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Abstract

Autism spectrum disorders (ASDs) are diagnosed on the basis of three behavioral features, 

namely, (1) deficits in social communication, (2) absence or delay in language and (3) stereotypy. 

The consensus regarding the neurological pathogenesis of ASDs is aberrant synaptogenesis and 

synapse function. Further, it is now widely accepted that ASD is neurodevelopmental in nature, 

placing emphasis on derangements occurring at the level of intra- and intercellular signaling 

during corticogenesis. At present, there is an ever-growing list of mutations in putative 

susceptibility genes in affected individuals, preventing effective transformation of knowledge 

gathered from basic science research to the clinic. In response, the focus of ASD biology has 

shifted toward the identification of cellular signaling pathways that are common to various ASD-

related mutations in hopes that these shared pathways may serve as more promising treatment 

targets than targeting individual genes or proteins. To this end, the endogenous cannabinoid 

(endocannabinoid, eCB) system has recently emerged as a promising therapeutic target in the field 

of ASD research. The eCB system is altered in several neurological disorders, but the role of these 

bioactive lipids in ASD etiology remains poorly understood. In this perspective, we review current 

evidence linking eCB signaling to ASDs and put forth the notion that continued focus on eCBs in 

autism research may provide valuable insight into pathophysiology and treatment strategies. In 

addition to its role in modulating transmitter release at mature synapses, the eCB signaling system 

plays important roles in many aspects of cortical development, and disruption of these effects of 

eCBs may also be related to ASD pathophysiology.
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Introduction

Autism spectrum disorders (ASDs) comprise a continuum of symptoms and levels of 

disability that exhibit an early onset and persist through adulthood. ASDs are characterized 

by deficits in communication and social interaction, as well as by stereotypic behaviors, 

restricted patterns of interest and sensory issues. Two features distinguish ASDs from other 

behavioral disorders, clinical and pathogenetic heterogeneity and the distribution of autistic 

features as a continuum in the general population, dissolving the distinction between 

“affected” and “unaffected” [1,2]. There are currently no behavioral, genetic, imaging or 

electrophysiological assays that can specifically diagnose ASDs in the clinic. The prevailing 

hypothesis in central nervous system (CNS) research is that ASDs may be due to a 

disruption of the normal process of experience-dependent synaptic development. Several 

challenges arise, however, in translating our current knowledge base to the clinic. ASD-

causing mutations in individual genes that have been uncovered are extremely rare, where 

each accounts for ~1% of ASD patients. Genome analyses have also revealed the association 

of copy-number variants and single-nucleotide variants with ASDs. A number of these 

variants are de novo (not present in either parent). Whole-exome sequencing studies estimate 

between 400 to 1000 ASD susceptibility genes [3]. In addition to germline mutations, 

somatic mutations that affect a small subset of neurons can contribute to neurological 

disorders such as epilepsy, brain malformations and possibly ASDs [4]. In light of these 

difficulties in determining genetic markers of ASD, current research has moved toward 

examining cell signaling pathways that may be commonly affected across known ASD-

related gene mutations. For example, the metabotropic glutamate receptor (mGluR) and 

mammalian target of rapamycin (mTOR) pathways have been targeted for developing 

therapeutic strategies in treating patients with ASDs [5]. Evidence from several mouse 

models of ASD-related disorders, including Fragile-X Syndrome (FXS) [6–9] and Tuberous 

Sclerosis (TSC) [10,11] suggest that dysregulation of mTOR and mGluR signaling pathways 

contribute to deficits in synaptic plasticity and learning and memory. Additionally, there are 

several converging lines of evidence that indicate mGluR signaling is downstream of mTOR 

signaling in regulating long-term potentiation (LTP) [12,13] and long-term depression (LTD) 

[10,11].

Similarly, recent studies provide compelling evidence that disruption of endogenous 

cannabinoid (endocannabinoid, eCB) signaling may be responsible for synaptic deficits that 

underlie cognitive and behavioral deficits associated with ASDs. The eCB system has been 

shown to control emotional responses [14], behavioral reactivity to context [15] and social 

interaction [16]. Therefore, it is plausible that alterations to eCB signaling may contribute to 

the autistic phenotype. In this perspective, we review current evidence linking eCB signaling 

to ASDs and put forth the notion that continued focus on eCBs in autism research may 

provide valuable insight into pathophysiology and treatment strategies. In addition to its role 

in modulating transmitter release at mature synapses, the eCB signaling system plays 

important roles in many aspects of cortical development, and disruption of these effects of 

eCBs may also be related to ASD pathophysiology. These observations span both rodent and 

human models in vitro and in vivo. Furthermore, the scope of studies range from eCB-

dependent signaling mechanisms, such as synaptic plasticity, to behavioral studies 
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examining social reward processing. However, the precise relationship between the eCB 

system and ASD pathophysiology remains to be clearly delineated.

The Endocannabinoid System

The endogenous cannabinoid (eCB) system is comprised of cannabinoid receptors, 

endogenous ligands, and their corresponding synthetic and metabolic enzymes. The effects 

of eCBs are primarily mediated by binding cannabinoid type 1 (CB1) and type 2 (CB2) 

receptors. Both CB1 and CB2 receptors are G protein-coupled receptors, which couple 

mainly to G proteins of the Gi and Go classes [17]. Activation of these subclasses of G 

proteins inhibits adenylyl cyclase and certain voltage-dependent calcium channels and 

activates inwardly-rectifying potassium channels regulated by mitogen-activated protein 

kinases. In conjunction, CB1 and CB2 receptor activation exerts diverse consequences 

across cellular physiology [17].

Neuroanatomical studies have reported abundant CB1 receptor expression in the developing 

telencephalon as early as embryonic day (E) 11.5 in mouse [18]. The strongest levels of CB1 

receptor mRNA at this stage are present in pioneer neurons that occupy the marginal zone of 

the dorsal cortex, which include Cajal-Retzius cells that are best-known for their role as an 

instructive signaling cue through secretion of Reelin [19,20]. During mid-stages of cortical 

development (E13.5–E14.5) in mouse, CB1 receptor expression appears to be upregulated in 

the intermediate zone (IZ), while continuing to show robust expression in immature neurons 

accumulating in the overlying cortical plate (CP) [20,21]. Concomitantly, in the ventral 

forebrain, CB1 receptor expression has been reported in the subpial region of the ganglionic 

eminence (GE), which gives rise to cortical interneurons, and the primordium of the 

hippocampus [22]. At later stages of cortical development, CB1 receptor expression is 

heterogeneously distributed throughout cortical laminae and the hippocampus in both 

GABAergic and glutamatergic neurons [23–25].

The expression pattern of CB1 receptors has also been examined in human fetal brain using 

in situ hybridization and binding assays, which provide evidence of strong CB1 receptor 

expression in the developing cerebral cortex, hippocampus, caudate nucleus, putamen, and 

cerebellum [26]. Expression of the CB1 receptor has been reported as early as gestational 

week (GW) 9 in the subventricular zone (SVZ) of the lateral ventricle and Cajal-Retzius 

cells occupying the MZ, similar to reports in mouse. During the second trimester of 

gestation, dense labeling of CB1 receptor mRNA is present in fiber-enriched tracts, which, 

in the adult brain, are practically devoid of CB1 receptor expression [26]. This transient 

pattern of expression provides further support of the division between eCB signaling during 

cortical development and identifies the eCB system as a promising target for further 

examination in the context of neurodevelopmental disorders [27].

The first eCB ligands to be discovered and consequently best characterized are arachidonoyl 

ethanolamide (anandamide; AEA) and 2-arachidonoyl glycerol (2-AG). A notable feature of 

both anandamide and 2-AG is that their precursors are present in the lipid membrane. While 

both anandamide and 2-AG are derivatives of arachidonic acid, their routes of synthesis and 

degradation in vivo are entirely distinct and mediated by a separate set of enzymes [28]. 
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Anandamide is produced from N-arachidonoyl phosphatidyl ethanol (NAPE) and studies 

have uncovered two routes of synthesis in the central nervous system: (1) NAPE-PLD [29]; 

and (2) NAPEphospholipase C (PLC) followed by phosphatase [30]. The synthetic pathway 

for 2-AG involves sequential hydrolysis of an arachidonoyl-containing phosphatidyl inositol 

bis-phosphate by PLCβ, followed by subsequent hydrolysis of the resulting diacylglycerol 

by diacylglycerol lipase (DAGL) [31]. Hydrolysis of an arachidonoyl-containing 

phosphatidyl inositol bis-phosphate by PLCβ is initiated following stimulation of receptors 

that activate PLC, such as type I metabotropic glutamate receptors (mGLuRs), M1 or M3 

muscarinic receptors, or orexin A, which often leads to production of 2-AG. Two isoforms 

of DAGL have been identified in nervous tissue, DAGLα and DAGLβ, where DAGLα 
appears to be the isoform responsible for most 2-AG production that contributes to synaptic 

plasticity in the mature brain [32–34]. The breakdown of anandamide to AA and 

ethanolamine is due mainly to the serine hydrolase fatty acid amide hydrolase (FAAH) and 

FAAH-2 [35,36]. Degradation of 2-AG to AA and glycerol is mediated by monoacylglycerol 

lipase (MAGL) [37].

CB1 Receptor Signaling in Cortical Development

The eCB system is involved in many aspects of early neuronal development and 

differentiation. Components of the eCB system (including receptors, ligands, synthesizing 

enzymes and degradative enzymes) are expressed in the developing brain prior to synaptic 

maturation and neuronal activity (reviewed in [38]). Here, we focus on summarizing CB1 

receptor signaling during cortical development and downstream signaling mechanisms that 

have been shown to play a role in neural progenitor cell maintenance, differentiation and 

maturation, specifically pertaining to cortical glutamatergic pyramidal neurons. While CB2 

receptors may also be involved in cortical development and modulating synaptic activity, 

their precise role in neuronal signaling remains to be clearly demonstrated [39].

CB1 receptor activity regulates neuronal progenitor cell proliferation and survival. In vivo 
studies have shown that CB1 receptor loss of function causes alterations in cortical and 

hippocampal development. CB1 receptor knockout mice exhibit reduced levels of cortical 

progenitor cell proliferation, whereas FAAH-deficient mice show an increase in progenitor 

cell proliferation [40–42]. Subsequent observations in CB1 receptor knockout mice revealed 

abnormal cortical development, characterized by defective proliferation of progenitor cell 

subtypes occupying the ventricular zone (VZ) and SVZ, defective radial migration of 

immature cortical pyramidal neurons, deficits in axon pathfinding and aberrant subcortical 

projections [21].

At the level of eCB-mediated cellular signaling pathways, work from Bromberg and 

colleagues [43] show that CB1 receptor activation can affect over 20 transcription factors 

that, in turn, mediate neural precursor maintenance, neuronal differentiation and maturation. 

Specifically, CB1 receptor signaling activates downstream phosphatidylinositol 3-kinase 

(PI3K) and extracellular signal-related protein kinase (ERK) intracellular pathways to 

ultimately control transcriptional regulators such as CREB, STAT-3, PAX6 and β-catenin, 

which are all involved in the control of neural precursor cell proliferation and differentiation. 

In addition, CB1 receptor coupling with Gi-mediated inhibition of adenylyl cyclase 
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decreases cyclic adenosine monophosphate (cAMP), thus disinhibiting the ERK pathway via 

protein kinase A (PKA) [44,45]. Alternatively, CB1 receptor activation may involve 

downstream mammalian target of rapamycin complex 1 (mTORC1), a serine/threonine 

protein kinase that regulates cell growth, proliferation and survival [7]. However, the role of 

CB1 receptors in mTORC1 signaling during brain development remains to be fully 

elucidated. In the case of differentiating neurons, CB1 receptor activity has been shown to be 

coupled to the modulation of the neurogenic transcription factors COUP-TF II (Ctip2) and 

special AT-rich sequence-binding protein 2 (Satb2). While the mechanism through which 

this occurs has yet to be elucidated, CB1 receptors are positively coupled to Ctip2 and 

negatively to Satb2-mediated repression of Ctip2 [46,47]. As a result, CB1 receptor activity 

can fine-tune the transcriptional program through which neuronal differentiation occurs, 

where inactivation of CB1 receptors shifts differentiation in favor of upper-layer pyramidal 

neuron fate versus lower-layer pyramidal neuron fate. This change in neuronal fate-

determination, in turn, affects motor function in adulthood [47].

eCB Signaling in the Mature CNS

CB1 receptors are abundantly expressed throughout the central nervous system, notably in 

the basal ganglia, hippocampus, cerebral cortex, and cerebellum. Cortical and hippocampal 

CB1 receptor expression predominates in cholecystokinin-positive (CCK+) interneurons, but 

is also present at functional levels in glutamatergic terminals [48–51]. In the dorsal and 

ventral striatum, CB1 receptor expression is highly enriched in medium spiny neurons, 

particularly on direct pathway axons as they enter the globus pallidus en route to the 

substantia nigra [52–55].

eCBs are potent regulators of synaptic function and profoundly impact a wide range of 

neural functions, including cognition, motor control, feeding behaviors and pain perception. 

The primary mechanism through which eCBs regulate synaptic function is via retrograde 

signaling [56]. This is supported by evidence of presynaptic localization of CB1 receptors 

and their ability to inhibit neurotransmitter release, coupled with the postsynaptic 

localization of eCB synthesizing enzymes. Additionally, postsynaptic activity (increases in 

intracellular calcium and/or activation of Gq/11- linked GPCRs) increases eCB production. 

The first reports of retrograde eCB signaling emerged from groups studying forms of short-

term plasticity known as depolarization-induced suppression of inhibition (DSI) [57–59] and 

depolarization-induced suppression of excitation (DSE) [59–66]. Subsequently, eCBs were 

also implicated in mediating forms of presynaptic long-term depression (eCB-LTD) at 

excitatory [67,68] and inhibitory terminals [69–72]. Recently, work from our group has 

characterized the role of BDNF-trkB receptor signaling in mobilizing eCB synthesis and 

release. In neocortical layer 2/3, acute application of BDNF rapidly suppresses GABAergic 

transmission via release of eCBs from the postsynaptic pyramidal cell, which in turn act in a 

retrograde manner to suppress presynaptic transmitter release [73]. This effect of BDNF is 

trkB-dependent, requires downstream PLC signaling and is independent of mGluR 

activation [71]. A follow-up study sought to examine the physiological relevance of BDNF-

eCB interactions in the context of activity-dependent long-term depression at inhibitory 

synapses (iLTD). It was shown that theta burst stimulation (TBS) in layer 2/3 of mouse 

somatosensory cortical slices induces a form of eCB-mediated iLTD that is independent of 
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mGluR activation but requires endogenous BDNF-trkB receptor signaling. Furthermore, the 

expression of this form of eCB-dependent iLTD requires activation of DAGL. Taken 

together, these results suggest that TBS can induce the release of endogenous BDNF, which 

triggers DAGL-dependent 2-AG mobilization and CB1 receptor-dependent iLTD [72]. 

BDNF also induces eCB release at cortical glutamatergic synapses [49]. These studies are a 

part of a growing body of evidence that BDNF and eCBs interact to regulate synaptic 

plasticity and further examination may provide clues to underlying pathologies of 

neurological and psychiatric disorders and suggest strategies for novel therapeutic targets 

and interventions.

eCB Signaling in Autism Spectrum Disorders

A number of lines of evidence suggest that altered eCB signaling may underlie some of the 

behavioral impairments in ASD. For example, it has been shown that eCBs play a role in 

controlling emotional responses [14], behavioral reactivity to context [15] and social 

interaction [16]. Here, we provide an overview of the current evidence of changes to eCB 

signaling in experimental models of autism, specifically pertaining to the neuregulin 3 

(Nlgn3) and Fragile X (FXS) mouse models. Collectively, these studies shed light on the 

link between alterations in eCB signaling in mediating ASD-related phenotypes and offer an 

alternative approach to therapeutic intervention and treatment.

Autism is neurodevelopmental in nature and atypical development of circuit connectivity has 

been suggested to underlie its key phenotypic features. Studies examining idiopathic forms 

of autism have revealed a set of genes involved in neurodevelopmental processes that 

mediate the formation, stabilization and pruning of synapses that consistently associate with 

autism-related phenotypes in animal models [74–76]. Specifically, several members of the 

neuroligin (NLGN) family of genes, postsynaptic cell adhesion molecules that interact with 

presynaptic neurexins (NRXNs) to control synapse development and function, have been 

identified in mouse models of ASDs [77]. Animal models have shown that NLGNs enhance 

synapse formation in vitro [78], but are not required for synapse formation in vivo [79]. In 

addition, NLGNs and NRXNs are important organizing molecules for excitatory 

glutamatergic and inhibitory GABAergic synapses in the mammalian brain [80,81]. Studies 

that suggest altered neurotransmission resulting from mutations or full gene deletion of 

NLGNs, particularly NLGN3, have prompted the investigation of the role of eCB signaling 

in mediating neurotransmitter release in the hippocampus and cortex [82–85].

A recent study by Foldy and colleagues [83] carefully examined one member of the NLGN 

family, neuroligin-3 (NLGN3) and its association with ASDs. Specifically, two distinct 

mutations in NLGN3 have been linked with autism-related phenotypes in mouse, (1) a point 

mutation resulting in an R451C substitution in the neurexin binding domain (Nlgn3R451C) 

[86] and (2) a deletion of the NLGN3 gene (Nlgn3 KO) [87]. Foldy and colleagues employ 

previously characterized mouse models of Nlgn3R451C knock-in (KI) and Nlgn3 KO 

[84,85,88], which have both demonstrated autism-related phenotypes. However, each 

distinct NLGN3 mouse model exhibits different effects in the context of synaptic and 

network function, where the Nlgn3R451C KI results in a gain-of-function phenotype that is 

unrelated to the loss-of-function in the Nlgn3 KO mouse [82,85,89]. In this particular study, 

Yeh and Levine Page 6

OBM Neurobiol. Author manuscript; available in PMC 2019 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the authors examined GABAergic transmission in the hippocampus of both Nlgn3R451C KI 

and Nlgn3 KO mice between inhibitory basket cells and pyramidal neurons, which are 

known to play a critical role in cognitive functions specific to the hippocampus [90]. Foldy 

and colleagues [83] found that CCK-expressing (CCK+) inhibitory basket cells in both 

Nlgn3R451C KI and Nlgn3 KO mice exhibited an increase in inhibitory postsynaptic currents 

(IPSCs), most likely due to an increase in presynaptic release probability. The increase in 

GABA release probability results from deficits in tonic eCB signaling at presynaptic 

terminals of CCK+ interneurons [91]. The authors concluded that in the mouse 

hippocampus, Nlgn3 is required to establish the release machinery for tonic eCB release to 

CB1 receptor-containing synapses. Despite these promising results in exploring a particular 

mutation in the Nlgn3 gene and full gene deletion in mouse hippocampus, there remains the 

challenge of predicting the relevance of a given mutation for ASD-related phenotypes 

without directly assessing its effects in a synapse-specific and circuitry-specific manner.

Several studies exploring the Nlgn3R451C mutation in the overlying cerebral cortex have 

revealed differential roles of NLGN3 in regulating synaptic transmission. In an effort to add 

clarity to the regulatory role of NLGN3, Speed and colleagues [84] expanded on work from 

the Sudhof group [85] by further investigating the observed increase in inhibitory 

GABAergic transmission in layers II/III of the somatosensory cortex due to Nlgn3R451C KI. 

In short, Speed and colleagues replicated experiments probing for altered GABAergic 

transmission in the cortex and narrowed the target mechanisms to altered eCB signaling, not 

an increase in interneuron number or inhibitory synaptic connections onto pyramidal 

neurons [84,85]. However, questions remain regarding the respective contribution of tonic 

eCb signaling and phasic eCB signaling to the altered GABAergic transmission in this 

model.

In two separate studies, dysfunctional eCB signaling was also identified in the FMR1 KO 

mouse, a model of FXS [92,93]. However, these studies appear to contradict one another in 

their conclusions, as Busquets-Garcia and colleagues [92] report gain of function, while 

Jung and colleagues [93] attribute loss of function of CB1 receptor activity in the absence of 

FMR1. On the one hand, Busquets-Garcia and colleagues [92] probed for changes in eCB 

signaling as a result of mGluR5 activation [94] in the CA1 region of the hippocampus in 

FMR1 mouse model of FXS and reported that CB1 receptor blockade in male FMR1 KO 

mice normalized cognitive impairment, nociceptive desensitization, susceptibility to 

audiogenic seizures, overactivation mTOR signaling and altered spine morphology. In 

addition, blockade of the CB2 receptor normalized anxiolytic-like behavior [92]. On the 

other hand, Jung and colleagues [93] examined a unique form of mGluR5-dependent long-

term depression (LTD) at excitatory synapses of the ventral striatum and prefrontal cortex, 

which is mediated by the eCB 2-AG. This form of plasticity was absent in FMR1 KO mice, 

but could be restored with pharmacological enhancement of 2-AG signaling and thus 

corrected behavioral abnormalities in FMR1 KO mice [93]. Taken together, it is evident that 

the eCB signalosome is involved in mediating synaptic plasticity in multiple regions of the 

autistic brain. Further, it appears eCB signaling may exhibit regional specificity. Therefore, 

while the aforementioned studies in Nlgn3 and FMR1 mouse models of ASD serve to 

establish the importance of eCB signaling in mediating ASD-related behaviors, much 
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remains to be elucidated by way of determining both up- and downstream mechanisms that 

are disrupted in ASDs.

eCB Signaling in Clinical Studies

A deficit in theory of mind and empathy has been suggested to underlie atypical social 

behavior in individuals diagnosed with an ASD. Recent studies have revealed that deficits in 

reward system circuitry may underpin the lack of social motivation observed in children with 

ASDs [95–99]. Adaptive reinforcement of social interactions requires long-term synaptic 

plasticity at excitatory synapses of the nucleus accumbens (NAc) and is dependent on 

oxytocin (OT). OT, a neuropeptide produced by the paraventricular nucleus of the 

hypothalamus and released by the posterior pituitary, regulates prosocial behavior and its 

dysregulation has been implicated in social impairments [100,101]. A recent study by Wei 

and colleagues [102,103] demonstrated an obligatory role of anandamide in neural circuits 

of socialization in socially isolated rodents. This study suggested that OT acts as a social 

reinforcement signal to induce CB1 receptor-dependent long-term depression in medium 

spiny neurons. Therefore, the enhancement of OT to improve social deficits may be 

sufficient to trigger anandamide mobilization for proper functioning of the neural circuit. 

However, this hypothesis may apply to neurological disorders other than ASDs, such as 

schizophrenia, anxiety or personality disorders [104,105].

Clinical studies examining eye gaze tracking, electroencephalography and functional 

magnetic resonance imaging suggest clear differences in processing of social rewards in 

patients with ASDs compared to control subjects [106]. Atypical responses to social rewards 

from an early age may result in deficits in learning and interpreting the social world, which, 

in turn, can lead to social behavioral impairments in adulthood. On the other hand, human 

neuroimaging studies measuring striatal responses to social rewards (happy faces vs. neutral 

faces) found that common single nucleotide polymorphisms in CNR1, the gene coding for 

the human CB1 receptor, are associated with activity in the central striatal cluster in 

response to happy, but not disgusted, faces [107]. Given the central role of the ventral 

striatum in reward processing, this study suggests that changes in CNR1 are linked to 

differences in the perception of, and sensitivity to, social rewards. A separate study of the 

same CNR1 polymorphism investigated its effect on eye gaze in response to happy faces as 

opposed to disgusted facial expressions and found that eye gaze duration increased in 

individuals that carried the CNR1 polymorphisms. However, there was no difference in eye 

gaze duration in response to faces expressing disgust [108]. In summary, current evidence 

strongly implicates alterations to the eCB system in animal models of ASDs and human 

patients that account for two phenotypic features of ASDs; (1) social reward perception and 

processing and (2) cortical development. Together, this body of work suggests that distinct 

elements of the eCB signaling system could be targets for novel therapeutics for treating and 

managing ASDs. While the ultimate goal is to uncover novel and effective targets, any 

potential therapeutic approach is unlikely to involve simply activating or inhibiting the eCB 

system to address specific behaviors or cognitive deficits related to ASDs. Instead, drug 

targets will require fine-tuning to the precise developmental timeline and to specific 

pathogenetic mechanisms underlying an individual patient’s disorder.
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Looking Forward and Taking the Next Steps

Elucidating the underlying mechanisms of aberrant developmental processes that lead to 

cognitive and behavioral deficits in ASDs is of paramount importance. It is becoming 

increasingly apparent from examining mature synapses and circuits that eCB signaling is 

altered in several neurological diseases. Further, considerable evidence suggests that eCB 

signaling plays an important role in controlling emotional responses, behavioral reactivity to 

context and social interaction, all of which are affected in ASDs. Therefore, it is plausible 

that eCB signaling should be viewed as a potential target for the development of novel 

therapeutics and treatment strategies in managing symptoms of ASDs in patients. However, 

there are several issues that must be addressed from the perspective of the etiology of ASDs 

rooted in abnormal cortical development.

First, we must clarify the aberrant developmental processes that result in deficits in synaptic 

modulation and circuit connectivity in the mature cortex that in turn underlie cognitive and 

behavioral symptoms of ASDs. Alternatively, eCB signaling may also play a role in the 

development of subcortical structures such as the hippocampus, nucleus accumbens and 

striatum, all of which have featured prominently in behavioral deficits associated with ASDs 

[83,103,109,110].

Second, the contribution of eCB signaling, be it loss of function or gain of function, during 

abnormal cortical development remains unresolved. Shedding light on the mechanism(s) 

through which eCB signaling is altered in development may provide insight as to whether 

symptoms of ASDs are a result of the developmental role of eCBs or their synaptic 

modulation, or a combination of the two. It may well be the case that the mechanisms of 

eCB signaling at the cellular/molecular level during neurodevelopment may differ from their 

synaptic arrangements in mature systems. ASDs are a uniquely human neuropathological 

condition. As a result, the few validated rodent models of ASDs remain limited in accurately 

recapitulating behavioral and cognitive impairments in human patients. To compensate for 

the short-comings of animal models, studies utilizing induced pluripotent stem cell (iPSC)- 

derived neurons have provided valuable insight into the pathogenesis of neurological 

disorders such as ASDs [111]. iPSC technology allows for the generation of patient-specific 

neurons, which have been used to model FXS [112], Rett Syndrome (RTT) [113], Angelman 

Syndrome [114], Chromosome 15q11.2–13.1 duplication syndrome (Dup15q) [115] and 

idiopathic autism [116] because the neuronal subtypes generated model neurons found in the 

developing brain. However, the eCB system has yet to be examined in the context of these 

aforementioned neurological disorders using iPSC-derived neurons. Indeed, iPSC-derived 

neurons may serve as an important model in determining the distinction between 

developmental eCB signaling mechanisms versus synaptic roles of eCBs.

Finally, these results should be followed up with a thorough examination of the aspects of 

the ASD phenotype that are a direct result of dysregulated eCB signaling. Advances in our 

understanding of eCB actions will undoubtedly facilitate pharmacological interventions and 

further, provide patients the best quality of life possible.
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