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Abstract
COVID-19 is a novel disease caused by SARS-CoV-2 and has made a catastrophic impact on the global economy. As it is, 
there is no officially FDA approved drug to alleviate the negative impact of SARS-CoV-2 on human health. Numerous drug 
targets for neutralizing coronavirus infection have been identified, among them is 3-chymotrypsin-like-protease (3CLpro), a 
viral protease responsible for the viral replication is chosen for this study. This study aimed at finding novel inhibitors of SARS-
CoV-2 3C-like protease from the natural library using computational approaches. A total of 69,000 compounds from natural 
product library were screened to match a minimum of 3 features from the five sites e-pharmacophore model. Compounds with 
fitness score of 1.00 and above were consequently filtered by executing molecular docking studies via Glide docking algorithm. 
Qikprop also predicted the compounds drug-likeness and pharmacokinetic features; besides, the QSAR model built from KPLS 
analysis with radial as binary fingerprint was used to predict the compounds inhibition properties against SARS-CoV-2 3C-like 
protease. Fifty ns molecular dynamics (MD) simulation was carried out using GROMACS software to understand the dynam-
ics of binding. Nine (9) lead compounds from the natural products library were discovered; seven among them were found to 
be more potent than lopinavir based on energies of binding. STOCK1N-98687 with docking score of −9.295 kcal/mol had 
considerable predicted bioactivity (4.427 µM) against SARS-CoV-2 3C-like protease and satisfactory drug-like features than 
the experimental drug lopinavir. Post-docking analysis by MM-GBSA confirmed the stability of STOCK1N-98687 bound 
3CLpro crystal structure. MD simulation of STOCKIN-98687 with 3CLpro at 50 ns showed high stability and low fluctuation of 
the complex. This study revealed compound STOCK1N-98687 as potential 3CLpro inhibitor; therefore, a wet experiment is 
worth exploring to confirm the therapeutic potential of STOCK1N-98687 as an antiviral agent.
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Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) is a new coronavirus that emerged in Wuhan, 
China, in December 2019 and is responsible for the global 
pandemic previously known as coronavirus disease 2019 
(COVID-19) (Zhu et al. 2019). This is to a certain extent, 
dissimilar from the familiar rampant human coronaviruses 
HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-
OC43; the zoonotic Middle East respiratory syndrome 
coronavirus (MERS-CoV); and the severe acute respira-
tory syndrome coronavirus (SARS-CoV) famous with 
tall mortality (Sharma et al. 2020). Individuals diseased 
with SARS-CoV-2 are presented with symptoms compris-
ing fever, dry cough, tiredness, loss of speech and dif-
ficulty in breathing (Elfiky and Azzam 2020; Pant et al. 
2020). Regrettably, there is no available effective drug for 
COVID-19 (Wu et al. 2020a, b). Different studies have 
observed the genetic code of SARS-CoV-2 shows 80% 
similarity with the severe acute respiratory syndrome 
(SARS), which instigated worldwide outbreak two dec-
ades ago (Wu et al. 2020a, b; Chen et al. 2020; Wang 
et al. 2019).

Based on the available knowledge of the SARS-CoV-2 
and closely related coronaviruses, reports on virtual 
screening of available antiviral drugs (Boopathi et  al. 
2020; Muralidharan et  al. 2020) available databases 
(Khan et al. 2020), and natural agents breathing (Elfiky 
and Azzam 2020; Pant et al. 2020; Aanouz et al. 2020) 
against evolving targets such as viral spike proteins (Hasan 
et al. 2020), envelop protein (Gupta et al. 2020), proteases 
(Khan et al. 2020), nucleocapsid protein (Sarma et al. 
2020), 2’-O-ribose methyltransferase and 3CL hydrolase 
is rapidly emerging (Sarma et al. 2020; Elmezayen et al. 
2020).

The SARS-CoV-2 coronavirus encodes essential pro-
teases, namely papain-like Protease (PLpro) and 3-chymo-
trypsin-like Protease (3CLpro) as part of its non-structural 
protein (nsp)-3 domains. These proteases are attractive 
antiviral drug targets because they are essential for coro-
naviral replication. Although the primary function of PLpro 
and 3CLpro is to process the viral polyprotein in a coordi-
nated manner, they possess the additional function of strip-
ping ubiquitin and ISG15 from host-cell proteins to aid 
coronaviruses in their evasion of the host innate immune 
responses (Báez-Santos et al. 2015).

Hence, 3CLpro has been regarded by many scientists 
across the globe as a drug target against SARS-CoV-2 due 
to its role in the viral replication cycle (Báez-Santos et al. 
2015; Qamar et al. 2020). The 3CLpro is answerable for 
the catalytic cleavage of eleven conserved sites in polypro-
tein 1ab (PP1ab) and 1a (PP1a) comprising an enormous 

hydrophobic residues, a glutamine residues as well as a 
small number of amino acid residues (Anand et al. 2003). 
The 3C-like cleavage sites on the polyproteins of corona-
viruses are incredibly conserved, and their sequence and 
substrate specificities are matching (Anand et al. 2003; 
Wu et al. 2020a, b). This sequential resemblance offers 
the basis for paralleling SARS-CoV-2 with its prior coun-
terpart leading to the discovery of compounds with great 
potentials to control or inhibit the replication of SARS-
CoV-2. Hence, identification of small molecules with the 
attribute of inhibiting replication mechanism of SARS-
CoV-2 may serve as insight against COVID-19. In this 
direction, molecular docking and other computational 
procedures have proved valuable in the initial large-scale 
screening of several natural compounds and small mol-
ecules that directly inhibit essential target proteins (Ele-
kofehinti et al. 2020a, b; Anand et al. 2003).

Using in silico studies, many small molecular weight 
compounds including the existing FDA-approved drugs 
have proven to be promising therapeutics against 3CLpro of 
SARS-CoV-2 (Li et al. 2020a, b; Wei-chung et al. 2021; 
Johnson et al. 2021; Al-Bustany et al. 2021). Some of these 
compounds have been validated using experimental studies, 
and they showed considerable inhibitory prowess (pIC50) 
against 3CLpro of SARS-CoV-2. However, none of the newly 
designed compounds has made it to the clinical stage due to 
the number of years it can take to develop classical antiviral 
drugs. Nevertheless, few of the repurposed existing drugs 
(lopinavir, ritonavir, chloroquine, hydroxychloroquine) tar-
geting 3CLpro have shown good outcome in clinical trials 
(Oscanoa et al. 2020; Horby et al. 2020). Despite the effi-
cacy of the repurposed drugs, no effective therapies exist for 
treating COVID-19 patients by targeting 3CLpro of SARS-
CoV-2 (Mody et al. 2021). Therefore, the medical world are 
still searching for effective treatments, especially during the 
early stage of SARS-CoV-2 infection, where no pharmaco-
logical intervention has been approved by FDA. The present 
study aimed to find small molecules from screened natural 
products with inhibitory attribute against 3CLpro of SARS-
CoV-2, thus availing new compounds that can be designed 
as antiviral agents against the novel pandemic coronavirus 
disease (COVID-19).

Methods

Schrodinger suite 2018-4 (Windows version) served as the 
computational tool employed to conduct the in silico analy-
sis devised in this study.
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Fig. 1   a Chemical structures of hit compounds. b Screening hypothesis generated by structure based e-pharmacophore model consisting of two 
hydrogen bond acceptor (A) and three aromatic ring (R)
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Protein Starting Structure and Ligand Preparation

Crystal structure of SARS-CoV-2 3C-like Protease (3CLPro) 
(PDB ID: 6W63) was retrieved from Protein Data Bank 
(http://​www.​rcsb.​org) using the Protein Preparation Wiz-
ard of Maestro-v11.2 molecular interface (Iwaloye et al. 
2020a). The protein crystal structure was prepared to assign 
bond orders and add missing hydrogen atoms. The protocol 
used has been well described in our previous computational 
studies (Iwaloye et al. 2020b, c). About sixty-nine thousand 
(69,000) compounds were retrieved from Natural product 
library (IBS Database, Inter Bio Screen Ltd, http://​www.​
ibscr​een.​com/​natur​al.​shtml) in SDF format, and prepared 
for docking using Ligprep (Schrödinger suites) and the pro-
cedure for preparation is detailed by Iwaloye et al (2020c).

Generation of pharmacophore modelling 
for database screening and molecular 
docking study

The e-pharmacophore model of protein–ligand complex was 
generated by docking the co-ligand with the protein using 
glide extra precision (XP) docking, a maximum of five phar-
macophore features were left as default. The five features 
include the following:

•	 Hydrogen bond acceptor (A)
•	 Hydrogen bond donor (D)
•	 Aromatic ring (R)
•	 Positive ionizable (P) and
•	 Negative ionizable (N)

The hydrogen bond donor and acceptor features are vec-
tor properties and possess a vectorial nature which indi-
cates the direction of electron sharing (Dixon et al. 2006; 
Salam et al. 2009). Compounds retrieved from natural 
products database were screened against a minimum of 
3 sites from the five generated sites, and compounds with 
fitness score above the value of 1.0 were further filtered 
by molecular docking. Docking protocol was carried out 
by the method described in previous studies (Iwaloye et al. 
2020a, b). Since the active site of SARS-CoV-2 3CLpro 
do not provide a medium of covalent interaction with any 
compound, all compounds experimented against SARS-
CoV-2 3CLpro are non-covalent inhibitors. Therefore, 
this study explored molecular docking study through 
non-covalent interactions. Initially, the compounds were 
docked with the protein using high throughput virtual 
screening (HTVS) glide docking precision with settings 
left as default. Subsequently, 10,000 compounds from 
HTVS screening that appeared as top docked compounds 
were docked using standard precision (SP). Finally, the 

best 200 compounds in term of binding affinity were sub-
jected to glide XP docking. Nine compounds were chosen 
because they had the lowest binding energies with SARS-
CoV-2 3CLpro. The antiviral agents ivermectin and lopi-
navir were compared with the nine natural compounds 
because of their established therapeutic potential against 
SARS-CoV-2. To improve the binding affinities of these 
compounds with the protein crystal structure, a flexible 
docking procedure, known as induced fit docking (IFD) 
was employed. This method offers an accurate prediction 
of the compounds binding affinity to accommodate con-
comitant structural changes in the receptor upon ligand 
binding (Sherman et al. 2006).

Calculation of free binding energy

The essence of calculating the free energy of binding is 
to determine the stability of the protein–ligand complex. 
The binding free energy was calculated by uploading the 
docked complex output files to Prime molecular mechan-
ics/generalized born surface area (MM-GBSA), a post-
docking analysis embedded in Schrodinger suite. This 
post-docking module does the calculation by generating a 
lot of energy properties. These properties report energies 
for the ligand, receptor, and complex structures as well as 
energy differences relating to strain and binding, and are 
broken down into contributions from various terms in the 
energy expression. The Prime MM-GBSA calculates five 
fundamental energy which are optimized free receptor (= 
“ Receptor”), optimized free ligand (= “ Ligand”), opti-
mized complex (= “ Complex”), receptor from minimized/
optimized complex and ligand from minimized/optimized 
complex (Elekofehinti et al. 2020a).

The equations for calculating binding energy are as 
follow:

 where Ecomplex, Eprotein, and Eligand indicate the mini-
mized energies for protein-inhibitor complex, protein, and 
inhibitor, respectively. 

where, ∆GSA is the non-polar contribution to the solvation 
energy due to the surface area. GSA(complex), GSA(protein) 
and GSA(ligand) are the surface energies of complex, protein 
and ligand respectively.

(1)ΔGbind = ΔE + ΔGsolv + ΔGSA

(2)ΔE = Ecomplex−Eprotein−Eligand

(3)
ΔGsolv = ΔGsolv(complex) − ΔGsolv(protein) − ΔGsolv(ligand)

(4)
ΔGSA = ΔGSA(complex) − ΔGSA(protein)−ΔGSA(ligand)

http://www.rcsb.org
http://www.ibscreen.com/natural.shtml
http://www.ibscreen.com/natural.shtml
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ADME/T properties calculations

The prediction of ADME (Absorption, Distribution, 
Metabolism, and Excretion) properties of the chemical 
compounds was calculated by Qikprop module (Qik-
prop 2018). Parameters such as Lipinski’s rule of five 
(RO5) were evaluated to predict the drug-likeness of the 
chemical compounds.

Preparation of dataset and generation 
of automated QSAR

Previously reported compounds identified as 3CLPro inhib-
itors were identified from two studies (Jin et al. 2020), 
alongside their inhibition constant (IC50). An online 
converting tool was employed to convert the compounds 
IC50 to pIC50 (Selvaraj et al. 2011). A machine-learning 
algorithm called AutoQSAR was used to build the QSAR 
model through automation (de Oliveira and Katekawa 
2017).

Molecular dynamics (MD) simulation

The MD simulation was performed on 3CLpro in its apo 
form and bound form (in complex with STOCK1N-98687) 
using GROMACS 2016.4 software running on Dell (Pro-
cessor 3.60 GHz Intel Core i5 Memory 4 GB 1600 MHz 
DDR3) with a GROMOS54A7 force field. Ligand topol-
ogy was generated using Ac-pype, and the protein–ligand 
complexes were solvated using SPC water in a dodeca-
hedral box with a minimum of 1.0 nm distance between 
any protein atoms to the closest box edge. The box was 
solvated, and NaCl added at a concentration of 150 mM 
while at the same time neutralizing the system. The sys-
tem was first energy-minimized, equilibrated in the NVT 
ensemble (i.e., with a constant number of molecules, vol-
ume, and temperature) for 0.1 ns and then simulated for 
100 ns in the NPT ensemble at 300 K. Energy minimi-
zation was performed using a steepest-descent gradient 
method for a maximum of 50,000 steps. Each complex was 
restrained using an isothermal-isochloric (NVT) ensem-
ble and isothermal-isobaric ensemble (NPT) for 200 ps 
(Elekofehinti et al. 2013). Parrinello-Rahman algorithm 
was used to couple the temperature and pressure (Shyu 
et al. 2010). The temperature of 300 K and a pressure of 
1.0 atm were maintained. The LINCS algorithm was used 
to constrain the length of all bonds containing hydrogen 

Table 1   Molecular Docking score, Induced fit docking score and interacting residues of investigated natural products and reference compounds

Entry name Docking score Induced fit score No of 
H-bond

Interacting residues Hydrogen bond distance (Å) pIC50

STOCK1N-98687 − 9.604 − 639.47 5 CYS145, CYS44, HIE41, THR26 CYS145 [2.27] CYS44 [2.23] 
HIE41 [1.91] THR26 [1.89]

4.427

STOCK1N-89003 − 8.869 − 638.86 5 ASN142, GLU166, HIE163 
SER144, THR26

ASN142 [2.32] GLU166 [1.55] 
HIE163[1.61] SER144 [2.55] 
THR26 [2.75]

3.698

STOCK1N-84615 − 8.848 − 634.72 5 HIE41, HIE163, GLU166, THR26, 
ASN142

HIE163 [1.83] GLU166 [2.49, 
2.03], THR26, ASN142 [1.93]

4.449

STOCK1N-84519 − 8.017 − 637.72 3 GLU166, GLN192, CYS44, HIE41 GLU166 [1.75], GLN192 [1.76], 
CYS44 [1.80]

4.198

STOCK1N-92347 − 8.664 − 635.89 4 HIE41, THE190, GLN189, 
GLU166, CYS44

THE190 [2.03] GLN189 [2.45], 
GLU166 [1.81] CYS44 [1.90]

4.484

STOCK1N-94719 − 8.053 − 637.69 3 HIE41, THR190, GLN189, 
GLU166

THR190 [1.89] GLN189 [2.11] 
GLU166 [1.80]

4.491

Lopinavir − 8.052 − 633.27 3 GLU166, ASN142, GLN189 GLU166 [2.44] ASN142[2.32] 
GLN189 [1.90]

5.165

STOCK1N-98135 − 8.095 − 638.92 4 HIE41, THR190, GLN189, 
HIE164

THR190 [2.42, 2.50] GLN189 
[2.72] HIE164 [1.89]

4.461

STOCK1N-80093 − 7.439 − 628.46 6 THR26, PHE140, ASN142, 
GLU166, HIE163, SER144

THR26, PHE140 [2.13] ASN142 
[1.85] GLU166 [1.99] HIE163 
[1.78] SER144 [2.01]

4.194

STOCK1N-93501 − 8.090 − 637.48 2 HIE41, GLN189, THR190 GLN189 [1.83] THR190[2.50] 4.280
Ivermectin − 5.889 − 634.90 3 GLU166, HIE183, ASN142 GLU166 [2.13] HIE183 [1.82] 

ASN142 [2.23]
4.308
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atoms. The system was equilibrated for 1 ns with constant 
temperature and pressure while the production MD run 
was performed for 50 ns.

Results

The molecular docking results disclosed that nine 
compounds showed good docking with SARS-CoV-2 
3CLPro (Fig.  1a; Table  1). Six of the compounds 
(STOCK1N-98687, STOCK1N-89003, STOCK1N-84615, 
STOCK1N-84519, STOCK1N-92347, STOCK1N-94719) 
possessed better docking score and induced fit score than 
Lopinavir (−  8.052  kcal/mol and −  633.27  kcal/mol 
respectively) while three of them (STOCK1N-98135, 
STOCK1N-80093 and STOCK1N-93501) had bet-
ter docking score and induced fit score than Ivermectin 
(− 5.889 kcal/mol and − 634.90 kcal/mol respectively), 
and the results are shown in Table 1.

Furthermore, the selected hits (Fig. 1b) were further 
accessed for interacting profiles with 3CLPro of SAR-CoV-2. 
The predicted pIC50, docking score, induced fit score as well 
as the number hydrogen bond cum interacting amino acids 
with the ligands are reported in Table 1. Table 2 showed 
the result of the binding free energy calculation for the lead 
compounds and reference compounds, and the results shows 
that STOCK1N-98687 exhibited the highest calculated bind-
ing free energy with 3CLPro of SAR-CoV-2. Figure 2a-i 
presented the 2D diagram of the lead natural products and 

reference compounds elucidating their intermolecular inter-
actions with amino acid residues at the catalytic cavity of 
3CLPro of SAR-CoV-2. All of the ligands have shown com-
mon interactions with amino acid residues such as CYS145, 
CYS44, HIS41, THR26, ASN142, GLU166, HIS163, 
GLU166, THR25, GLN192, GLN189, THR190, HIS164 
and PHE140 at the binding pocket of SAR-CoV-2 3CLPro 
(Table 1). The Drug-likeness and ADME/T properties of the 
lead natural products and reference compounds are shown in 
Tables 3 and 4 respectively. The parameters corresponding 
to the best model generated by AutoQSAR was reported in 
Table 5 and the best model obtained was KPLS_Radial_46 
(R2 = 0.8180 and Q2 = 0.5287); this constructed model pre-
dicted the bioactivity of both the lead compounds and known 
antiviral drugs (Tables 1, 5; Fig. 3).

Furthermore, Gromacs was deployed to execute the MD 
simulations for 50 ns for the protein–ligand complex (indi-
cated in red colour) and apo protein (Indicated in black 
color). The RMSD for both apo 3CLpro and STOCKIN-
98687-3CLpro complex is presented in Fig. 4a while the fluc-
tuation in backbone known as RMSF is presented in Fig. 4b. 
The hydrogen bond number for SARS-CoV-2 3CLpro in apo 
form (black color) and 3CLpro-STOCKIN-98687 complex 
(red color) during 50 ns MD simulation is shown in Fig. 4c. 
The high number of hydrogen bonds in the apoprotein (pro-
tein unbound state) is due to intra-molecular hydrogen inter-
actions between the residues within the protein. However, 
in 3CLpro-STOCKIN-98687 complex, only the number 
of hydrogen bond interacting with the complex is counted 
(intermolecular hydrogen interaction).

Table 2   Binding free energy 
calculation for investigated 
natural products and 
reference compounds using 
Prime MM-GBSA

a MM-GBSA free energy (kcal/mol) of binding
b Contribution to the MM-GBSA free energy of binding (kcal/mol) from the Coulomb energy
c Contribution to the MM-GBSA free energy of binding (kcal/mol) from lipophilic binding
d Contribution to the MMGBSA free energy of binding (kcal/mol) from the van der Waals energy
e Contribution to the MM-GBSA free energy of binding (kcal/mol) from H-bond

s/n Name ΔGBind
a ΔGBind

b Coulomb ΔGBind
cLipo ΔGBind

dvdW ΔGBind
eH-bond

1 STOCK1N-98687 − 66.44 − 36.27 − 17.70 − 42.97 − 2.45
2 STOCK1N-89003 − 62.56 − 14.61 − 15.35 − 59.80 − 1.43
3 STOCK1N-84615 − 52.68 − 27.89 − 10.41 − 43.56 − 4.32
4 STOCK1N-84519 − 55.37 − 17.24 − 12.37 − 49.34 − 5.05
5 STOCK1N-92347 − 74.92 − 19.62 − 21.04 − 60.62 − 6.49
6 STOCK1N-94719 − 68.56 − 34.85 − 18.82 − 51.75 − 2.61
7 Lopinavir − 54.54 − 12.88 − 21.29 − 59.32 − 3.73
8 STOCK1N-98135 − 52.17 − 20.61 − 13.10 − 43.70 − 1.04
9 STOCK1N-80093 − 46.96 − 15.20 − 10.19 − 41.92 − 4.92
10 STOCK1N-93501 − 48.73 − 8.15 − 14.91 − 57.73 − 6.24
11 Ivermectin − 36.53 − 10.98 − 12.89 − 54.69 − 1.10
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Discussion

The pharmacophore model generated five active sites 
exhibiting different scores (Tables 6, 7; Fig. 1b), and the 
sites comprise two hydrogen acceptors and three aromatic 
rings. The prepared library of natural compounds that 

match a minimum of 3 sites exhibiting fitness score ≥ 1.0 
was subjected to molecular docking. This screening dis-
closed that nine compounds (Fig. 5) (STOCK1N-98687, 
STOCK1N-89003, STOCK1N-84615, STOCK1N-84519, 
STOCK1N-92347, STOCK1N-94719, STOCK1N-98135, 
STOCK1N-80093 and STOCK1N-93501) had favorable 

Fig. 2   a The 2D ligand interaction diagram of STOCK1N-98687. b 
The 2D ligand interaction diagram of STOCK1N-89003. c The 2D 
ligand interaction diagram of STOCK1N-84615. d The 2D ligand 
interaction diagram of STOCK1N-84519. e The 2D ligand interac-

tion diagram of STOCK1N-98135. f The 2D ligand interaction dia-
gram of STOCK1N-92347. g The 2D ligand interaction diagram of 
STOCK1N-94719
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good docking scores (− 9.295 kcal/mol, − 8.869 kcal/mol, 
− 8.848 kcal/mol, − 8.017 kcal/mol, − 8.664 kcal/mol, 
− 8.053 kcal/mol, − 8.095 kcal/mol, − 7.439 kcal/mol 
and − 8.090 kcal/mol respectively) than lopinavir. Several 
antiviral agents have been repurposed against COVID-19 
to conduct a rapid study of the viral infection, at lower 
costs and increase the safety profile of drugs (Esakandari 
et al. 2020; Parlakpinar et al. 2020). Among them are lopi-
navir and ivermectin; the therapeutic efficiency of these 

compounds are promising against SARS-CoV-2 in in vitro 
study. Hence, the present study employed lopinavir and 
ivermectin as compounds of comparison with the inves-
tigated natural products. The favourable binding energies 
attained by the compounds may denote their inhibitory 
prowess (Rampogu et al. 2018). The docking protocol was 
validated by docking native ligand (co-crystal ligand) with 

Fig. 2   (continued)
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the prepared crystal structure of 3CLPro to validate the 
docking efficiency by determining the root mean square 
deviation (RMSD). An RMSD value of 1.55 Å showed 
that the docking procedure is reproducible (Fig. 1b) (Ele-
kofehinti et al. 2018).

To further authenticate the docking procedure and 
determine the stability of protein–ligand complexes, the 
prime molecular mechanics/generalized Born surface area 

(MM-GBSA) calculations were engaged. The nine (9) 
natural products and antiviral compounds exhibited favour-
able stability with the protein, and the binding free energy 
(ΔGBind) score were within the range of − 74.92 kcal/mol 
to − 36.53 kcal/mol. While STOCK1N-92347 formed the 
most stable complex with the protein, Ivermectin formed the 
least stability (Table 1). The primary energy contributors to 
the binding free energy were identified as van der Waals, 

Fig. 2   (continued)
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Lipophilic energy, Coulomb interaction and Hydrogen bond 
that enhances the binding affinity of the compounds towards 
the binding pocket of the protein.

A monomer of 3CLpro consists of domain I, domain II, 
and domain III; and a long loop connects domains II and 
III. The catalytic site of 3CLpro occupies the gap between 
domains I and II and has a Cys-His catalytic dyad (Cys145 
and His41) (Jo et al. 2020). The enzymatic activity of the 

3CLpro resides in the catalytic dyad of Cys145 and His41 
(Yang et al. 2003). Several efforts made to inhibit SARS-
CoV has led to the identification of covalent molecules 
capable of targeting the catalytic dyad of the 3CLpro, these 
covalent inhibitors, however, often come with their disad-
vantages such as toxic side effects, reduced potency and 
adverse drug responses (Paasche et al. 2014; Tuley 2018). 
Figure 2 presented the 3D diagram of the top seven docked 

Fig. 2   (continued)
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natural products elucidating the non-covalent intermolecular 
interaction at the catalytic cavity of 3CLPro of SAR-CoV-2. 
The ligands showed common interactions with amino 
acid residues such as CYS145, CYS44, HIS41, THR26, 
ASN142, GLU166, HIS163, GLU166, THR25, GLN192, 
GLN189, THR190, HIS164 and PHE140. The interaction 
of STOCK1N-98687 with the protein was stabilized by 
hydrogen bonding and hydrophobic interaction. Interaction 
profiles showed that five hydrogen bonds contributed to the 

stability of STOCK1N-98687 in the active site of 3CLpro of 
SARS-CoV-2 by interacting with CYS145, CYS44, HIS41, 
and THR26 amino acid residues.

Prompt valuation of ADME properties enormously 
declines pharmacokinetics-related debacles in the clinical 
juncture on drug discovery (Daina et al. 2017). Accordingly, 
the compounds drug-likeness and pharmacokinetics were 
examined using RO5 and other parameters. RO5 is one of the 
parameters obligatory before a compound is considered as 

Fig. 2   (continued)
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a drug candidate (Lipinski et al. 1997). Here, it was discov-
ered that the lead compounds except for STOCK1N-92347 
and STOCK1N-93501 were in accordance with RO5, and 
therefore they can be considered as drug candidates. Rel-
evant pharmacokinetic properties of the leads were further 
carried out; the prediction of human serum albumin binding 
(QPlogKhsa) showed that lead compounds would bind to 
human serum albumin during distribution. The predicted 

IC50 for HERGK+ (QPlogHERG) showed that only 
STOCK1N-92347 (− 7.136), STOCK1N-80093 (− 6.699) 
and STOCK1N-93501 (− 6.592) fell within the standard and 
acceptable range (> -5). The Predicted apparent MDCK cell 
permeability (a good mimic for blood–brain barrier) (QPP-
MDCK) shows that a number of the lead compounds possess 
an adequate capacity of passing through the blood–brain 
barrier. The predicted Van der Waals surface area of polar 

Fig. 2   (continued)
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nitrogen and oxygen atoms (PSA) for the natural compounds 
reveals that none was out of range (7.0 – 200.0).

AutoQSAR, a machine-learning algorithm provided by 
Schrödinger suite computed about 497 physicochemical 
and topological descriptors, alongside a variety of Canvas 
fingerprints (de Oliveira and Katekawa 2017), giving out 
a large pool of independent variables from which to build 
models. The AutoQSAR splits the experimental compounds 

randomly into 75% training set, and 25% test set (Table 8). 
The best predictive model from the manually collected 
experimental datasets is kpls_radial_46, computed from 
kernel-based partial least square regression (KPLS) analysis 
which supports radial binary fingerprint as independent vari-
able. The model parameters include standard deviation (S.D) 
of 0.5085, R2 of 0.8180; root means square error (RMSE) 
value of 0.5685 and Q2 of 0.5287. Details of predicted 

Fig. 2   (continued)
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Table 3   Drug-likeness 
properties (Lipinski’s rule of 
five) of investigated natural 
products and reference 
compounds as predicted by 
QikProp

a Molecular weight of the molecule (Range 130.0 to 725.0)
b Predicted octanol/water partition coefficient. (Range − 2.0 to 6.5)
c Numberof hydrogen bond donors (Range 0.0 to 6.0)
d Number of hydrogen bond acceptors (Range 2.0 to20.0)
e Number of violations of Lipinski’s rule of five (Range maximum is 4)

s/n Name mol_MWa donorHBc donorHBd QPlogPo/wb RuleOfFivee

1 STOCK1N-98687 452.463 4.25 9 0.946 0
2 STOCK1N-89003 487.465 3 9.75 1.542 0
3 STOCK1N-84615 420.381 5 8 0.35 0
4 STOCK1N-84519 365.342 2 8.25 0.672 0
5 STOCK1N-92347 492.576 1 5.75 6.224 1
6 STOCK1N-94719 489.481 4 9.7 2.135 0
7 Lopinavir 628.81 4 9.45 5.608 2
8 STOCK1N-98135 416.473 3.25 8.25 1.469 0
9 STOCK1N-80093 456.451 5 13.5 0.465 0
10 STOCK1N-93501 493.564 1 6 5.894 1
11 Ivermectin 730.977 1 11.75 7.484 2

Table 4   ADME 
(pharmacokinetic) properties 
of investigated natural products 
and reference compounds

a QPlogKhsa Prediction of binding to human serum albumin. Range from − 1.5 to + 1.5
b QPlogHERG Predicted IC50 value for blockage of HERG K + channels. concern below − 5
c QPPMDCK Predicted apparent MDCK cell permeability in nm/sec. MDCK cells are considered to be a 
good mimic for the blood–brain barrier. QikProp predictions are for non-active transport. < 25 poor, > 500 
great
d PSA:Van der Waals surface area of polar nitrogen and oxygen atoms. Range from 7.0 to 200.0
e QPPCaco:Predicted apparent Caco-2 cell permeability in nm/sec. Caco-2 cells are a model for the gut-
blood barrier. QikProp predictions are for non-active transport. < 25 poor, > 500 great

s/n Name QPlogKhsaa QPlogHERGb QPPMDCKc PSAd QPPCacoe

1 STOCK1N-98687 − 0.609 − 3.186 16.625 167.116 22.313
2 STOCK1N-89003 − 0.162 − 4.296 12.643 166.082 15.527
3 STOCK1N-84615 − 0.467 − 4.427 4.239 165.188 5.308
4 STOCK1N-84519 − 0.452 − 4.413 24.074 138.286 28.196
5 STOCK1N-92347 1.483 − 7.136 422.331 89.895 863.86
6 STOCK1N-94719 − 0.315 − 4.991 87.265 148.495 154.407
7 Lopinavir 0.553 − 4.417 434.943 126.261 418.358
8 STOCK1N-98135 − 0.551 − 2.219 101.839 145.381 105.75
9 STOCK1N-80093 − 0.765 − 6.699 14.565 163.267 38.329
10 STOCK1N-93501 1.331 − 6.592 505.625 99.173 1020.398
11 Ivermectin 1.566 − 4.902 645.145 111.352 1278.435

activity of experimental compounds and observed activity 
by the predictive model are given in Table 4. The inhibitory 
prowess (pIC50) of the hit and reference compounds are 
listed in Table 1. Lopinavir had the most satisfactory inhibi-
tory attribute against the protein target with pIC50 value of 
5.165 µM. Among the lead compounds, STOCK1N-84615, 
STOCK1N-92347 and STOCK1N-94719 exhibited rela-
tively moderate pIC50 values.

Based on the docking score results and ADME prop-
erties, STOCK1N-84615 is the ideal drug candidate 
against SARS-CoV-2 3CLPro, hence SARS-CoV-2 
3CLPro-STOCK1N-84615 complex was subjected to MD 
simulation for 50  ns. The root mean square deviation 
(RMSD), which provides information about a protein in 
respect to its backbone structure, showed that the SARS-
CoV-2 3CLPro-STOCK1N-84615 complex was stable 
throughout the duration of the simulation. The protein 
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Table 5   Parameters corresponding to best model generated by Auto-
QSAR

Model code S.D R2 RMSE Q2

kpls_radial_46 0.5085 0.8180 0.5685 0.5287

Fig. 3   Scatter plot analysis of 
the best model

Table 6   Fitness and alignment score of investigated natural products 
and reference compounds using Energy optimized pharmacophore 
model (e-pharmacophore)

s/n Entry name Vector score Align score Fitness score

1 STOCK1N-98135 0.883 0.795 1.570
2 STOCK1N-98687 0.855 0.828 1.532
3 STOCK1N-94719 0.625 0.717 1.485
4 STOCK1N-84519 0.620 0.614 1.465
5 STOCK1N-84615 0.641 0.869 1.419
6 STOCK1N-92347 0.625 0.775 1.319
7 STOCK1N-89003 0.389 0.636 1.214
8 STOCK1N-93501 0.764 1.010 1.154
9 STOCK1N-98135 0.887 1.004 1.034
10 Lopinavir 0.709 0.903 1.164
11 Ivermectin – – –

in Apo state also achieved stabilization all through the 
duration of the simulation. The root mean square fluctua-
tion (RMSF) gives a detail information about the dynamic 
behavior of the amino residues of the protein in both Apo 
state and bound state. There was atomic positional fluc-
tuation of backbone residues of the protein both in bound 
state and unbound state, which depicts high degree of 
flexibility in backbone residues. However, less fluctua-
tion of the backbone residues were observed between 600 
and 1300, and between 2200 and 2600 in both unbound 
and bound state of the protein. Sequel to the dynamics 
of STOCKIN-98687 with SARS-CoV-2 3CLPro, addi-
tional efforts are needed to be made pre-clinically and/
or clinically in order to evaluate their therapeutic claim 
in combating SARS-CoV-2Sequel to the dynamics of 
STOCKIN-98687 with SARS-CoV-2 3CLPro, additional 
efforts are needed to be made pre-clinically and/or clini-
cally in order to evaluate their therapeutic claim in com-
bating SARS-CoV-2.

Conclusions

In the present study, the natural product STOCK1N-98687 
appears to possess superior criteria than the other com-
pounds screened from a natural product library (IBS Data-
base) as a potential inhibitor of 3CLpro of SARS-CoV-2: 
it has high Glide docking score, induced fit docking score 
as well as favourable  calculated binding  free energy 
score and good predicted pIC50. MD simulation confirmed 
the stability of the 3CLpro-STOCKIN-98687 complex. In 
view of this, supplementary in vitro and in vivo biological 
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Fig. 4   a Time dependence of RMSD values for SARS-CoV-2 
3CLpro (black color) and 3CLpro–STOCKIN-98687 complex (red 
color) during 50 ns MD simulation. b The root mean square fluctua-
tion (RMSF) of C-alpha for SARS-CoV-2 3CLpro (black color) and 

3CLpro–STOCKIN-98687 complex (red color) during 50  ns MD 
simulation. c The hydrogen bond number of SARS-CoV-2 3CLpro in 
apo form (black color) and 3CLpro-STOCKIN-98687 complex (red 
color) during 50 ns MD simulation

Table 7   Feature score of the pharmacophore sites

A, H-bond acceptor; R, aromatic ring

Protein target No. of possible site No. of accepted site Hypotheses Pharmacophore features with score

6W63 6 5 AARRR​ A3: − 0.48, A4: − 0.64, R9: − 0.48, R10: − 9.95, R11 − 0.53:
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research are obligatory to confirm its therapeutic inhibi-
tory effects against SARS-CoV-2 3CLpro in combating 
the viral infection.
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