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Prognostic biomarkers are of great significance to predict the outcome of patients

with cancer, to guide the clinical treatments, to elucidate tumorigenesis mechanisms,

and offer the opportunity of identifying therapeutic targets. To screen and develop

prognostic biomarkers, high throughput profiling methods including gene microarray

and next-generation sequencing have been widely applied and shown great success.

However, due to the lack of independent validation, only very few prognostic biomarkers

have been applied for clinical practice. In order to cross-validate the reliability of

potential prognostic biomarkers, some groups have collected the omics datasets (i.e.,

epigenetics/transcriptome/proteome) with relative follow-up data (such as OS/DSS/PFS)

of clinical samples from different cohorts, and developed the easy-to-use online

bioinformatics tools and web servers to assist the biomarker screening and validation.

These tools and web servers provide great convenience for the development of

prognostic biomarkers, for the study of molecular mechanisms of tumorigenesis and

progression, and even for the discovery of important therapeutic targets. Aim to help

researchers to get a quick learning and understand the function of these tools, the current

review delves into the introduction of the usage, characteristics and algorithms of tools,

and web servers, such as LOGpc, KM plotter, GEPIA, TCPA, OncoLnc, PrognoScan,

MethSurv, SurvExpress, UALCAN, etc., and further help researchers to select more

suitable tools for their own research. In addition, all the tools introduced in this review

can be reached at http://bioinfo.henu.edu.cn/WebServiceList.html.
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INTRODUCTION

The prognosis estimation of tumor patient is of great significance to guide clinical treatments
and facilitate the elucidation of tumorigenesis mechanism. In current clinical practice, prognosis
is determined by many factors, such as disease stage, clinical performance, treatment experience
and understanding of the cancer development. However, these properties are relative subjective
and may lead to inaccurate prognostic estimates, and may even lead to inappropriate anticancer
management strategy. Genotype-Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA)
projects offer a large number of RNA sequence data of normal and cancer samples, providing
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unprecedented opportunities for many fields such as cancer
bioinformatics and precision medicine to improve our
understanding in cancer development and treatment (1, 2).
Molecular prognostic biomarkers are the basic components
of precision medicine. Data mining and other biological
analysis make it possible to predict the prognosis of tumors at
the molecular level (3–5). Accurate clinical estimation using
prognostic biomarkers helps determining optimal anti-cancer
treatment. At the same time, it provides assistance in developing
more detailed hospice care plans. So in recent years, the
discovery of prognostic biomarkers has become a hot topic in
precision medicine.

Numerous studies have evidenced that molecular markers in
DNA, RNA and protein level can be as prognostic biomarkers
in cancer, and guide the effect of treatment either independently
or in addition with present prognosis systems (6–8). In these
study, Kaplan-Meier method and multivariate Cox proportional
hazards regression models were commonly used to evaluate the
associations between molecular markers and survival of patients
with cancer (9, 10). However, these biomarkers are not suitable
for clinical application due to the lack of independent validation
and poor repeatability between different studies.

Mining data from public datasets andmaking assessments and
predictions can be challenging and time-consuming. To extract
useful information from these datasets, it requires researchers
with strong bioinformatics expertise. To allow more researchers
be able to quickly extract information they need, online tools that
can easily perform survival analysis from these data are needed.
The rapid growth of public datasets has enabled some research
groups to focus on collecting omics datasets and developing
online bioinformatics prognostic tools and web servers. These
various prognostic analysis tools provide valuable evidence and
ideas for cancer researchers. However, for many researchers
and clinicians, it may be difficult to find the most suitable
tool for their own research quickly. This review attempts to
provide a comprehensive overview of the commonly used online
prognostic tools for cancer prognostic analysis. In addition,
the main challenges and future directions in this field are also
discussed in this paper.

MATERIALS AND METHODS

Literature research and data collection: the survival analysis tools
reviewed in this paper include online prognostic bioinformatics
tools and web servers developed by applying different types
of profiling data (genomics, epigenomics, proteomics etc.)
from clinical samples of different cohorts. Search Strategy for
prognostic tools was executed in PubMed and Google Scholar
from Jan 1, 2000 to August 31, 2019. Search terms include:
“survival analysis,” “web server,” “prognostic biomarker” and
“cancer,” keywords combination was used for search. The search
was limited to English language. There are 886 articles that
matched to above criteria. In the review, 22 representative
databases that can be used for the prognosis analysis of multiple
cancer types were selected for detailed description; because most
of the prognostic tools for single type of cancer were included

in the above databases, so we just gave a brief introduction.
Ten of these databases are based on mRNA profiling data for
prognostic analysis, three databases based on ncRNA profiling
data, two databases based on protein data, two databases based
on DNA data, and five databases based on multi-omics data. The
literature retrieval process is shown in Figure 1. The release time
of prognostic databases is presented in Figure 2. The date of the
last search and collating data for these databases was December
10, 2019.

RESULTS

Web Servers for Survival Analysis Based
on mRNA Data
In the past two decades, high-throughput gene chips and next-
generation sequencing technologies have provided opportunities
to explore important cancer-related molecules, therapeutic
targets, diagnostic, and prognostic biomarkers. With the
implementation of the Cancer Genome Atlas (TCGA) project, a
large number of epigenome, transcriptome, and proteome data
of tumor samples became publicly accessible. Researchers can
analyze the correlation between these data and survival, and look
for prognostic biomarkers. Many studies have shown that mRNA
expression is closely related to cancer prognosis (11–13). In
order to promote the development and evaluation of prognostic
biomarkers, some research groups have developed prognosis
tools and web servers based on mRNA data by mining TCGA
and GEO (Gene Expression Omnibus) data and adding complex
statistical calculation. This review introduces 14 bioinformatics
tools for evaluating cancer prognosis based on mRNA data
(Table 1).

LOGpc1

LOGpc is a web server that contains a large number of datasets
for survival analysis, which provides 13 types of survival terms
for 28,098 cancer patients from 26 types of malignant tumors,
including OSlms, OSblca, OSkirc and other 23 online prognostic
tools (14–21). These patient samples were collected mainly from
TCGA and GEO cohorts. LOGpc is free and easy to operate.
Twenty six types of tumors are classified into 11 system categories
according to TCGA. Currently, only official gene symbol input
is acceptable in LOGpc. When user input the gene symbol and
set the relative parameters, then click on the “Kaplan-Meier plot”
button and the results will be displayed on the output webpage.
In order to meet the specific needs from different researchers,
clinical confounding factors can also be defined for advanced
subgroup analysis.

GENT22

GENT2 provides the differential expression analysis and
prognosis analysis based on tumor subtypes (22). The users
can search the gene expression profiles of different tissues,
and compare the expression levels between tissue subtypes. For
survival analysis, this tool provides Kaplan Meier plot with log

1http://bioinfo.henu.edu.cn/DatabaseList.jsp
2http://gent2.appex.kr
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FIGURE 1 | Search flowchart: prognostic web servers for cancers included and excluded in each step.

FIGURE 2 | The time axis for the publication of prognostic web servers.

rank test and establishing Cox proportional risk model for meta-
analysis. At present, it provides survival analysis for 27 cancer
types, including 46 subtypes of 19 cancer types.

PROGgeneV23

PROGgeneV2 is a web-based tool for studying the prognosis of
genes in a variety of cancers (23, 24). In current it comprises
193 datasets for 27 cancer types. The users can perform survival
analysis of single gene, multi genes and two genes expression
ratio, and also use the function of adjusting covariate survival

3http://genomics.jefferson.edu/proggene/

model. Users can upload customized gene datasets for survival
analysis of interested genes and compare the results with
previously published studies.

SurvExpress4

SurvExpress is for studying risk assessment and survival analysis.
It contains more than 29,000 samples of 26 cancer types
with clinical information from 144 datasets (25). The outputs
generated by SurvExpress include the Kaplan-Meier plots by
risk group, a heat map of gene expression values and a visual

4http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
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TABLE 1 | Comparison of prognostic web servers based on mRNA data.

Web server Datasets Cancer types Samples Subgroup

analysis

Multi-gene query Optimal cut-off Login required

LOGpc 193 26 28,098 Yes No No No

GENT2 195 27 – Yes No No No

PROGgeneV2 193 27 28,503 Yes Yes No No

SurvExpress 144 26 29,110 Yes Yes No No

PRECOG 165 39 19,168 Yes No No Yes

Oncomine 103 25 17,217 Yes No No Yes

PrognoScan 74 23 9,196 No No Yes No

KM Plotter 45 21 12,984 Yes Yes Yes No

GSCALite 63 33 10,558 Yes Yes No No

UALCAN 35 31 7,233 Yes Yes No No

GEPIA 33 33 10,558 No Yes No No

CAS-viewer 33 33 10,558 Yes No No No

MEXPRESS 33 33 – Yes No No No

CaPSSA 28 27 10,206 No Yes No No

OncoLnc 21 21 8,616 No No No No

–, survival sample data is not displayed on the website.

association of available clinical information to risk groups.
Survival ROC estimates the specificity and time-dependent
sensitivity for survival risk groups.

PRECOG5

PRECOG is a system for integrating genomic profiles and cancer
clinical data, it covers 39 different cancer types, including about
19,000 samples with overall survival data from 165 cancer
expression datasets (26). It allows researchers to query whether
gene expression correlates with patient survival. For simple
display, 39 different histologic types of tumors were divided into
18 groups. The correlation between gene expression and overall
survival was assessed by univariate Cox regression. PRECOG also
provides gene prognosis analysis for pan-cancer. However, new
users need to register and log in.

Oncomine6

Oncomine is a cancer gene chip database and integrated data
mining platform, aiming at mining cancer gene information
(27, 28). Oncomine has more complete cancer mutation
spectrum, gene expression data and related clinical information,
which provides insights to identify new biomarkers or new
therapeutic targets. With Oncomine, users can get the results
of differential expression, co-expression analysis, molecular
concepts analysis, interaction network, correlation analysis
between gene expression and survival status, but Kaplan-Meier
plot isn’t displayed directly. Meta-analysis can also be used
to compare various studies to determine more reliable and
consistent results. Oncomine Research Edition is free, but needs
a valid academic email address to register and log in.

5https://precog.stanford.edu/
6http://www.oncomine.org/

PrognoScan7

Prognoscan is a platform for predicting the relationship between
gene expression and patient survival based on a large number
of public cancer microarray datasets with clinical information. It
provides a variety of survival terms for 14 cancer types (29). One
of its advantages is that survival analysis in this tool performs the
minimum P-value method and optimal cut-off is provided.

KMplotter8

The KaplanMeier plotter (KMplotter) can be used for single gene
or multiple gene prognosis analysis for many kinds of malignant
tumors (30–32). Researchers can assess the effect of mRNA and
miRNA expression on the survival rate of 21 cancer types by pan-
cancer analysis. When the users input the relevant gene name
and select the appropriate gene expression cut-off point, the
comparison results between the two groups will be displayed with
95% confidence interval, risk ratio and log rank P-value. An Auto
best cut-off is provided to compute all possible cut-off values to
get the best performing threshold in survival analysis.

GSCALite9

GSCALite is a tool for analyzing expression/variation/ clinical
correlation of gene sets in cancers with dynamic and visualization
manner (33). It provides three survival analysis modules for
a gene set based on cancer multi-omics data of TCGA. (1)
Differential mRNA expression of gene set between tumor and
matched normal samples, gene expression between subtypes of
each selected cancer, and its effect on overall survival rate. (2)
The influence of SNV (single nucleotide variants) frequency and
mutation type of gene set on the overall survival rate in a cancer
type. (3) Differential expression of methylation between tumor
and matched normal samples, and the effect on the survival rate

7http://www.prognoscan.org/
8http://kmplot.com/analysis/
9http://bioinfo.life.hust.edu.cn/web/GSCALite/
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of selected cancer types. It allows users to search for prognostic
markers at transcriptome level, epigenetic modification, and
DNA mutation. Users can query the cancer pathway activity
related to gene expression and the correlation between genes and
drug sensitivity, it is convenient for researchers to study drug
resistance of tumor.

UALCAN10

UALCAN is a web-based tool for analyzing TCGA RNA-seq and
clinical data to evaluate the association of gene expression and
patient survival, allows users to conduct differential expression
analysis and survival analysis for interested genes and access the
expression and survival information of a given gene in 31 types
of cancers by performing pan-cancer analysis (34). Currently,
UALCAN provides protein differential expression analysis for
breast cancer, colon cancer, and other three cancer types, but does
not provide survival analysis based on protein data. UALCAN
also provides additional information about the selected genes
or targets by linking to Pubmed, TargetScan, DRUGBANK, and
so on, this helps researchers collect more valuable information
and data.

GEPIA11

GEPIA is an interactive web-based tool for survival analysis based
on gene expression, it offer the choice of selecting overall survival
(OS) or disease-free survival (DFS) for the analysis (35, 36).
According to the characteristics of gene normalization, GEPIA
allows two different genes to be input at the same time for survival
analysis. GEPIA also presents the top genes most related to the
survival of cancer patients. This function is very helpful for the
users. In addition to providing patient survival analysis, GEPIA
has other functions such as differential expression analysis
based between different cancer types, multiple gene comparison,
similar genes detection.

CAS-Viewer12

CAS-viewer is a web-based tool for multiple level comprehensive
analysis by integrating multi-omics data such as mRNA,
miRNA, methylation, SNP, and clinical information across
different cancer types (37). It links the differential transcriptional
expression rate with methylation, miRNA, and splicing
regulatory elements of 33 cancer types. “Clinical correlation”
module presents Kaplan Meier plot showing the correlation
between PSI (percent spliced in) value and survival rate, and
in this way users can identify potential transcripts related to
different survival outcomes of each cancer type.

MEXPRESS13

MEXPRESS is an intuitive web tool for analysis of gene
expression, DNA methylation, and association with clinical
information including patient survival (38). It provides a very
different visual interface, allows users to compare specific
genomic features (such as DNA methylation) with gene

10http://ualcan.path.uab.edu/index.html
11http://gepia.cancer-pku.cn/
12http://genomics.chpc.utah.edu/cas/
13https://mexpress.be

expression and clinical information. Researchers can study the
relationship between DNA methylation and gene expression and
multiple clinical variables by using MEXPRESS platform.

CaPSSA14

CaPSSA supports users to detect the prognostic value of patient
subgroups based on gene expression, mutation or genomic
alterations of query genes (39). Importantly, it also supports
custom histochemical data analysis with clinical information.
For candidate gene sets that user-supplied, interactive patient
stratification is supported based on gene expression profiles and
genomic alterations, the results of log-rank test and KaplanMeier
plots will be displayed for evaluating the prognostic value.

Web Servers for Studying Prognostic
Implications of ncRNA
In the past decade, a large number of studies have shown
that non-coding RNA (ncRNA) plays an increasingly important
role in epigenetic regulation. ncRNAs involved in the network
can affect many molecular targets which are related to the
development of cancer, and many ncRNAs are considered as
driving factors or suppressors of carcinogenesis (40). MicroRNA
(miRNA) as one type of ncRNAs regulates mRNA at the
transcriptional or post-transcriptional level (41). Studies have
shown that lncRNA (long non-coding RNA) plays an important
role in many life activities such as dose compensation effect,
epigenetic regulation, cell cycle and cell differentiation, and
has become a hot spot in tumor genetics research (42). Their
expression in cancer has been studied by high-throughput
methods, generating valuable sources of public available datasets.
An important step in developing ncRNA biomarkers is to
evaluate them in independent cohorts. To help and simplify the
assessment of ncRNA signatures in cancer prognosis, several
ncRNA prognostic databases have been developed by some
research teams using public profiling data (Table 2).

PROGmiRV215

PROGmiRV2 is a pan-cancer miRNA prognostics database,
whosemiRNA data comes fromGEO and TCGA (43). Compared
with version 1, the datasets and samples of the new version
have increased greatly, prognosis analysis has been improved
from single cancer type analysis to pan-cancer analysis, and
the survival indicators provided have increased from one to
three (overall survival, recurrence free survival, and metastasis
free survival). Users are also allowed to upload their own
customized dataset for prognosis analysis, but registration and
login are required.

SurvMicro16

SurvMicro is a bioinformatics tool for analyzing cancer prognosis
based on miRNA. Its data comes from GEO, TCGA, and
ArrayExpress (44). SurvMicro comprises 43 datasets and more
than 6,000 samples in 15 different cancer types. Cox multiple
fitting was used to evaluate the risk of prognosis, the prognosis

14http://capssa.ewha.ac.kr
15http://xvm145.jefferson.edu/progmir/
16http://bioinformatica.mty.itesm.mx/SurvMicro
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TABLE 2 | Summary of prognostic web servers based on ncRNA data.

Web server Datasets Cancer types Samples Subgroup

analysis

Biomarker Multi-gene query Optimal

cut-off

Login

required

PROGmiRV2 134 33 19,025 Yes miRNA Yes No No

SurvMicro 43 15 6,412 Yes miRNA No No No

KM Plotter 25 21 10,613 Yes miRNA Yes Yes No

OncoLnc 21 21 8,648 No miRNA No No No

TANRIC 23 20 6,763 Yes LncRNA – – No

OncoLnc 18 18 8,023 No LncRNA No No No

–, related information is not displayed on the website.

TABLE 3 | Comparison of prognostic web servers based on protein data.

Web server Datasets Cancer types Samples Proteins Subgroups Multi-gene query Optimal

cut-off

Login required

TCPAv3.0 35 33 8,328 258 No No No No

TRGAted 31 31 7,843 245 Yes Yes Yes No

index was obtained by calculating the sum of miRNA expression
value and Cox coefficients. According to the ranking of prognosis
index, users would know the risk group of poor prognosis.

OncoLnc17

OncoLnc is an interactive tool for studying survival correlations
for lncRNA, miRNA, and mRNA (45, 46). OncoLnc contains
patient survival data of 21 cancer types from TCGA mRNAs,
miRNAs, and MiTranscriptome data. The users can divide
patients into subgroups according to gene expression levels,
measure the result between subgroups. OncoLnc allows users
to view the results of Kaplan Meier plots of one or multiple
types of cancers at one time, provide Cox regression results, and
download the full data used in the analysis. It also allows users
to explore the survival relevance of inquired genes in 21 types
of cancers at one time, this function is helpful to study whether
specific genes play important roles in cancer prognosis.

TANRIC18

TANRIC is an interactive platform for multiple analysis of
lncRNA in cancer (47). It includes the expression profile of
lncRNA in more than 6,000 patient samples of 20 cancer types
from TCGA and other three independent datasets. TANRIC
consists of six modules, users can get the annotation data of
lncRNA through module “My lncRNA,” and analyze whether
lncRNA is related to the survival time of patients (including
subtypes prognosis analysis). Users can also use other functions
TANRIC to recognize the differential expression of lncRNA in
tumor and normal tissue, as well as in tumor subtype or tumor
stage, evaluate the differential expression of lncRNA in wild type
and gene mutation cancer, evaluate the influence of lncRNA
expression on drug sensitivity, and find some signal pathways
related to cancer subtype defined by lncRNA.

17http://www.oncolnc.org
18https://www.tanric.org

Web Servers for Survival Analysis Based
on Protein Data
Functional proteomics is a powerful way to understand the
pathophysiological mechanism and find the therapeutic target
of cancer. In order to find biomarkers for prognosis and
targets for treatment improvement, it is necessary to study
the correlation between protein and survival. As a part of
the Cancer Genome Atlas (TCGA) Project and other works,
reverse-phase protein array (RPPA) was used to measure
the protein expression in a large number of clinical cancer
samples and cell lines (48, 49). This technology provides
a necessary condition for the establishment of repeatable
prediction model and protein prediction database. Here, we
introduce two protein survival analysis databases based on RPPA
data (Table 3).

TCPAv3.019

TCPAv3.0 is an updated version of TCPA to explore and analyze
protein expression based on TCGA RPPA data (50, 51). It
integrates protein data and other TCGA data (somatic mutations,
SCNAs, DNA methylation, mRNA and miRNA expression,
and patient clinical information) and gives comprehensive
protein-centric analyses. The users can find protein markers
or pathway events that are significantly related to patient
survival by using Cox proportional risk model and log rank
test. The users can identify which proteins associated with
the prognosis of different cancers and subtypes by pan-cancer
analysis. The pan-cancer analysis module using multi-omic
TCGA data provides researchers a unique way to validate
specific protein-driven multi-omic hypotheses in multiple
cancer types.

19http://tcpaportal.org/

Frontiers in Oncology | www.frontiersin.org 6 February 2020 | Volume 10 | Article 68

http://www.oncolnc.org
https://www.tanric.org
http://tcpaportal.org/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zheng et al. Tools for Survival Analysis

TABLE 4 | Summary of prognosis web servers based on DNA data.

Web server Datasets Cancer types Samples Data types Subgroups Optimal

cut-off

Login required

GSCALite 33 33 10,943 Methylation Yes No No

MEXPRESS 33 33 – Methylation Yes No No

MethSurv 25 25 7,358 Methylation No Yes No

cBioPortal >100 32 – Mutation/

CNA

Yes – No

GSCALite 33 33 11,124 Mutation Yes – No

CaPSSA 27 26 10,758 Mutation No – No

–, related information is not displayed on the website.

TABLE 5 | Prognostic tools for single type of cancer.

Cancer type Database Website Data type Reference

Breast cancer miRpower http://kmplot.com/mirpower miRNA (31)

BreastMark http://glados.ucd.ie/BreastMark/index.html mRNA, miRNA (60)

OSbrca http://bioinfo.henu.edu.cn/BRCA/BRCAList.jsp mRNA (19)

Bladder cancer OSblca http://bioinfo.henu.edu.cn/BLCA/BLCAList.jsp mRNA (17)

Leiomyosarcoma OSlms http://bioinfo.henu.edu.cn/LMS/LMSList.jsp mRNA (14)

ESCC OSescc http://bioinfo.henu.edu.cn/DBList.jsp mRNA (15)

KIRC OSkirc http://bioinfo.henu.edu.cn/KIRC/KIRCList.jsp mRNA (16)

Cervical cancer OScc http://bioinfo.henu.edu.cn/CESC/CESCList.jsp mRNA (18)

Adrenocortical carcinoma OSacc http://bioinfo.henu.edu.cn/ACC/ACCList.jsp mRNA (20)

Uveal melanoma OSuvm http://bioinfo.henu.edu.cn/UVM/UVMList.jsp mRNA (21)

Ovarian cancer OvMark http://glados.ucd.ie/OvMark/index.html mRNA, miRNA (59)

TRGAted20

TRGAted is an intuitive tool for analyzing the correlation
between more than 200 proteins and survivals in 31 types
of cancers (52). RPPA data (Level 4) contained in TRGAted
come from the TCPA Portal. The cancer clinical information
provided are comprehensive, including: gender, age, tumor stage,
histological type, response to treatment. Users can use Cox
proportional hazard model to analyze the prognosis of all
proteins in each cancer type, or for a single protein across all
cancer types. Comparison with TCPAv3.0, TRGAted provides
more survival indicators, and its function of visualizing all
proteins in a cancer type can help researchers find survival related
proteins in the specific cancer more easily. The users are allowed
to download and modify TRGAted for better usability under
GPLv3 (GNU General Public License v3.0).

Web Servers for Prognosis Analysis Based
on DNA Data
Patients with genetic mutations in tumor cells are more likely
to display poor pathological features, resulting in significantly
altered overall survival (53). The new generation of sequencing
technology has accelerated the study of somatic genetics,
identifying patient subgroups with different genomic alteration
patterns could facilitate to stratify patients with different clinical

20https://nborcherding.shinyapps.io/TRGAted

outcomes and to propose putative biomarkers. In addition to
DNA mutation, DNA methylation is the most studied epigenetic
modification which is crucial for facilitating vital biological
processes such as embryonic development, genomic imprinting,
and X-chromosome inactivation. Aberrant DNA methylation
may lead to changes in cellular micro-environment, affect
the gene expression pattern, and ultimately result in various
pathological conditions including carcinogenesis (54, 55).
Several recently developed high-throughput techniques facilitate
genome-wide DNAmethylation profiling. Some prognostic tools
were also developed to facilitate the evaluation of the prognostic
properties of CpG methylation data (Table 4).

MethSurv21

MethSurv is a web tool dedicating for survival analysis based on
DNA methylation data including 7,358 samples in 25 different
cancer types from TCGA (56). Methsurv provides multiple
survival terms analysis, and the home page contains the following
modules: single CpG, region based analysis, all cancers, top
biomarkers, and gene visualization. Users can retrieve CpG
survival analysis results of selected areas of a chromosome, and
also search for a gene of interest to explore the survival statistics
of all CpGs available. Users can see top biomarkers arranged
according to p-value of all CpG labeled cancer types in the whole

21https://biit.cs.ut.ee/methsurv/
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TABLE 6 | Follow-up information of prognostic web servers.

Web server OS DFS RFS MFS PFS DSS Others Total

LOGpc ◦ ◦ ◦ ◦ ◦ ◦ DFI, PFI, DMFS, DRFS,LMFS, BMFS, EFS 13

GENT2 ◦ ◦ ◦ ◦ 4

PROGgeneV2 ◦ ◦ ◦ 3

SurvExpress ◦ ◦ ◦ 3

PRECOG ◦ ◦ 2

Oncomine ◦ 1

PrognoScan ◦ ◦ ◦ ◦ ◦ EFS, DMFS, DRFS 8

KM Plotter ◦ ◦ ◦ ◦ DMFS, PPS, FP 7

GSCALite ◦ 1

UALCAN ◦ 1

GEPIA ◦ ◦ 2

CAS-viewer ◦ 1

MEXPRESS ◦ 1

CaPSSA ◦ ◦ 2

OncoLnc ◦ 1

PROGmiRV2 ◦ ◦ ◦ 3

SurvMicro ◦ 1

TANRIC ◦ 1

TCPAv3.0 ◦ ◦ 2

TRGAted ◦ ◦ DFI, PFI 4

MethSurv ◦ 1

cBioPortal ◦ ◦ 2

“◦”, Yes; OS, overall survival; DFS, disease free survival; RFS, relapse free survival; MFS, metastasis free survival; PFS, progression free survival; DSS, disease specific survival; DMFS,

distant metastasis free survival; PFI, progression free interval; DFI, disease-free interval; PFI, progression free interval; EFS, event free survival; LMFS, lung metastasis free survival;

BMFS, brain metastasis free survival; DRFS, distant relapse free survival; FP, first progression; PPS, post progression survival.

genome. In brief, MethSurv is a valuable platform for preliminary
screening of methylation cancer biomarkers.

cBioPortal22

cBioPortal provides a visual tool for interactive exploration of
multiple cancer genomic datasets (57, 58). It integrates and
simplifies the data including somatic mutation, mRNA and
microRNA expression, DNA copy-number alterations(CNAs)
andmethylation, protein, and phosphoprotein RPPA data, so that
the users can obtain graphical summaries of large-scale cancer
genomic data intuitively. It enables users to inquiry survival
analysis based on DNA mutation data and CNA data, the results
of OS, and DFS of patients are presented intuitively in the form
of Kaplan-Meier plots. Pan-cancer analysis is also allowed.

Prognostic Tools for Single Type of Cancer
Through literature search, 11 prognostic tools for single
type of cancer were found (Table 5). MiRpower is a part
of KMplotter database to analyze the prognostic relevance
of miRNAs in breast cancer (31). OSlms, OSescc, OSkirc,
OSblca, OScc, OSbrca, OSacc, and OSuvm are bioinformatics
tools included in the LOGpc platform for survival analysis of
leiomyosarcoma, esophageal squamous cell carcinoma, kidney
renal clear cell carcinoma, bladder cancer, cervical cancer, breast
cancer, adrenocortical carcinoma, and uveal melanoma (14–21).

22http://www.cbioportal.org

OvMark and BreastMark are online web servers for prognosis
analysis of ovarian cancer and breast cancer, users can detect the
prognostic potential of about 17,000 genes and 341 miRNAs in
ovarian cancer and breast cancer (59, 60).

DISCUSSION

The development of public databases (such as TCGA and
GEO) provides a large number of genomic, epigenomic,
transcriptional and proteomic data, and provides the possibility
for gene function analysis and biological mechanism discussion
(1, 2). The rapid growth of multi-omics data provides more
opportunities for the research of cancer molecular mechanism
and biological target, but for the researchers without strong
computing power and bioinformatics background, they might
face many difficulties and challenges in data mining and
analysis. Since the EAPC (European Association for Palliative
Care) made recommendations for the development of cancer
prognostic tools in 2005, a number of prognostic tools have
been developed, evolved, and validated (61). In this review, we
summarized 22 prognostic bioinformatics tools, which provide
survival analysis or with other functions. We analyzed and
compared their key information and characteristics, follow-
up information for each tool is presented in Table 6, strength
and limitation are displayed in additional files (Table S1). With
these tools, researchers can easily explore a large number of
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FIGURE 3 | Distribution of cancer types in web servers. (A) LOGpc (mRNA level); (B) PROGmiRV2 (miRNA level); (C) OncoLnc (lncRNA level); (D) CaPSSA (mutation

level); (E) GSCALite (methylation level); (F) TCPAv3.0 (protein level).

datasets from complex data platform, find genes, ncRNAs,
proteins, gene modifications, or mutations associated with
patient survival, ask specific questions and test their hypotheses
(48, 62, 63). Comprehensive expression analysis can be carried
out by simple clicks, which greatly promotes data mining in
research fields, scientific discussions and treatment discovery
processes. These tools have the potentials to integrate and
personalize the prognostic information for individual patients
and provide refined risk estimates for uncertain clinical
management scenarios. Meanwhile each database has its own
strengths. Some databases focus on survival analysis by collecting
datasets of various cancer types, such as LOGpc, PROGgeneV2,
KM Plotter, PrognoScan, TRGAted. Some databases provide
other functions, UALCAN, and GEPIA have the function of
top differential gene display, which provide a way for clinicians
and researchers to select possible target genes for diagnosis
or treatment, Oncomine, and TCPA provide multidimensional
analysis and comparison of datas. GSCALite, TANRIC can be
used for drug screening and treatment options by analyzing the
correlation between therapeutic targets and lncRNAs. Advances
in genome technology and computational biology provide us
with an unprecedented opportunity to understand molecular
events associated with cancer, and to apply precise cancer

treatment. We hope this review will be helpful to clinicians and
oncologists who are interested in finding prognostic or predictive
features of cancer.

LIMITATION AND PROSPECTIVE

Although these tools provide great convenience for prognostic
biomarker development, several key aspects of these prognostic
tools remain elusive. Differences in datasets collected and
split points may result in significantly different results, so
we collected datasets and their source of these web servers
(Figure 3 and Tables S2–S5) and found excluding TCGA
data, there are significant differences in other data sources.
This may be one of the reasons why the analysis results of
different tools are not completely consistent. In the future,
efforts should be made in data optimization, prognostic
tools should be improved to be able to predict multi-gene
markers, select optimal cut-off computation, use hierarchical
clustering and consider complex multi-omics networks
of interactions. In addition more molecular subtypes and
clinical information including tumor tissue image and
treatment data should be collected and mined to identify
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more meaningful prognostic markers through more detailed
subtype analysis.
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