violate the assumption of no multicollinearity 
if unadjusted regressions, scatterplots, or correlation coefficients 
of all predictors and outcome are not presented (Garcia et al., 
2017). Many studies on DNA methylation and obesity have been 
carried out to date (de Mello et al., 2014; Garcia-Cardona et al., 
2014; Huang et al., 2015b; Holbrook et al., 2017; Lillycrop et al., 
2017; Quach et al., 2017), and most of these studies adjust for cell 
types. Interpretation of the results of these studies is problematic 
if there is likely to be severe multicollinearity between predictors, 
i.e., if there is high correlation between CpG methylation and 
cell-type proportions.

Some researchers might consider the absence of sorting for 
cell type at sample collection, as is usual in population-based 
studies of any size with phenotypic information, as a limitation 
of our study; this precludes direct analyses of blood cell-type-
specific methylation, but the absence of such information 
does not negate our findings, particularly the simulation data. 
Another limitation is that the cross-sectional nature of our 
study in participants with established excess adiposity is likely to 
have increased the chance of some of the cell types being highly 
correlated with CpG methylation, driven by adiposity effects on 
inflammatory processes. Such correlation may be less likely in 
longitudinal studies in which excess adiposity was not present at 
baseline. Where a strong correlation between cell types and CpG 
methylation is present, this could be of benefit for formulating 
therapeutic targets, providing the assumptions required for 
linear regression are met.

Strengths of this paper are that we show, using an explanation 
readily accessible to readers, that adding highly collinear 
variables such as cell-type adjustments into regression equations 
can induce multicollinearity, which makes interpretation 
of regression coefficients problematic. We suggest practical 
methods to detect multicollinearity and explain metrics (e.g., 
VIFs) commonly used to detect multicollinearity. We have also 
investigated correlations between Houseman estimates of cell 
type for our data and CpG methylation in the Illumina 450K 
Human Methylation platform to give researchers an idea of how 
widespread this problem is likely to be. We have run simulations 
to indicate how much correlation between variables can be 
tolerated between predictors in a regression without causing 
multicollinearity, resulting in difficulty in interpreting regression 
coefficients. If these recommendations are taken on board, this 
has the potential to improve the quality and clarity of published 
papers and resolve possible ambiguity between different research 
groups where the directions of effect are found to be in the 
opposite direction.

The limitations of these recommendations are that there is 
much debate in the statistical community about the most useful 
way to detect the extent of collinearity and there are no hard and 
fast rules for the metrics suggested such as VIFs.

CONCLUSION

Houseman cell-type adjustment is an important feature of DNA 
methylation research as it allows correction for cell type when 
using peripheral blood. However, if estimated cell types are highly 
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correlated with other covariates in regression models, the statistical 
assumption of no multicollinearity may be violated. This can result 
in apparent reversal of direction of association or loss of statistical 
significance for predictors. This is particularly important to 
consider when understanding associations with phenotypes related 
to inflammation, as CpG methylation may then be associated 
with changes in cell-type proportions. Assessment of possible 
multicollinearity and taking steps to minimize it is essential to ensure 
regression coefficients, and subsequent interpretations, are correct.
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