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ABSTRACT

The explosion of the biological data has dramati-
cally reformed today’s biological research. The need
to integrate and analyze high-dimensional biologi-
cal data on a large scale is driving the develop-
ment of novel bioinformatics approaches. Biclus-
tering, also known as ‘simultaneous clustering’ or
‘co-clustering’, has been successfully utilized to dis-
cover local patterns in gene expression data and sim-
ilar biomedical data types. Here, we contribute a new
heuristic: ‘Bi-Force’. It is based on the weighted bi-
cluster editing model, to perform biclustering on arbi-
trary sets of biological entities, given any kind of pair-
wise similarities. We first evaluated the power of Bi-
Force to solve dedicated bicluster editing problems
by comparing Bi-Force with two existing algorithms
in the BiCluE software package. We then followed
a biclustering evaluation protocol in a recent review
paper from Eren et al. (2013) (A comparative analy-
sis of biclustering algorithms for gene expression-
data. Brief. Bioinform., 14:279–292.) and compared
Bi-Force against eight existing tools: FABIA, QUBIC,
Cheng and Church, Plaid, BiMax, Spectral, xMOTIFs
and ISA. To this end, a suite of synthetic datasets
as well as nine large gene expression datasets from
Gene Expression Omnibus were analyzed. All re-
sulting biclusters were subsequently investigated by
Gene Ontology enrichment analysis to evaluate their
biological relevance. The distinct theoretical foun-
dation of Bi-Force (bicluster editing) is more pow-
erful than strict biclustering. We thus outperformed
existing tools with Bi-Force at least when following
the evaluation protocols from Eren et al. Bi-Force is
implemented in Java and integrated into the open
source software package of BiCluE. The software

as well as all used datasets are publicly available
at http://biclue.mpi-inf.mpg.de.

INTRODUCTION

The enormous amount of available biological data from lab-
oratories around the world has greatly re-shaped today’s bi-
ological studies. GenBank alone stores over 197 000 000 se-
quences of more than 380 000 organisms (1); the Gene Ex-
pression Omnibus (GEO), a public database of gene expres-
sion data, provides approximately 1 million samples, 40 000
series, and 3500 datasets for more than 11 000 microarray
platforms (2). Integrating, processing and analyzing large
quantities of data from various such ultra large data sources
has become one of the big bioinformatics challenges.

Clustering is commonly accepted as a powerful approach
to explore gene expression datasets (3). Given a pairwise
similarity function transformed into a similarity matrix,
clustering algorithms seek to partition the data items into a
list of disjoint groups, such that the similarities within each
group are maximized and those between different groups
are minimized. Traditional clustering approaches cluster
only rows or columns in one run, which is not always benefi-
cial (4). In contrast, biclustering allows to ‘simultaneously’
partition both rows and columns. If we are given, for in-
stance, gene expression datasets for different cellular con-
ditions, biclustering is more powerful in capturing biolog-
ically meaningful subsets of condition-specific genes. The
major reason is that the expression of gene subsets may cor-
relate only under some conditions while being independent
under other conditions. Biclustering approaches are gener-
ally capable of discovering such local patterns. They have
proven particularly useful for various types of gene expres-
sion data analysis (5) but should also work on other omics
datasets, proteomics or metabolomics, for instance (6).

The first such ‘biclustering’ tool was developed by Cheng
and Church and applied to gene expression data (7). Since
then, many other biclustering tools have been reported
(e.g. 8–12) and been suggested for applications to various
biomedical problems (13,14). Biclustering tools became in-
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creasingly popular due to their ability to simultaneously
cluster biological data from different sources in order to dis-
cover local bi-correlation patterns. Several systematic com-
parisons have been published using various measurements
to evaluate a number of prevailing biclustering tools on
both synthetic and real-world datasets (15–17).

Bicluster editing

A direct connection between biclustering and graph theory
can be established by converting the biclustering problem
to a node partition problem on bipartite graphs: ‘weighted
bicluster editing’. To specify the problem, first a data matrix
needs to be transformed into a ‘weighted bipartite graph’,
denoted as G = (U, V, E), where U and V are the two sets
of nodes and E is the edge set with each edge having exactly
one end vertex in U and the other end vertex in V.

Given a matrix M describing the similarity between the
elements from U and V (gene expression of different genes
under different conditions, for instance). For each row ri,
a node ui ∈ U is created; for each column cj, a node vj ∈
V is created. The pairwise similarity between two arbitrary
nodes ui ∈ U and vj ∈ V is computed by a system- or user-
defined similarity function based on the corresponding el-
ement aij in the matrix, i.e. s(uivj) = f(aij). A user-specified
threshold ‘t0’ is then used to judge if ui and vj are connected
(if s(uivj) ≥ t0) or not (if s(uivj) < t0). An undirected sim-
ple bipartite graph G = (U, V, E) is called a ‘biclique’ if for
all u ∈ U and v ∈ V, we have uv ∈ E (s(uv) ≥ t0). A biclus-
ter graph is a graph where every disjoint component is a
biclique. In the weighted bicluster editing model, which is
later utilized for biclustering, our goal is to edit the given
input graph G = (U, V, E) by deleting and inserting edges
in such a way that it becomes a bicluster graph. Each dele-
tion or insertion incurs a non-negative cost: if uv ∈ E, then
the edge deletion cost is cost(uv) = s(uv) − t0. If uv �∈ E,
then the edge insertion cost is cost(uv) = t0 − s(uv). The cost
for a set of edge insertions or deletions S is thus defined as:
cost(S) = ∑

uv ∈ Scost(uv). Therefore, the weighted bicluster
editing model can be described as: given a weighted bipar-
tite graph G = (U, V, E) and a similarity function s(uv), can
G be transformed into a bicluster graph G′ = (U, V, E′) by
edge insertions and deletions with the total cost cost(G →
G′) = cost(E\E′) + cost(E′\E) minimized?

The counterpart of bicluster editing on general graphs is
‘cluster editing’. It is one of the classic NP-complete prob-
lems, and it has been extensively studied, both theoreti-
cally (18–20) and in practical applications (21,22). A recent
overview may be found in (23). Bicluster editing, though less
studied, has been proven NP-complete as well (24). A num-
ber of exact and approximate algorithms have been devel-
oped to solve the problem (13,25). Given the sizes of nowa-
days real-world datasets and given the theoretical problem
complexity, however, there is no hope to efficiently solve this
problem exactly.

Here, we present a software implementing a novel heuris-
tic algorithm that efficiently solves the weighted bicluster
editing problem: Bi-Force. It comes as an extension of Bi-
CluE software package. We previously developed BiCluE to
provide ‘exact’ solutions for the (weighted) bicluster edit-
ing problem, sufficient for small-scale and medium-scale

problem instances (13). The Bi-Force extension that we
describe in the following part of this paper is dedicated
to solve the large-scale problem instances that we face in
nowadays bioinformatics more and more frequently. First,
we compare the novel Bi-Force with the two existing ex-
act fixed-parameter algorithm (FPA) and the edge-deletion
heuristics (EDH). After showing that Bi-Force solves the
suggested bicluster editing model sufficiently well on real
data, we will demonstrate the model’s appropriateness for
biomedical biclustering problems. Therefore, we will fol-
low the recently suggested evaluation protocols from Eren
et al., who analyzed in their paper several existing biclus-
tering tools regarding their performance on gene expres-
sion data (17). Bi-Force will be compared to eight exist-
ing biclustering software implementations on (i) artificial
datasets generated with six different models and (ii) Gene
Ontology enrichment analysis of nine real gene expression
datasets for mouse, worm and human, extracted from the
GEO database, just as in the review paper from (17).

MATERIALS AND METHODS

We first describe the data that we used for evaluation. After-
ward, we outline the algorithmic approach behind Bi-Force.
Finally, we introduce the existing software and the evalua-
tion routine.

Artificial data

Artificial graphs. Artificial graphs were generated for two
purposes: (i) parameter training and (ii) evaluation of Bi-
Force to other BiCluE algorithms. Each artificial graph
with n vertices was created by randomly assigning the pair-
wise similarities based on the following rules: randomly pick
up k (k ∈ [1, n]) nodes and define them to be in one biclus-
ter. This step was repeated on the remaining n − k nodes
until no node was left. Similarities were computed with two
Gaussian distributions: N(μintra, σ

2
intra) and N(μinter, σ

2
inter).

The first one was used to assign the similarities between two
nodes belonging to the same pre-defined bicluster (intra-
bicluster similarities), and the latter was used to assign the
similarities between two nodes from different pre-defined
biclusters (inter-bicluster similarities). We adjusted the pa-
rameters in the Gaussian distributions to control the ‘error-
edge-rate’, i.e. the probability of the occurrence of ‘intra
missing edges’ (missing edges within a pre-defined bicluster)
or an ‘inter-edge’ (edge between two different pre-defined
biclusters). 0 was chosen to be the edge threshold t0. A set
of such bipartite graphs with varying error-edge-rates was
created: from ‘almost-bicluster’ (error-edge-rate is equal
to 0.14) graphs to fully random graphs (error-edge-rate is
equal to 0.5). ‘Almost-bicluster’ graphs with relative low
error-edge-rates were used to simulate real-world biologi-
cal networks, which usually need only a small number of
edge modifications to make a bipartite graph into a biclus-
ter graph. An increased error-edge-rate means that the in-
put graph is more ‘mixed-up’ and thus requires more edge
insertions and deletions. To evaluate the bicluster editing
algorithms (Bi-Force and two existing BiCluE algorithms),
we assessed their robustness for input graphs varying from
‘almost-bicluster’ to ‘mixed-up’ error-edge-rates.
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Synthetic data matrices. For a comprehensive comparison
of the performance between Bi-Force and eight other biclus-
tering tools, we created synthetic data matrices based on six
different models. Each synthetic data matrix consists of 300
rows and 200 columns, within which a pre-defined bicluster
with 30 rows and 30 columns was randomly selected. For
each of the following models, 10 data matrices were gener-
ated for simulation repetition. With this strategy we gener-
ally followed the protocol suggested by Eren et al. (17).

� Constant biclusters: the values in the matrix of randomly
selected 30 rows × 30 columns bicluster were set to a con-
stant expression level of 0. The background values, i.e. the
elements in the matrix that are not within the pre-defined
bicluster were chosen randomly but independently from
Gaussian distribution N(0, 1).

� Constant-upregulated biclusters: as in the previous
model but the expression levels in the 30 × 30 bicluster
were fixed to 5, i.e. simulating constant upregulation.

� Shift-scale biclusters: before generating each data matrix,
a base row Rb = {ab, 1, ab, 2, ..., ab, 200} was chosen. For
every row ri in the pre-defined bicluster, a scale factor �i
and a shift factor �i were randomly generated. Each ele-
ment aij in the pre-defined bicluster was both shifted and
scaled from the base row: aij = �i · abj + �i. The selected
rows in the pre-defined bicluster could be positively or
negatively shifted (or scaled), depending on the values
of the shift (or scale) factors. The elements in base row
and background were drawn independently from Gaus-
sian distribution N(0, 1). All scale factors and shift fac-
tors were drawn independently from distribution N(3, 1).

� Shift biclusters: similar to the shift-scale model, but with
fixed scale factors of �i = 1.

� Scale biclusters: similar to shift-scale model, but with
fixed shift factors of �i = 0.

� Plaid biclusters: this model is an additive bicluster model,
first introduced in (26). Each matrix element is modeled
as the sum of several different effects, including back-
ground effect �, cluster effect �, row effect �, and column
effect �:

ai j = θ +
K∑

k=1

(μk + αik + β jk)ρikκ jk,

� where aij is the element in the matrix, and � and � are the
indicators for the membership in bicluster k for row i and
column j, respectively. All effects were independently and
identically distributed according to the Gaussian distri-
bution N(0, 1).

The Bi-Force algorithm

The main methodological contribution of this paper is an
algorithm that heuristically solves the weighted bicluster
editing problem. Bi-Force is motivated by the well-known
physics-inspired graph layout algorithm of Fruchterman
and Reingold (27). It mainly seeks to arrange all nodes of a
graph in a two-dimensional plane such that ‘similar’ nodes
are located more close to each other than to others. Bi-
Force, afterward, assigned the nodes from each ‘dense’ part
of the graph layout to one bicluster by single-linkage clus-

tering (SLC) or k-means clustering based on the Euclidean
distances. The algorithm is carried out in a three-step pro-
cedure: (i) layout generation, (ii) bicluster partitioning, and
(iii) post-processing.

Layout generation. In this stage, the coordinates of all
nodes are generated and re-arranged in a way that the nodes
with higher similarities are located next to each other, and
far away from those that are dissimilar. Bi-Force computes
pairwisely the ‘physical forces’ between two nodes, i.e. the
magnitudes that similar nodes attract each other, dragging
them closer while dissimilar nodes repulse each other, push-
ing them farther away. The whole algorithm starts with an
initial layout where nodes are ‘almost’ evenly located on
a two-dimensional circle with randomly permuted order.
The radius R of the circle is a parameter of Bi-Force. The
strength of attracting/repulsing force depends on the cur-
rent positions of the two nodes, attraction/repulsion co-
efficient and the corresponding cost to delete the edge or
to insert the missing edge between the two nodes. The re-
arrangement is performed in an iterative manner. In each
round, the movement of each node is the cumulative effect
of the attractions and repulsions from all other nodes. Af-
terward, all nodes are re-positioned to the new locations
simultaneously according to the magnitudes of the move-
ments. The whole procedure is repeated for I times. The
attracting/repulsing effect from node v to u is computed by
the following formula:

fu←v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cost(uv) · fatt · log(d(u, v) + 1)
|V| for attraction

cost(uv) · frep

|V| · log(d(u, v) + 1)
for repulsion.

In the formula above, fu v represents the
attracting/repulsing effect from node v to u, i.e. the
magnitude of the movement of u caused by v. When there
is an edge between u and v, they attract each other and
if otherwise, they repulse. fatt and frep are the attractive
and repulsive factors, respectively. d(u, v) represents the
Euclidean distance between node u and v. Obviously, the
threshold t0 affects the density/granularity of the bicluster
editing model: the smaller t0 is, the fewer biclusters there
are and the larger their sizes, and vice versa.

To accelerate the convergence of the nodes to stable po-
sitions, a cooling parameter is used to limit the maximal
magnitudes of attractions and repulsions. This means in a
certain iteration i, the movement magnitude cannot exceed
the current cooling parameter Mi. Cooling parameter starts
with an initial value M0 as a parameter in Bi-Force and de-
creases with every iteration.

At the end of this stage, the positions of all nodes are fixed
and similar nodes should be close to each other. In the next
step, we make use of this assumption and partition the lay-
outed graph in a way that optimizes the editing costs.

Bicluster partitioning. Based on the coordinates of the
nodes obtained in the previous stage, we partition the graph
into disjoint biclusters using two different geometric cluster-
ing methods: SLC and k-means. Both SLC and k-means are
standard methods in computational cluster analysis (28).
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The density parameters of the two algorithms (distance
threshold � for SLC and the number of clusters k for k-
means) are varied systematically (SLC: � = 0...M0 + R in
steps of 	, k-means: k = 2...|V|/3). For each clustering re-
sult, we compute the necessary editing costs to create this
solution. Finally, we keep the solution that has minimal
editing costs before we proceed to post-processing.

Post-processing. Here, we try to further reduce the cluster-
ing costs, which includes two steps: (i) bicluster merging and
(ii) nodes moving.

To reduce the number of redundant biclusters, particu-
larly the singletons, we try to merge biclusters. First, all the
biclusters are ordered by size in an ascending order. Let B =
(b1, b2, ..., bl) be the l ordered biclusters, where |bi| ≤ |bj|, for
all i ≤ j. For all pairs of biclusters bi and bj with 1 ≤ i < j ≤
l, we calculate the cost that would emerge from merging the
two, i.e. cost(b1, b2, ..., bi∪bj, ..., bl). Once a B′ with a lower
overall cost than before is found, we re-define the biclusters
according to B′ by merging bi and bj. This step is repeated
until no beneficial merging can be done anymore.

After merging the clusters, another post-processing step
similar to Restricted Neighborhood Search Clustering (29)
is carried out. Let B = (b1, b2, ..., bl ′ ) be the biclusters after
the merging step, for each bi and bj, such that 1 ≤ i < j ≤
l, we compute the costs that would emerge from moving v
∈ bi to bj. If the overall cost can thereby be reduced in this
step, v is moved to bj. Similarly, this step is repeated until
no vertex move is beneficial.

This is the final result of the Bi-Force algorithm.The de-
tails of Bi-Force algorithm can be found in the Supplemen-
tary File 3. The software implementation’s output is a list of
nodes together with their bicluster memberships and their
final layout positions. For each instance, we also report the
number of editing actions (edge insertion and deletions) as
well as the total cost to compute this solution.

Analysis. The worst-case running time of Bi-Force is de-
pendent on the three steps mentioned above. Let n = |U|
+ |V| for an input graph G = (U, V, E). In the ‘layout
generation’ step, where Bi-Force arranges the positions of
all nodes, it consumes O(n2) time to compute the mutual
attracting/repulsing forces in each iteration. Thus, the lay-
out generation step finishes in O(I · n2), where I is the num-
ber of iterations. The SLC runs in O(D1 · n2), where D1 is the
number of different thresholds used. The k-means problem
is by its nature NP-hard (30,31). However, we limited the
maximal number of iterations in k-means to be 200 and thus
it finishes in O(200 · n) time. Finally, for post-processing,
each iteration takes O(n2) time and the total running time
is bounded by O(D2 · n2) for D2 iterations. Since D2 might
increase with n, we added an empirical limit of 500 itera-
tions to D2. In most cases, Bi-Force did not reach this limit
and we observed only small numbers of iterations before it
terminated.

In summary, the overall running time for Bi-Force grows
quadratic in the number of nodes.

Training. Bi-Force is a heuristic algorithm that has sev-
eral parameters in the algorithm requiring to be optimized:
the number of iterations I, the attraction and repulsion co-

efficients, fatt and frep, the initial maximum magnitude M0
and the radius for initial layout R. Hence, two evolution-
ary training strategies were implemented: a general training
procedure and an input-specific parameter training.

In ‘general training’, we tried to find a set of parame-
ters that fits a ‘general scenario’, i.e. graphs with varying
error-edge-rates. Graphs for general training were generated
according to the protocol described in the ‘Artificial Data’
section. By varying the deviations of the two Gaussian dis-
tributions, graphs with nine different error-edge-rates were
generated: 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and
0.50, with 10 repeats for each error-edge-rate resulting in a
training graph set of 90 graphs.

The training was conducted in an evolutionary manner:
first, we randomly selected 1000 parameter sets within cer-
tain ranges: (0, 10) for fatt and frep, (0, 300) for the iterations
I, (0, 1000) for initial maximum magnitude M0, and (0, 400)
for radius R. Then we applied the randomly selected 1000
parameter sets on our artificial graph set and picked the best
three parameter sets (minimal total costs). These sets were
used as a starting point for the following training procedure.

One training iteration consists of two steps: (i) for each
parameter set, compute the sum of the costs for solving all
graphs; (ii) generate new parameter sets in an evolutionary
manner based on the old sets and their costs. After running
the algorithm on all input graphs, the parameter sets were
ordered ascendingly by total costs. New list of parameters
for the next training iteration was generated based on the
first three parameter sets with least costs in the previous it-
eration: we kept the two best parameter sets and put them
directly in the new parameter list. The third parameter set
in the new list was computed as the mean of the best three
parameter sets in the previous iteration. Then, the best three
sets were permuted to obtain the fourth, fifth and sixth sets
in the new list. The next three sets for the new iteration were
randomly picked up around the best set in the previous it-
eration. For each parameter � (�: fatt, frep, M0, R and I),
we randomly picked up a number within the range of (0.9�,
1.1�). Finally, in a similar way, we randomly picked the last
three sets in the new list, only altering the ranges to (0, 2�).
The emerging 12 new parameter sets entered the next iter-
ation of training. Then the whole procedure was repeated.
After a given number of iterations, we picked up the best set
of parameters as the final optimized set.

Besides general training, for each input case, an addi-
tional ‘specific training’ (ST) was conducted to further re-
fine our best general parameter set to fit to each specific
graph inputs. We make use of the following trick: without
loss of generality, a bicluster editing problem instance is
assumed to contain only one connected component, since
disjoint components can be treated separately without in-
terfering the results of other components. Real biological
data often contain more than one such connected compo-
nent. We further assume that smaller components have a
similar graph ‘structure’ as the larger ones. Once an input
case is given, we train the input-specific parameters on the
smaller disjoint components in order to ‘adapt’ our algo-
rithm to the specific input data without great compromise
of the running time (as smaller instances can be computed
faster than bigger ones). The whole procedure works as fol-
lows: all the connected components of a given input graph
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are sorted in accordance to their sizes. Then, the parameter
set, optimized from the general training, is further trained
on the small disjoint components in the input. We start with
the smallest components, following the same evolutionary
training procedure as in the general training. On the second-
smallest component, we repeat this process but with less
training iterations (Tmax − 0.5 × size of the component).
We stop this parameter training when a connected compo-
nent size of Tmax is reached (here we use Tmax = 40) and
apply the best parameter set found so far to all bigger prob-
lem instances.

The initial parameter combination obtained from general
training is: I = 134, fatt = 2.484, frep = 1.323, M0 = 51.84
and R = 112.5. We used this combination as the starting
point for ST, as described above.

Bi-Force for biclustering. As mentioned above, data ma-
trices of gene expression datasets may be seen as weighted
bipartite graphs. Thus, biclustering problems may be solved
by solving the bicluster editing model. In order to extract bi-
clusters with different features (e.g. over-expressed bicluster,
under-expressed biclusters, etc.), Bi-Force provides four bi-
clustering scenarios: (a) Over-expressed scenario, (b) under-
expressed scenario, (c) low-deviated scenario and (d) high-
deviated scenario. Given a matrix M, in all four scenarios,
a bipartite graph G = (U, V, E) is constructed as described
before: For each row ri, a node ui ∈ U is created and for each
column ci, a node vi ∈ V is created. We achieve different bi-
clustering scenarios by varying the similarity functions. In
the over-expressed scenario where higher expression values
are to be extracted, a user-defined threshold t0 must be given
and all expression levels above t0 are considered as ‘over-
expressed’. The similarity between two arbitrary nodes ui
and vj is set directly to be the corresponding element in
matrix, s(uivj) = aij. Similarly, in the under-expressed sce-
nario, t0 is given to seek for the ‘under-expressed’ expres-
sion values. The similarity function is then set to be s(uivj)
= 2t0 − aij to cluster the lower-expressed genes and condi-
tions. For rest two scenarios, two user-specified parameters
must be given: ‘data center’ tc and ‘deviation threshold’ t0.
In low-deviated scenario, the similarity function is defined
as: s(uivj) = 1/(|aij − tc| + 1), where the less aij is deviated
from tc, the larger s(uivj) is, to cluster low-deviated regions
in the matrix. In high-deviated scenario, similarities are de-
fined as: s(uivj) = |aij − tc| to search for farther deviated ele-
ments. In all four scenarios, an edge is drawn between ui and
vj if and only if the corresponding s(uivj) ≥ t0. In addition,
Bi-Force allows the user to filter noisy bicluster results in
two ways, by using a rank parameter kr or a size parameter
ks. If kr is given, Bi-Force only outputs the largest kr biclus-
ters in the result set. For ks, Bi-Force outputs all biclusters
with sizes larger than ks − 1. All biclusters not satisfying the
criteria are removed from the result.

Comparison against two bicluster editing algorithms

The performance of Bi-Force on bicluster editing problems
is assessed by comparing it with two other algorithms in
the package BiCluE: FPA and EDH. Two experiments were
conducted to compare the accuracy of the three algorithms
in terms of editing costs and to assess the robustness of

Bi-Force. For accuracy evaluation, 80 artificial graphs with
various sizes but constant small error-edge-rate (arbitrar-
ily chosen as 0.14) were generated. For robustness assess-
ment, however, we fixed the sizes of input graphs to be 80
and varied the error-edge-rate (0.1, 0.15, 0.2, 0.25, 0.3, 0.35
and 0.4). EDH and Bi-Force were applied on the inputs to
test their capacity of keeping low running time while error-
edge-rates increase. The running times for each graph input
were limited to 2 h.

Comparison against eight biclustering algorithms

To evaluate the performance of Bi-Force on biclustering
problems, we referenced to the work of Eren et al. (17).
Eight (out of twelve) prevalent online available biclustering
algorithms were downloaded, including Cheng and Church
(7), BiMax (16), FABIA (32), ISA (33), Plaid (26), QUBIC
(34), Spectral (35) and xMOTIFs (36). Five of the eight
methods are integrated in the R package ‘biclust’. The three
remaining software packages (FABIA, ISA and QUBIC)
were downloaded from the project web sites. Four other
tools were not included in this study since no corresponding
online resources are available or errors exist in the programs.
Note that the omitted algorithms are not among the best-
performing tools in the study of Eren et al. The details of
the biclustering algorithms including the references and the
important parameters influencing the performances of the
algorithms are listed in Table 1.

Parameters

Appropriate parameter setting is crucial to the performance
of each algorithm. Algorithms cannot simply be applied
with default parameters as not all of them fit all bicluster
analysis scenarios. We carefully optimized the parameters
of each tool such that they show their best performances on
both, the synthetic data as well as the gene expression data.

For the synthetic datasets, all algorithms that require a
user-given number of biclusters were given the correct num-
ber. For gene expression data, the number was set to be
50 biclusters. Parameters other than ‘number of biclusters’
were optimized through performance on synthetic datasets,
i.e. we tried various parameters (or combinations of param-
eters) for each algorithm and took the parameter (or com-
bination of parameters) that could achieve the best perfor-
mance. Particularly, for the algorithms requiring more than
one parameter, a grid-search strategy was implemented: a
number of candidate values were chosen empirically for
each parameter and we compared the performances of the
algorithm with every possible combination of the parame-
ters on synthetic datasets. We give details about the utilized
parameter space of each tool in Supplementary File 1.

Evaluation on synthetic data

The performance of all biclustering algorithms on synthetic
data was evaluated by comparing the set of result biclusters
against the pre-defined biclusters. As suggested in the work
of Eren et al. (17), we chose the Jaccard coefficient to com-
pute the similarity of two different biclusters. Let b1 and b2
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Table 1. The applied biclustering tools and their parameter space

Algorithm References Parameters

Bi-Force – Edge threshold: t0.
FABIA (32) Number of biclusters: p.
QUBIC (34) Range of possible ranks: r;
Percentage of regulating conditions for each gene:
q;
Number of biclusters: p.
Cheng and Church (7) Variance threshold: �;
Multi-deletion parameter: �.
Plaid (26) Number of max. iterations for each layer: MI;
Max. number of layers: ML.
BiMax (16) Number of biclusters: n;
Min. row size: minr;
Min. column size: minc.
Spectral (35) Normalization method: norm;
Min. row size: minr;
Min. column size: minc.
xMOTIFs (36) Number of biclusters: n.
ISA (33) Number of seeds: ns.

be two biclusters, we define:

s(b1, b2) = |b1 ∩ b2|
|b1 ∪ b2| ,

where |b1∪b2| and |b1∩b2| are the number of nodes in the
union and intersection of b1 and b2, respectively. Obviously,
the largest value of Jaccard coefficient is 1 when b1 and b2
are identical and the lowest value 0 is reached when two sets
are disjoint. It can be interpreted as the percentage of shared
elements of two biclusters.

For two sets of biclusters, the pre-defined set of biclus-
ters T (true set) and the result set of biclusters R (from the
nine algorithms), we calculated two scores: recovery and rel-
evance scores, defined to quantify the similarities between T
and R. Recovery score indicates the percentage of the truth
set that is found in the result. It is maximized when T⊆R.
Similarly, relevance score represents the percentage of the
result set that is overlapped with the true biclusters. It is
maximized when R⊆T. Formally,

Recovery : S(T, R) = 1
|T|

∑
b1∈T

max
b2∈R

s(b1, b2)

Relevance : S(R, T) = 1
|R|

∑
b1∈R

max
b2∈T

s(b1, b2).

Again, note that we are in coherence with Eren et al. here.

Evaluation on real gene expression data

For gene expression data, a different evaluating method
must be used since true biclusters are unknown a priori. We
validated the results by computing Gene Ontology (GO)
term enrichments for all the biclusters. Principle Compo-
nent Analysis imputation was used to compute the miss-
ing values in the gene expression datasets (37). Enrichment
analysis was carried out by using GOstats (38) on three cate-
gories (biological process ontology, molecular function on-
tology and cellular compartment ontology). In hypergeo-
metric tests, genes within each bicluster were used as the in-
put vector, and genes involved in the gene expression study

were used as the gene universe. Afterward, multiple test cor-
rection was performed to adjust the p-values by using the
method from Benjamini and Hochberg (39). A bicluster was
considered ‘enriched’ in a certain GO category if any ad-
justed p-value of any GO term was smaller than p = 0.05.
Again, we agreed and followed Eren et al.’s suggestions with
this protocol.

RESULTS AND DISCUSSION

Comparison against two bicluster editing algorithms

In this section, the performance of Bi-Force and two biclus-
ter editing algorithms (FPA and EDH) was compared in
three aspects: editing costs (accuracy), running times and
robustness. We used two different datasets: almost-bicluster
graphs and graphs with various error-edge-rates. Almost-
bicluster graphs were generated with an error-edge-rate of
0.14 but various sizes ranging from 20 to 140 nodes. The
three algorithms were applied on all graphs, while record-
ing the editing costs and the running times. Maximum run-
ning time was set to 2 h. Table 2 shows the results. Although
Bi-Force assigns random initial positions of all nodes, the fi-
nal outputs are surprisingly stable over different runs. The
stability of Bi-Force was tested on all artificial graphs and
always the same results were given. Due to combinatorial
explosion, FPA was only able to finish the inputs for graphs
smaller than 50 nodes.

The EDH with its polynomial running times is much
faster than the FPA. As shown in Table 2, Bi-Force with-
out ST of the parameters is fastest. With ST enabled run-
ning time increases slightly. Note that ST was performed
only for smaller problem instances (up to 50 nodes; see al-
gorithm description above). Thus, running times and costs
are the same afterward, since ST was switched off. Bi-Force
is generally fastest, followed by EDH and the exact FPA. As
FPA is an exact algorithm, it always came with the smallest
editing costs. For larger problem instances, FPA did not ter-
minate anymore within 2 h. Here Bi-Force performed better
than EDH in most cases.

We also compared the running times against graph com-
plexities (see Figure 1). Here ‘graph complexity’ refers to the
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Table 2. Running times and editing costs of the bicluster editing algorithms

Bi-Force No S.T. Bi-Force S.T. EDH FPA

Vertices Edges Costs R.T. Costs R.T. Cost R.T. Costs R.T.

20 [20–36] 95.17 0.21 92.70 55.15 109.40 0.076 86.94 2.10
25 [30–49] 173.61 0.236 169.90 129.12 228.77 0.17 165.27 84.35
30 [46–89] 252.49 0.31 247.61 131.70 350.43 0.405 241.27 233.61
35 [47–115] 363.52 0.40 365.95 329.66 378.155 0.77 347.18 949.34
40 [86–114] 540.74 0.52 517.85 272.19 667.69 1.19 510.86 912.648
50 [142–204] 908.24 0.79 891.87 366.38 961.19 8.37 880.74 1523.21
60 [273–335] 1510.30 1.10 1510.30 1.17 1549.06 49.58 1498.30 3160.32
70 [223–438] 1853.43 1.56 1853.43 1.66 1852.086 73.32
80 [313–509] 2348.18 1.98 2348.18 2.064 2449.92 307.21
90 [417–641] 3252.69 2.54 3252.69 2.56
100 [525–1220] 3833.84 3.29 3833.84 3.11
110 [526–1378] 4840.47 3.91 4840.47 3.86
120 [770–1573] 5621.08 4.62 5621.08 4.60
130 [807–1773] 6928.51 5.71 6928.51 5.76
140 [890–1440] 7327.50 6.84 7327.50 6.85

The cells belonging to the same algorithm in the first row are merged as suggested by the reviewer. Vertical lines added performance comparison between
Bi-Force and two existing bicluster editing algorithms. The results here are the average of five repeated runs. EDH stands for edge-deletion heuristics, FPA
stands for fixed-parameter algorithm, S.T. stands for specific training (of Bi-Force’s heuristic parameters), and R.T. is the run time (given in s). The smallest
editing cost and running time are marked with bold font. Note that when the sizes of the input graphs grew larger than 100 nodes, no specific training was
conducted such that the two Bi-Force variants gave the same results. Execution of all tools was interrupted after 2 h running time without termination.

Table 3. GDS datasets

Dataset Genes Samples Description

GDS181 12 559 84 Gene expression profiles from diverse tissues, organs and cell lines with
normal physiological state.

GDS589 8799 122 Examination of normal physiological gene expression in 11 peripheral
and 15 brain regions in three common out-bred rat strains.

GDS1027 15 866 154 Sulfur mustard effect on lungs: dose response and time course.
GDS1319 22 548 123 Various C blastomere mutant embryos analyzed to deconvolve C

blastomere lineage-specific expression patterns specified by the PAL-1
homeodomain protein.

GDS1406 12 422 87 Analysis of seven brain regions of six inbred strains of mouse.
GDS1490 12 422 150 Mouse neural tissue profiling.
GDS2225 15 923 6 Mechanical strain effect on fetal lung type II epithelial cells.
GDS3715 12 559 110 Insulin effect on human skeletal muscle.
GDS3716 22 215 42 Breast cancer: histologically normal breast epithelium.

product of the number of nodes and the number of edges in
a given graph. Clearly, Bi-Force outperforms the two exist-
ing algorithms.

The accuracy of Bi-Force (with and without ST) is plot-
ted against that of the EDH heuristic as function of the
cost deviations, i.e. the differences in editing costs between
the heuristic (EDH and Bi-Force) and the exact algorithms
(FPA) in Figure 2 for smaller graphs (where FPA termi-
nated). Bi-Force clearly achieved better overall editing costs
than EDH. With standard parameter set obtained from
general training, Bi-Force managed to achieve smaller costs
than EDH. Nevertheless, in many cases, Bi-Force with ST
returned solutions with less costs. This justifies our strat-
egy to evolutionarily train the heuristic parameters on small
problem instances (where this can be achieved fast) and re-
lying on the assumption that a parameter set will work for
larger connected components of the same graph similarly
well.

Figure 3 illustrates the robustness of Bi-Force to varying
error-edge-rates. Artificial graphs with seven different error-
edge-rates were generated, with 10 repeats for each rate. We
now compare the editing costs and the running times of Bi-

Force and EDH on these artificial datasets. Figure 3a shows,
as expected, that with increase of error-edge-rates, the edit-
ing costs for both algorithms increase as well, polynomially.
Figure 3b shows that the run times of both tools are gener-
ally quite robust toward changing graph structures and the
running time correlates only with the input sizes.

Comparison against eight biclustering algorithms

Artificial data. Given that Bi-Force, as shown above,
solves the ‘bicluster editing model’ well enough, we now
seek to apply this model to biclustering of biological
datasets. As mentioned many times before, we follow the
evaluation protocol published in a recent review paper from
Eren et al. (17). In Figure 4, we compare the ‘relevance’ and
‘recovery’ of Bi-Force as well as the above introduced ex-
isting tools. Figure 5 compares the running times of all the
algorithms with inputs of fixed columns of 300 and rows of
varying sizes.

We believe the bicluster editing model underlying Bi-
Force to be more robust regarding different dataset types
compared to the existing biclustering algorithms. The main
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Figure 1. Running times against graph complexities. The running times are plotted against the graph complexities of the input instances (|V| · |E|). Note
the effect of the specific training (ST) of parameters, which is turned off for larger graphs (see text).

Table 4. The results of GO enrichment analysis, including the numbers of reported biclusters and the numbers of enriched biclusters

Algorithm Found Enriched (%)

Bi-Force 129 76(58.91%)
FABIA 189 47(24.87%)
QUBIC 873 200(22.91%)
Cheng and Church 1962 107(5.45%)
Plaid 180 87(48.33%)
BiMax 2439 205(8.41%)
Spectral 1095 161(14.70%)
xMOTIFs 339 79(23.30%)
ISA 261 67(25.67%)

assumption behind bicluster editing, and thus Bi-Force, is
that the average similarities within the biclusters are above
the user-given threshold while the mean similarities between
elements from different biclusters is below the threshold.
This way, the threshold as single density parameter con-
trols the size and granularity of the biclustering results. If
Bi-Force is configured to output only the largest bicluster,
it seeks the largest sub-matrix in the dataset with significant
difference between elements inside the bicluster compared
to the background. Thus, Bi-Force successfully recovered
all the biclusters for the constant-upregulated model. For
the inputs of shift and shift-scale model, since elements in-
side the bicluster were shifted by a certain magnitude, Bi-
Force was also able to recover most of (∼85–95%) the pre-
defined biclusters. In the scale model where data elements
were comparatively weakly shifted from the background,
the results were a little bit worse but still over half of the pre-
defined biclusters were recovered (∼60–70% for the scale
model). For Plaid model where most of the elements were
generated only based on the ‘background effect’, we con-
ducted biclustering to extract ‘high-deviated’ data and over

60% of the pre-defined biclusters were discovered. For the
constant model, we tried to cluster the data elements with
‘low-deviated’ values and ∼55–60% of the pre-defined bi-
clusters were successfully captured. A brief discussion of the
other tools’ performance may be found in Supplementary
File 2.

Gene expression data. We now continue with the protocol
from Eren et al. and apply all nine algorithms to real-world
biological data: gene expression microarray data from the
GEO database (GDS181, GDS589, GDS1027, GDS1319,
GDS1406, GDS1490, GDS2225, GDS3715 and GDS3716;
see Table 3 for a summary). Their performance was evalu-
ated by means of GO term enrichment analysis.

Before GO term enrichment analysis was performed, the
biclusters identified by the nine algorithms were further fil-
tered to decrease redundancy: biclusters with more than
80% overlap were removed. Afterward, GO term enrich-
ment analysis was conducted on the filtered biclusters for
all three categories (biological process, molecular function
and cellular compartment). Table 4 shows the number of
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Figure 2. Deviations (in editing costs) from the optimal solution of the FPA algorithm.

Figure 3. Error bars added. Robustness of the edge-deletion heuristics and Bi-Force. Input graphs were generated with different error-edge-rates and the
running times were measured. Note the log-scales of the y-axes.

enriched biclusters in all three categories. Figure 6 gives the
proportions for different significance levels of the biclus-
ters found by all algorithms. BiMax found the most biclus-
ters, however most of them were not enriched at reasonably
high p-value cut-offs. Thus the average enrichment level for
BiMax is comparably low. Similarly, Cheng and Church,
QUBIC and Spectral have similar problems with high num-
bers of false positives. In contrast, most of the biclusters
found by Bi-Force and Plaid are highly enriched. Although
xMOTIFs also provided many enriched biclusters, it did not
find any biclusters for the datasets GDS1027, GDS1319 and
GDS3715. Bi-Force clearly outperformed the other tools as
in average approximately 55% of the reported biclusters are

also enriched with high p-value confidence cut-offs, more
than with the competing eight tools. For completeness, the
four GO terms with lowest p-values for each category are
given in Supplementary Table 1.

The proportions of enriched biclusters reported by Bi-
Force support our conclusion that the bicluster editing
model is a well-working formulation for biclustering. How-
ever, the numbers of biclusters discovered by Bi-Force is
comparably low. This might be because Bi-Force is no fuzzy
partitioning approach such that by definition all identified
biclusters are independent of each other. In future imple-
mentations, we will enable Bi-Force to search for overlap-
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Figure 4. Error bars added. The comparison of Bi-Force against eight existing biclustering algorithms on synthetic datasets. Each plot includes the average
recovery versus relevance of datasets from five different data sampling models (see text).

ping biclusters by adding a strategy that utilizes two density
thresholds.

CONCLUSION

We have presented Bi-Force, the yet fastest software for
solving the bicluster editing problem. We demonstrated its
flexibility by applying it to biclustering, a restricted ver-
sion of bicluster editing with many applications in gene
expression data analysis. We compared it to eight existing
tools by following an established evaluation protocol from
Eren et. al.’s review paper. We show that Bi-Force outper-
formed the existing tools on synthetic datasets and on real-

world gene expression data. Last but not the least, we wish
to emphasize that Bi-Force has the ability to perform si-
multaneous clustering of arbitrary multiple datasets. It is
not restricted to gene expression scenarios. Instead, any
types of biological data that can be modeled as bipartite
graph can be partitioned by using Bi-Force. It is now part
of the BiCluE software package and publicly available at
http://biclue.mpi-inf.mpg.de.
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Figure 5. Error bars added. Running times of the nine algorithms for in-
creasing number of rows in the expression matrix. The y-axis is in log-scale.

Figure 6. Proportions of GO-enriched biclusters for different algorithms
on five significance level (see text).
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