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Abstract 

Proteins from the plant chromoplast are essential for many physiological processes such as fatty acid biosynthesis. 
Different protein extraction methods were tested to find the most robust method to obtain oil palm chromoplast 
proteins for mass spectrometry analysis. Initially, two different solvents were employed to reduce the fruit lipids. 
Then, two plant cell wall digestive enzymes were used to acquire the protoplasts to increase the protein extraction 
effectiveness. A two-stage centrifugation-based fractionation approach enhanced the number of identified proteins, 
particularly the fatty acid biosynthetic enzymes. The effectiveness of each extraction method was assessed using pro‑
tein yields and 2DE gel profiles. The ideal method was successfully used to establish the 2DE chromoplast proteome 
maps of low and high oleic acid mesocarps of oil palm. Further nanoLC–MS/MS analysis of the extracted chromoplast 
proteins led to the identification of 162 proteins, including some of the main enzymes involved in the fatty acid bio‑
synthesis. The established procedures would provide a solid foundation for further functional studies, including fatty 
acid biosynthetic expression profiling and evaluation of regulatory function.
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Background
Oil palm (Elaeis guineensis Jacques) is the most impor-
tant plant commodity in Malaysia, covering more than 
5 million hectares in 2012. This oil crop is currently the 
world’s top commodity oil-bearing crop, with about 3.5 
tons of oil per hectare produced annually in Malaysian 
plantations (Basiron 2012; Kirkland 2011; Barcelos et al. 
2015). Palm oil is versatile and nutritious, free of trans-
isomer fat and rich in vitamins and antioxidants (Hayes 
and Pronczuk 2010; Obahiagbon 2012; Sen et  al. 2010). 
The export of palm oil products makes up between 9.3 
and 11.5 % of Malaysia’s total exports and nearly 24.1 % of 
the global oils and fats export trade in 2011 (Palmoilworld 
2014). Therefore, strategically designed and exhaustive 

research and development has been carried out to ensure 
the oil palm industry stays competitive and sustainable. 
On average, crude palm oil contains about 49 % of satu-
rated fatty acids (palmitic acid, 44 % and stearic acid, 5 %) 
(Sundram 2000; Sundram et al. 2003; Sambanthamurthi 
et al. 2000). Reducing the saturated fatty acids by increas-
ing the unsaturated fatty acid content, specifically oleic 
acid would add nutritional value to palm oil (Asemota 
et al. 2004; Dussert et al. 2013).

Chromoplasts develop from chloroplasts in ripened 
fruits (Bouvier et al. 1998), or directly from proplastids in 
other tissues (Ljubesic 1972). As the name suggests, they 
contain colored pigments (red, yellow and orange carot-
enoids) that produce an array of different colors to attract 
biotic vectors such as fruit-eating animals (Juneau et al. 
2002). Plant fatty acid biosynthesis also occurs in the 
plastids, in both photosynthetic plastids such as leaf chlo-
roplasts and in the non-photosynthetic plastids of flow-
ers and fruits (Stumpf 1969; Joyard et al. 2010; Benning 
2008, 2009). Recently, several proteomic investigations 
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on fruit chromoplasts have been reported (Barsan et  al. 
2010; Hansen and Chiu 2005; Siddique et al. 2006; Tetlow 
et al. 2003).

Proteomic approaches are an effective way to study the 
protein composition and cellular functions of subcellular 
organelles such as chromoplasts. These techniques can 
be used to create protein maps at specific time point to 
give qualitative and quantitative profiles of the proteome. 
However, plant materials pose unique problems when it 
comes to protein extraction, hindering thorough prot-
eomic analysis, which requires complete recovery of sam-
ple proteins. The low ratio of protein to cell mass [due 
to the presence of large vacuoles (Saravanan and Rose 
2004) and interfering compounds such as lipids, poly-
saccharides and phenolics], presents an obstacle to pro-
tein extraction, possibly explaining the lack of studies on 
fatty acid biosynthesis regulation in high lipid-contain-
ing fruits, such as the oil palm E. guineensis var. Tenera 
examined in this study (Dussert et al. 2013).

Lipid-containing plant tissues require a labor inten-
sive workflow to produce lipid-free proteins for prot-
eomic studies (Wang et  al. 2003, 2004, 2006). This is to 
ensure that the final protein preparation is free of inter-
fering compounds to gel electrophoresis such as lipids. 
To maximize the protein yield from plant organelles, 
several research groups have used digestive enzymes to 
obtain “naked” protoplasts, which are essentially plant 
cells without the cell wall (Jain et  al. 2008; Echeverria 
et  al. 1985; Van der Wilden et  al. 1980; Nishimura and 
Beevers 1978; Davey et al. 2005; Faraco et al. 2011). Such 
gentle cell wall disruption (compared to mechanical dis-
ruption) enables internal organelles to be maintained 
intact. This is crucial to ensure that only proteins from 
the chromoplast are extracted. The most widely applied 
contemporary method for protein extraction from recal-
citrant plant tissues requires phenol extraction followed 
by protein precipitation with either ammonium acetate/
methanol or trichloroacetic acid (TCA)/acetone. Proteins 
acquired in this way are suitable for proteomic analysis 
(Wang et al. 2003; Xie et al. 2007; Fan et al. 2009; Gomez-
Vidal et  al. 2009; He and Wang 2008). Identification of 
the chromoplast proteins is essential to enable functional 
annotation of the proteins based on their gene ontologies 
(GO) (Camon et  al. 2003; Dutkowski et  al. 2013; Harris 
et al. 2004; Consortium TGO 2008). Each identified pro-
teins has a gene identifier assigned which can be used to 
retrieve their GO terms (biological process, molecular 
function and cellular components).

The purpose of the current work was to evaluate and 
modify existing methodologies to suit oil palm organelle 
proteomics, focusing on identifying the fatty acid bio-
synthetic enzymes. The methodologies developed may 
be able to facilitate comprehensive understanding of the 

regulation of fatty acid biosynthesis, and have provided 
a snapshot of the entire proteome of the oil palm fruit 
chromoplast.

Results and discussion
Mesocarp preparation
To prepare high quality proteins from E. guineensis var. 
Tenera, a modification of the methods of Wang and co-
workers (Wang et  al. 2003, 2006; Gorg et  al. 1997) was 
developed to suit oil palm mesocarp tissues. Finely 
ground mesocarp powder was delipidated using three 
washes with organic solvents (which were selected based 
on their capacity to extract different classes of lipids). 
The protein content was then measured by colorimet-
ric assay. Protein yield from delipidated mesocarps was 
1.16  ±  0.03  µg/µL compared to 0.71  ±  0.07  µg/µL 
obtained from un-delipidated mesocarps. This 1.6-fold 
increase in protein yield indicated that excess lipid greatly 
reduced the effectiveness of the protein extraction. 2DE 
gel profiles of mesocarp proteins with and without sol-
vent washes (Fig. 1) clearly show that more proteins were 
extracted from delipidated mesocarps (based on the 
number and intensity of detected protein spots).

A combination of TCA and acetone was used in the 
first wash as this combination had been reported to 
be more effective than either TCA or acetone alone 
(Agrawal et  al. 2010). Acetone dissolves simple lipids 
and glycolipids (Rastegari et al. 2011). This washing stage 
was limited to two washes only as prolonged exposure to 
low pH caused by TCA could potentially modify and/or 
degrade proteins. In the second wash, aqueous methanol 
in the presence of ammonium acetate salt was employed 
to remove more lipids from mesocarps. Polar solvents, 
such as methanol, are able to solubilize polar lipids like 
phospholipids and glycosphingolipids (Christie 1993). 
Aqueous methanol is also routinely used in extraction of 
phenolic compounds (Wang et al. 2006), which is advan-
tageous for recalcitrant tissues since these tissues contain 
high amounts of phenolics. A combination of salt and 
organic solvent was employed in this washing stage to 
eliminate any residual TCA, and also to produce an alka-
line pH for subsequent protein extraction using phenol 
(Wang et al. 2006). The wash involved the utilization of 
aqueous acetone to remove any residual lipids.

Incubation with cell wall digestive enzymes (CDE)
A combination of two cell wall digestive enzymes, cel-
lulase and pectinase, was used to obtain protoplasts for 
subsequent chromoplast isolation. This clearly improved 
the protein yields from the solvent washed mesocarps. 
Protein yield was enhanced by approximately twofold 
from 0.64 ±  0.02 to 1.16 ±  0.02  µg/µL. The 2DE pro-
files and selected protein spot-to-spot comparisons of 
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mesocarp proteins extracted with and without CDE after 
solvent washes supported these results (Figs. 2, 3).

We examined the effect of three different CDE incuba-
tion times. The protein yield of solvent-washed meso-
carps incubated with CDE was 1.01 ±  0.03  µg/µL after 
3 h, 1.16 ±  0.02 µg/µL after 6 h and 1.04 ±  0.01 µg/µL 
after 10  h. The extracted proteins were separated using 
2DE (Fig. 4). The largest number of protein gel spots was 
observed after 6 h of CDE incubation (106 protein spots), 
compared to only 3 h (95 protein spots) and 10 h (89 pro-
tein spots).

Protoplast isolation (used to study plant organelles 
from several species (Van der Wilden et al. 1980; Agrawal 
et  al. 2010; Chatterjee et  al. 2012) may also be accom-
plished using mechanical disruption. Mechanical force 
protoplast isolation, however, is disadvantaged by high 
levels of contamination from protein storage vacu-
oles and mitochondrial proteins (Jain et  al. 2008). For 
our application, we found gentler enzyme-driven cell 

wall disruption to be a suitable and effective approach. 
The enzymes used break down cellulose and pectin, 
the main components of the cell wall (Rastegari et  al. 
2011; Agrawal et  al. 2010; Keegstra 2010). Long incu-
bation times at 37  °C caused unspecific degradation of 
temperature-sensitive proteins, which may explain the 
lower protein yields observed after 10 h compared to 6 h. 
Limitation in the amount of mesocarp used in the study 
would resulted in CDE activity reaching a plateau after 
more than 6  h incubation and thus, prevent the yield 
from increasing further. A comparison of selected pro-
tein spot intensities in each set of the three gels (Fig. 5) 
also highlighted 6 h as the most suitable mesocarp/CDE 
incubation period to produce protoplasts.

Organelle isolation
Following cell wall digestion, the predominantly chro-
moplast protein pellet was first obtained using differen-
tial centrifugation before further isolation with sucrose 

Fig. 1  Effects of solvent washes on 2DE protein profiles from homogenized mesocarp tissues. Missing or different intensity protein spots are high‑
lighted in dotted circles

Fig. 2  Effect of CDE in enhancing the number of protein spots in 2D gels. Missing protein spots in the basic region are highlighted in the dotted 
circle. Selected protein spots for comparative analysis using PDQuest are indicated
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density gradient centrifugation (Barsan et  al. 2010; 
Agrawal et  al. 2010). The three clear interphases were 
retrieved and extracted proteins from each of the inter-
phase were analyzed mass spectrometrically to assess 
the effectiveness of the strategy. As anticipated, the total 
number of identified proteins (25) and their peptides 
(78) increased almost fourfold to 93 proteins and 298 
peptides using the two-stage isolation approach. Most 
importantly, nine fatty acid biosynthetic enzymes were 
identified, compared to only five using differential cen-
trifugation alone. Conventionally, sucrose density gradi-
ent is applied to purify targeted organelle extract from 
other contaminant organelles co-extracted in the first 
isolation stage using differential centrifugation. However, 
in this study, the second isolation stage was intended to 
enhance the detection of fatty acid biosynthetic enzymes 
by fractionating the predominantly chromoplast suspen-
sion into three individual interphases. An overview of the 
identified proteins from whole mesocarp and chromo-
plast protein extracts showed that the combined inter-
phases contained pre-dominantly chromoplast as it was 
not heavily cross-contaminated by other organelles. This 

was based on the non-detectable organelle protein mark-
ers (normally used as antibodies in Western blot analysis 
for degree of enrichment assessment) for mitochondria 
(cytochrome c oxidase) and endoplasmic reticulum 
(NADPH cytochrome c reductase) after the enrichment 
steps. However, cytosolic sucrose synthase one and per-
oxisome catalase two were identified, indicating possible 
cross-contamination by these organelles. Chloroplas-
tic Rubisco large subunit were present in both whole 
mesocarp and chromoplast extracts (Additional file  1, 
Additional file  2). These markers were identified mass 
spectrometrically.

Organelle protein extraction
Proteins were extracted both from the chromoplast pellet 
and the interphases obtained by sucrose density gradient 
centrifugation. Proteins from the chromoplast pellet were 
also used to evaluate the effectiveness of several solutions 
for protein extraction. 100 % phenol, phenol with sodium 
dodecyl sulfate (phenol/SDS), SDS alone, and TCA/ace-
tone were used to extract the proteins (Rastegari et  al. 
2011; Rodrigues et  al. 2012; Méchin et  al. 2006; Yeung 

Fig. 3  Comparative PDQuest protein spot analyses demonstrating differences in spot intensities of mesocarp proteins extracted with and without 
CDE digestion. From left Master gel (m); 6 h with CDE(+); 6 h without CDE(−). Protein spots are indicated with red arrow while their relative quanti‑
ties are compared using the histograms
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et al. 2008). Precipitation of the proteins after extraction 
was performed with either ammonium acetate/methanol 
or TCA/acetone.

Table  1 shows the protein yields generated from the 
various combinations of protein extraction and precipi-
tation approaches. The yield from SDS alone and TCA/
acetone extractions could not be determined, since the 
protein pellets could not be dissolved in non-urea-con-
taining buffer. Phenol/SDS extraction followed by precip-
itation with ammonium acetate/methanol outperformed 
100 % phenol extraction in terms of protein yield. Never-
theless, 100 % phenol extraction was selected for further 
method development, due to the risk of SDS interfering 
with isoelectric focusing and mass spectrometric analysis 
(Yu et al. 2003; Carpentier et al. 2005). Ammonium ace-
tate/methanol precipitation was selected for progression 
because TCA/acetone-precipitated protein pellets were 
difficult to resolubilize (Rastegari et al. 2011).

Non-phenol extracts formed yellow to brownish pre-
cipitates due to polyphenol oxidation (Saravanan and 
Rose 2004; Wang et  al. 2003; Carpentier et  al. 2005). 
Precipitates from phenol protein extractions were whit-
ish in color, indicating the absence of polyphenols. Plant 
metabolites such as phenolics are capable of forming 
hydrogen bonds and irreversible complexes with proteins 

through oxidation and covalent condensation (Loomis 
and Battaile 1966). TCA/acetone is a highly effective 
protein precipitation method (Rastegari et  al. 2011) but 
this approach is not suitable for the elimination of poly-
phenols and lipids from plants. Several studies also men-
tioned the unsuitability of TCA/acetone in extracting 
proteins from complex tissues due to polyphenolic oxida-
tion for instance (Saravanan and Rose 2004; Wang et al. 
2003; Carpentier et al. 2005).

The protein extracts were also evaluated by compar-
ing their 2DE protein profiles. The number of 2D gel 
protein spots correlated well with the protein yields 
for each of the extraction methods. With ammonium 
acetate/methanol precipitation, extraction with 100  % 
phenol generated 114 protein spots compared to phe-
nol/SDS (150 protein spots) and SDS alone (134 protein 
spots) (Fig.  6). 100  % phenol extraction combined with 
TCA/acetone precipitation produced only 73 protein 
spots. TCA/acetone-extracted proteins were not suitable 
for 2DE analysis since the precipitate could not be dis-
solved even in urea-containing buffer. These results indi-
cate that SDS enhanced protein extraction, but this was 
countered by poor protein spot resolution in the phenol/
SDS and SDS alone extracts (SDS is known to be detri-
mental to isoelectric focusing (Kitajima and Sato 1999; 

Fig. 4  Outcomes of different CDE incubation periods of solvent-washed mesocarp tissues. Selected 2DE protein spots used for comparative analy‑
sis using PDQuest are indicated
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Liu and Ekramoddoullah 2006). Gel spots from 100  % 
phenol extracts had better resolution and less streaking, 
especially in the basic region. Since the fatty biosynthetic 

enzymes that we are interested in are mostly basic pro-
teins, we opted to forgo the advantage offered by SDS in 
term of protein yields and to use 100  % phenol extrac-
tion to maximize the electrophoretic resolution of basic 
proteins. The selection of the best precipitation method 
following protein extraction was based on their 2D gel 
performance. 100 % phenol extraction followed by TCA/
acetone precipitation yielded low numbers of protein 
spots and poor resolution, along with protein aggrega-
tion and severe vertical streaking in the basic region of 
the 2D gel. Ammonium acetate/methanol precipitation 
performed much better in this regard. Spot-to-spot com-
parisons (PDQuest) were performed for selected protein 
spots (Fig. 7). Protein spot intensities were similar in the 
100  % phenol, phenol/SDS and SDS alone extractions 
followed by ammonium acetate/methanol precipita-
tion. However, the protein intensities of the same protein 
spots for TCA/acetone precipitated proteins after 100 % 
phenol extraction were lower. A summary of the advan-
tages and disadvantages of each approach tested is pre-
sented in Table 2.

Biological processes of oil palm chromoplast proteins
The customized chromoplast isolation and protein 
extraction methodology was applied to generate the first 
2D proteome maps for low and high oleic mesocarps 
(Fig. 8). The proteome maps were crucial in assessing the 
protein profiles for these two fruit mesocarps to detect 
differentially expressed proteins due to different level of 
oleic acid. Identified proteins from both low and high 
oleic acid mesocarps using gel-free LC-MS/MS approach 
were compiled to yield 162 non-redundant proteins 
(Additional file  2). These proteins were further catego-
rized according to their biological process (Fig.  9a) and 
molecular functions (Fig.  9b) by mapping the respec-
tive peptide sequence gene identifier number to existing 
annotations of characterized proteins (Camon et al. 2003; 
Dutkowski et  al. 2013; Harris et  al. 2004). The proteins 
reported here represent just a portion of the entire chro-
moplast proteome since there are still many lower abun-
dant proteins yet to be discovered. The high proportion 

Fig. 5  Comparative protein spot analysis with PDQuest demonstrat‑
ing the effect of CDE incubation time on spot intensities. Clockwise 
from left Master gel (m); 6 h (a); 3 h (b); 10 h (c). Protein spots are 
indicated with red arrow while their relative quantities are compared 
using the histograms

Table 1  Protein yields using different protein extraction 
approaches

Extraction Precipitation Protein yield (µg/µL)

100 % phenol Ammonium acetate/methanol 1.84 ± 0.09

Phenol/SDS Ammonium acetate/methanol 2.22 ± 0.05

SDS alone Ammonium acetate/methanol Not determined

100 % phenol TCA/acetone 2.10 ± 0.03

TCA/acetone None Not determined
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of proteins assigned to metabolic (97 proteins) and cel-
lular processes (72 proteins) corresponds well to the high 
number of proteins (78) with catalytic activity. Sixteen 
of these proteins are understood to be involved in fatty 
acid metabolism. Main fatty acid biosynthetic enzymes 
identified were acetyl-CoA carboxylase, 3-enoyl-
ACP reductase, 3-hydroxyacyl-ACP dehydrogenase, 
β-ketoacyl-ACP reductase and stearoyl-ACP desaturase. 
Our results indicated that at least two fatty acid biosyn-
thetic enzymes are unique to either low or high oleic acid 
mesocarp. Fifty-five of the proteins had binding activ-
ity, which explains the presence of numerous pathogen-
esis-related proteins in the chromoplasts (Kitajima and 
Sato 1999; Liu and Ekramoddoullah 2006). Twenty-two 
proteins were not categorized and were denoted as “no 
classification”. These proteins were mostly homologs of 
unnamed or hypothetical proteins from Zea mays.

Conclusions
We present here a detailed methodology optimized to 
prepare oil palm chromoplasts for 2DE analysis and 
mass spectrometry. Oil palm fruit mesocarps are recal-
citrant tissues for proteomic analysis. Their high lipid 
content makes protein extraction challenging, and the 

plant material contains high levels of interfering com-
pounds such as polysaccharides and phenolics. The 
method development described here was tailored specifi-
cally for Elaeis guineensis var. Tenera fruit mesocarps to 
enhance overall protein yield and fatty acid biosynthesis-
associated enzymes for downstream proteomic charac-
terization. Removal of lipids from the mesocarp proved 
to be critical in increasing the effectiveness of protein 
extraction. Also the incorporation of two cell wall diges-
tive enzymes (CDE) helped reduce the difficulty posed 
by plant cell wall in efficient protein extraction. Subse-
quently, the use of 100 % phenol in extracting the chro-
moplast proteins, followed by protein precipitation with 
ammonium acetate in methanol was revealed to be the 
most suitable approach to acquire mass spectrometry-
compatible proteins. Chromoplast proteome maps from 
two oil palm cultivars, namely, the low and the high oleic 
acid mesocarps, are presented. In our search for the fatty 
acid biosynthetic enzymes, we introduced two centrif-
ugation-based isolation stages and compiled identified 
proteins with 95 % confidence level from the two oil palm 
fruit mesocarps to identify 16 major fatty acid biosyn-
thetic enzymes for further analysis of their roles in regu-
lation. Functional annotations of those proteins indicated 

Fig. 6  Effect of different extraction approaches on 2DE protein profiles. PDQuest comparative analysis was performed on selected protein spots. 
Missing or different intensity spots are highlighted in dotted circles
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that 9.8  % of the identified proteins were implicated in 
fatty acid biosynthesis. Loei and co-workers had reported 
protein extraction from oil palm fruit mesocarps for 

the protein expression profiling (Loei et  al. 2013) but a 
detailed method development to extract proteins from oil 
palm fruit chromoplasts has never been described before.

Fig. 7  Comparative PDQuest spots analysis demonstrating several protein spots that exhibit intensity differences from the various extracts. Clock‑
wise from left Master gel (m); 100 % phenol (a); phenol/SDS (b); SDS alone (c); phenol/TCA (d). Protein spots are indicated with red arrow



Page 9 of 13Lau et al. SpringerPlus  (2015) 4:791 

Methods
Materials
Fruits of the commercial Dura x Pisifera oil palm 
crosses (Elaeis guineensis var. Tenera) (denoted as low 
oleic acid mesocarp) and from the MPOB Breeding 
Population 12 (denoted as high oleic acid mesocarp 
with 20  % more oleic acid content) were grown and 
harvested at the Malaysian Palm Oil Board research 
stations at Bangi, Selangor and Hulu Paka, Terengganu, 
Malaysia. Oil palm bunches of 20th week after anthe-
sis were collected from three low and three high oleic 
acid mesocarps, and used as the biological replicates. 
The fruit mesocarps were sliced, snap-frozen in liquid 
nitrogen and stored at −80 °C until further use. For the 
purpose of method evaluations, only the low oleic acid 
mesocarp was used.

Removal of lipid by different organic solvents
A lipid removal procedure from oil palm samples was 
modified from the method by Wang and co-workers 
(Wang et  al. 2006) to suit mesocarp tissue. Five grams 
of sliced mesocarp (average size of 1  cm in diameter) 
were homogenized in liquid nitrogen with a cold War-
ing blender (Dynamics Corporation, Greenwich, USA) 
at low grinding speed for 10  s, followed by hand grind-
ing with a ceramic mortar and pestle. The powdered 
mesocarp was mixed with cold acetone containing 10 % 
(w/v) trichloroacetic acid and 1  mM dithiothreitol. The 
slurry was then centrifuged (RA-300 rotor, Kubota 7820, 
Kubota Corporation, Tokyo, Japan) at 13,000g for 10 min 
at 4 °C. The supernatant was discarded and the washing 
step repeated once. Cold 80 % (v/v) methanol containing 

Table 2  Summary of different protein extraction and precipitation approaches

Extraction Precipitation Protein yield 2DE gel spots Pellet solubility Mass spectrometry 
interference

100 % phenol Ammonium acetate/methanol Good 114 Good No

100 % phenol TCA/acetone Good 73 Difficult No

Phenol/SDS Ammonium acetate/methanol Best 150 Good Possible

SDS alone Ammonium acetate/methanol Not determined 134 Poor Possible

TCA/acetone – Not determined Not suitable for 2DE Poor No

Fig. 8  2DE proteome maps of the mesocarp chromoplast. a Low 
oleic acid mesocarp and b high oleic acid mesocarp. pH range (3–11) 
and the molecular marker weights are indicated Fig. 9  a Biological processes and b molecular functions associated 

with chromoplast proteins
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0.1  M ammonium acetate was added to the precipitate, 
mixed and centrifuged as before. After the supernatant 
was discarded, the precipitated mesocarp pellet was 
washed with cold 80  % (v/v) acetone. The mixture was 
mixed well and centrifuged at 13,000g for 10 min at 4 °C. 
The final washed mesocarp pellet was air-dried.

Isolation of chromoplasts
The isolation method of chromoplasts was adapted from 
Jain, Fan and co-workers (Jain et al. 2008; Fan et al. 2009). 
The washed mesocarp pellet was transferred into a beaker 
containing 15  mL of cell wall digestive enzymes (CDE) 
[2 % (w/v) cellulase (0.8 U/mg, Sigma-Aldrich, Co., MO, 
USA), 0.1 % (w/v) pectinase (1 U/mg, Sigma-Aldrich, Co., 
MO, USA), 0.6  M sorbitol, 0.1  M dithiothreitol, 5  mM 
2-(4-morpholino)-ethane sulfonic acid-KOH, pH 5.5]. 
The suspension was then gently agitated for 6 h at 37 °C. 
After cell wall digestion, the mixture was sieved through 
two layers of Mirocloth (Calbiochem, EMB Millipore 
Corporation, MA, USA) into a beaker on ice to separate 
non-macerated plant materials from the protoplasts. The 
filtrate was centrifuged at 1750 g for 5 min at 4 °C to col-
lect intact chromoplasts. The chromoplast pellet was 
gently re-suspended in the extraction buffer containing 
0.7 M sucrose, 1 M Tris–HCl, pH 8.3, 5 M NaCl, 50 mM 
dithiothreitol, 1  mM EDTA and Roche protease inhibi-
tor cocktails (1 tablet to 10  mL of buffer) (Roche Diag-
nostics GmbH, Mannheim, Germany). The mixture was 
agitated gently to avoid the disruption of the chromo-
plasts before the second stage of isolation based on the 
procedure by Barsan and co-workers (Barsan et al. 2010). 
The re-suspended pellet in extraction buffer was loaded 
onto a sucrose discontinuous gradient made from 1.2, 1.7 
and 2.2 M sucrose. After that, they were centrifuged (JA-
30.50 rotor, Avanti J-301, Beckman Coulter, CA, USA) at 
62,000g for 45 min at 4 °C to yield three interphases con-
taining predominantly chromoplasts. These interphases 
were carefully retrieved for protein extraction.

Organelle protein extraction
The chromoplast pellet (from the first stage of isolation) 
and all the three interphases (from the second stage of 
isolation) were used for subsequent proteomic analyses. 
The extraction protocol remained the same regardless of 
the protein sources. The re-suspended chromoplast pel-
lets from the extraction buffer or the interphases were 
sonicated for 15 min at 4  °C to break the chromoplasts. 
An equal volume of fresh 50 mM Tris-saturated phenol, 
pH 8, was added to the mixture. The mixture was agi-
tated for 10 min before centrifuging at 15,000g for 15 min 
at 4 °C to separate the phenol and Tris phases. Following 
centrifugation, the upper phenol phase was transferred to 
a new tube and the proteins precipitated by the addition 

of five volumes of cold 0.1  M ammonium acetate-satu-
rated methanol, followed by incubation at −20  °C over-
night. A protein pellet was obtained by centrifuging at 
15,000g for 15  min at 4  °C. The pellet was rinsed until 
whitish with cold 0.1  M ammonium acetate-saturated 
methanol, and then washed three times with cold 80  % 
(v/v) acetone. Proteins were precipitated after each wash 
by centrifuging at 15,000g for 5  min at 4  °C. The chro-
moplast protein pellet was air-dried. For TCA/acetone 
protein precipitation, Acetone A [containing 10  % TCA 
(w/v) and 1  mM DTT (w/v)] was added to the protein 
solution. Acetone B [containing 1  mM DTT (w/v)] was 
used to wash the protein pellet prior to drying. A com-
mercially available 2DE Quant kit (GE Healthcare Life 
Sciences, Uppsala, Sweden) was used for protein estima-
tion (µg/µL). Bovine serum albumin provided in the kit 
was used as the protein calibration standard and three 
technical repeats for each quantitation were performed.

Two‑dimensional gel electrophoresis (2DE)
2DE was used to illustrate the effect of lipid removal and 
cell wall digestive enzymes (CDE), as well as the effect 
of CDE incubation period on protein extraction. The 
extraction approaches were evaluated in terms of the 
number of protein spots obtained and their intensities. 
Air-dried chromoplast protein pellets were solubilized 
in rehydration buffer containing 7 M urea, 2 M thiourea, 
4  % (w/v) 3-[(3-cholamidopropyl)dimethylammonio]-
1-propanesulfonate (CHAPS), 0.25  % (v/v) broad range 
pH 3-10 Pharmalyte and 0.4 % (w/v) dithiothreitol. Pro-
tein quantitation was performed prior to the first dimen-
sion of 2DE; isoelectric focusing (IEF).

Gel maps for method development: IEF was performed 
using Bio-Rad ReadyStrip™ IPG strips, 7  cm, pH 3-10 
(Bio-Rad Laboratories Inc., CA, USA), which were pas-
sively rehydrated with 100  µg of protein in 125 µL of 
rehydration buffer overnight. IEF was performed using 
a Bio-Rad Protean IEF Cell (Bio-Rad Laboratories). A 
total of 10,000 volt-hours were used to focus the proteins. 
After IEF, the proteins were reduced in 1 % (w/v) dithi-
othreitol for 15 min followed by alkylation with 4 % (w/v) 
iodoacetamide for 15 min before SDS-PAGE. The second 
dimension of 2DE was carried out using in-house packed 
1.0 mm 12 % polyacrylamide gels.

Two-dimensional proteome maps of the low and high 
oleic acid oil palm mesocarps: Bio-Rad ReadyStrip™ IPG 
strips, 11  cm, pH 3–11 were passively rehydrated with 
400  µg of protein in 200 µL of rehydration buffer over-
night. IEF was performed using a Bio-Rad Protean IEF 
Cell. A total of 20,000 volt-hours were used to focus the 
proteins. The focused proteins were reduced as described 
above. The IEF strips were laid on top of Precast Mini-
PROTEAN® TGX™, 1.0  mm 4–20  % polyacrylamide 
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gradient gels (Bio-Rad Laboratories) to generate high res-
olution proteome maps.

Electrophoresis (for both the method development gels 
and the 2DE proteome maps) was conducted in a Bio-Rad 
Mini-PROTEAN® Tetra Cell apparatus (Bio-Rad Labora-
tories) at 200  V (Powerpac 300, Bio-Rad Laboratories). 
The separated proteins were fixed in the gels for 30 min 
[50 (v/v) ethanol, 10  % (v/v) acetic acid] and stained 
with Colloidal Coomassie G-250 (Candiano et al. 2004). 
The gels were de-stained in water until the background 
was clear. Gel images were obtained with a DLSR cam-
era (Nikon D100, Nikon Corporation, Tokyo, Japan). The 
settings were ISO 200, f16 for the aperture and a shutter 
speed of 1/40th of a second. Image processing was done 
with analySIS software (Soft Imaging System GmbH, 
Germany). Protein spot detection and subsequent pro-
tein spot-to-spot comparative analysis were done with 
PDQuest 2D analysis software (Bio-Rad Laboratories). 
The reproducibility of the 2DE protein profiles was deter-
mined using three independent biological replicates for 
low and high oleic acid oil palm mesocarps.

In‑solution protein digestion assisted by sodium 
deoxycholate
Prior to tryptic digestion, 50 µg of the chromoplast pro-
tein pellet or the interphase proteins in 0.1  M ammo-
nium bicarbonate was reduced and alkylated with 
thiol-free 50  mM tris(2-carboxyethyl)phosphine and 
55  mM iodoacetamide. An ionic detergent, 1  % (w/w) 
sodium deoxycholate (Koehn et  al. 2011) was added to 
improve peptide solubilization. Proteins were digested 
with modified sequencing grade trypsin (Promega, WI, 
USA) for 16 h at 37 °C. After digestion, 0.5 % (v/v) formic 
acid was added to precipitate the sodium deoxycholate 
and then the digest was centrifuged at 14,000g for 15 min. 
The peptides were then dried in a centrifugal concentra-
tor and kept at −80 °C until required.

Liquid chromatography‑tandem mass spectrometry (LC–
MS/MS)
Peptide separation was performed with a nano-Advance 
liquid chromatography (LC) system (Bruker Daltonik 
GmbH, Bremen, Germany). The tryptic digests were re-
suspended in 30 µL of 5 % (v/v) acetonitrile and 0.05 % 
(v/v) trifluoroacetic acid in 0.1 % (v/v) formic acid; 5 µL 
was loaded onto the precolumn. Peptide separation was 
performed with an in-house packed C18 Phenomenex 
Aeris XB trap column (3 µm, 0.1 × 100 mm) (Phenom-
enex Inc., CA, USA) and a prepacked Magic C18 AQ 
analytical column (3  µm, 0.1  ×  150  mM) (Michrom 
Bioresources, Inc., CA, USA). Equilibration was carried 
out with 95  % solvent A (2  % acetonitrile, 0.1  % formic 
acid) and 5 % solvent B (98 % acetonitrile, 0.1 % formic 

acid). A 0–45 % solvent B gradient over 45 min at a flow 
rate of 800 nL min−1 was employed to elute the bound 
peptides, which were analyzed using an amaZon speed 
ion trap mass spectrometer (Bruker Daltonik). The cap-
illary spray voltage used was 1300  V at a temperature 
of 150  °C. Mass spectrometric survey scans were per-
formed to acquire precursor ions with a mass range from 
m/z 310–1400. The resolution was set to “Enhanced 
Resolution” with a scanning speed of m/z 8100 s−1. Tan-
dem MS spectra acquisition conditions consisted of 
“Xtreme Resolution” scan with a scanning speed of m/z 
52,000  s−1 and a mass range of m/z 100–3000 with up 
to three of the most intense multiple charged precursor 
ions (1 +  2 +  and 3 +) per scan fragmented (collision 
induced) in the linear ion trap. All MS/MS spectra were 
collected using a fragmentation amplitude of 1.0  V and 
an isolation window width of m/z 4.0.

Protein identification and data analysis
Data acquisitions (in positive ion mode) were performed 
using Compass 1.3 for Amazon trapControl Version 7.0 
(Bruker Daltonik). Data analysis to annotate and gener-
ate peak lists was performed using amaZon Data Anal-
ysis software Version 4.0 (Bruker Daltonik). The peak 
lists were then sent to ProteinScape Version 3.1 (Bruker 
Daltonik) for protein identification using Mascot Ver-
sion 2.4.0 server (Matrix Science, Boston, MA, USA) 
(http://www.matrixscience.com). The peptide sequences 
were searched against Magnoliophyta taxonomy in the 
NCBInr protein database (http://www.ncbi.nlm.nih.gov). 
Error mass tolerances for protein and peptide were set 
to 0.3 and 0.6  Da, respectively. Semi-trypsin was desig-
nated as the cleavage enzyme with two missed cleavages 
allowed. Carbamidomethylation of cysteine (C) was set 
as the fixed modification while oxidation of methionine 
(M) and deamidation of asparagine (N) and glutamine 
(Q) were used as variable modifications. Protein identi-
ties were automatically accepted if they had at least one 
top ranking peptide (Rank 1) with an ion score identity 
threshold of more than 50 (p < 0.05), indicating correct 
protein matches. All database searches were performed 
against the decoy database (randomized sequences) as 
well for any false positive hits (to yield a FDR of <2 %). 
Only those proteins meeting the above protein assess-
ment criteria were used for downstream analyses. The 
non-redundant proteins list was compiled by Pro-
tein Extractor module in ProteinScape bioinformatics 
platform.

Functional classes assignment
Proteins were classified into their biological processes 
and molecular functions based on their gene ontol-
ogy (GO) term. Their respective peptide sequence gene 

http://www.matrixscience.com
http://www.ncbi.nlm.nih.gov
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identifier numbers from the UniProtKB and NCBInr pro-
tein databases were mapped to the existing annotations 
of characterized proteins (Harris et al. 2004; Camon et al. 
2003, 2004) using the gene ontology functionality pro-
vided with the ProteinScape platform.
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