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Abstract: L-aspartate (Asp) serves as a central building block, in addition to being a constituent
of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino
acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and
glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals
and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in
plants, despite the extensive study of the Asp family amino acid pathway, little attention has been
paid to the function of Asp through the other numerous pathways. This review aims to elucidate the
most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its
metabolic derivatives in response to changing environmental conditions. It considers the distribution
of Asp in various cell compartments and the change of Asp level, and its significance in the whole
plant under various stresses. Moreover, it provides evidence of the interconnection between Asp
and phytohormones, which have prominent functions in plant growth, development, and defense.
The updated information will help improve our understanding of the physiological role of Asp and
Asp-borne metabolic fluxes, supporting the modular operation of these networks.

Keywords: aspartate; stress; aspartate aminotransferase; aspartate transporter/carrier; compartmen-
tation; hormone

1. Introduction

L-aspartate (Asp), in addition to constituting proteins and being an active residue in
many enzymes, is a precursor leading to the biosynthesis of multiple biomolecules required
for plant growth and defense, such as nucleotides, nicotinamide adenine dinucleotide
(NAD), organic acids, amino acids, and their derived metabolites. Though it cannot be
simply quantified, given that in Escherichia coli, approximately 27% of nitrogen flows
through Asp (https://MetaCyc.org, accessed on 30 January 2021) [1], the contribution of
Asp to plants is highly conspicuous. It has been well documented that methionine (Met),
threonine (Thr), lysine (Lys), and isoleucine (Ile), of the eight essential amino acids, are
derived from Asp, through a pathway commonly known as the Asp family amino acids [2].
Further metamorphosis of Asp can yield glutamate (Glu) to glutamine (Gln) through the
action of glutamine synthetase (GS). Asp and Glu, along with asparagine (Asn) and Gln,
are the common nitrogen carriers [3], which have been noted for their primary role in the
recycling, storage, and transport of nitrogen in germinating seeds, vegetative organs, and
senescence organs [4]. Asp is also involved in the biosynthesis of some other amino acids
such as arginine (Arg) and the aromatic amino acids (tyrosine (Tyr) and phenylalanine
(Phe)), through the aspartate–argininosuccinate synthase and the aspartate–prephenate
aminotransferase pathways, respectively [5]. Moreover, Asp is the building block for de
novo pyrimidine manufacturing and is required to convert ionosine-5′-monophosphate to
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adenine-5′-monophosphate in purine biosynthesis [6]. In addition, Asp serves as a critical
precursor of the aspartate oxidase pathway in the synthesis of nicotinamide adenine dinu-
cleotide (NAD), an essential component of plant abiotic process, senescence, chlorophyll
formation, and pollen development [7–9]. In addition, Asp deamination to oxaloacetate by
aspartate aminotransferase (AspAT) in the cytosol is essential for the production of malate
needed in mitochondria for the tricarboxylic acid (TCA) cycle [10], whereas Asp released
from the mitochondrion is involved in the biosynthesis of nucleotides in the cytosol. In-
triguingly, some recent studies have found that cytosolic Asp is an endogenous metabolic
limiter of cell proliferation [6,11–15], moreover, Asp derived from glucose is indispensable
to drive biomass synthesis during cellular hypertrophy [16]. Altogether, apparently, Asp
represents a critical metabolite hub interconnecting with diverse metabolic pathways that
are of significant importance for plant nutrition, energy, and stress responses.

Exchange and competition for Asp and derived intermediates profoundly affect plant
metabolism, which requires great attention. The detailed study and research into an-
abolism and catabolism of Asp and its related pathways (i.e., the Asp family amino acids,
nucleotides, NAD, TCA, and glycolysis) are thus necessary to increase our knowledge
on cell growth and repair [17], so as to further our understanding of plant growth, de-
velopment and defense [13,15,18]. Herein, the various pathways derived from Asp are
summarized in this review (Figure 1), and a general overview of Asp metabolism and
regulation is described. In addition, the dynamism of Asp and AspAT in plants and their
role in the plant in response to various stress conditions are discussed. Furthermore, some
recent progress in the interconnection between Asp and phytohormones, such as ethylene
and auxin, is highlighted.
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Figure 1. The central metabolic intermediates derived from L-aspartate (Asp) in plants (adapted from [5]). AK, aspartate
kinase; AO, aspartate oxidase; ASS, argininosuccinate synthase; AS, asparagine synthase; PAT, prephenate aminotransferase;
AspAT, aspartate aminotransferase; GS, glutamine synthetase; GOGAT, glutamine oxoglutarate aminotransferase; TCA,
tricarboxylic acid cycle; NAD, nicotinamide adenine dinucleotide; PK, pyruvate kinase; PYC, pyruvate carboxylase; PEPC,
phosphoenolpyruvate carbosylase; ATC/PYRB/I, aspartate transcarbamoylase or aspartate carbamoyl transferase; PYRC,
dihydro-orotase; PYDA, dihydro-orotate dehydrogenase; PYRE, phosphoribosyl transferase; PYRF, orotate decarboxylase.
GH3, group II of GRETCHEN HAGEN3 family of acyl amido synthetases.
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2. The Biosynthesis and Transformation of Asp in Plants

The biosynthesis of Asp is the interface between amino acid metabolism and carbohy-
drate metabolism (https://MetaCyc.org, accessed on 30 January 2021) [1]. The carbon for
de novo Asp synthesis is provided by anaplerotic Glu, which converts to α-ketoglutarate
(also known as 2-oxoglutarate (2-OG)) by either glutamate dehydrogenase (GDH) or
transamination along with electron pair transfer [11,19]. Alternatively, an increase in glu-
cose consumption but not Gln is found to be essential for the anabolic pathway of Asp, and
glucose-derived Aspenhanced de novo nucleotide synthesis, which is crucial to driving
biomass synthesis during cellular hypertrophy [16].

2.1. Key Enzymes Involved in Asp Anabolism and Catabolism
2.1.1. Aspartate Aminotransferase

Regardless of the differences in the origin of the carbon source, Asp is synthesized
mainly from and degraded to oxaloacetate through a transamination reaction mediated
by the enzyme aspartate aminotransferase (AspAT, E.C. 2.6.1.1., also known as glutamate–
oxaloacetate transaminase (GOT)), an important aminotransferase present in all of the
free-living organisms [20,21]. AspAT is a much-conserved enzyme found in both prokary-
otes and eukaryotes. It channels nitrogen between Glu and Asp [4,5] and is closely linked
to purine’s biosynthesis salvage pathway as well as the glycolytic and oxidative phospho-
rylation pathways [22].

In plants, the AspAT enzymes exist in multiple forms and are mostly localized into
three subcellular compartments, associated with the cytosol, mitochondria, and plas-
tids [5,23–26]. Arabidopsis contains a family of five genes encoding distinct AspAT isoen-
zymes. AtAspAT1 encodes mitochondrial isoenzymes and AtAspAT2 and AtAspAT4 encode
cytosolic isoenzymes, whereas AtAspAT3 encodes a putative peroxisomal or plastid isoen-
zyme and AtAspAT5 encodes the plastid isoenzymes [27,28]. All these AspATs, independent
of their subcellular location, originate from the Iα subfamily. However, a novel form of
plastid AspAT found in all plants was reported to exhibit subfamily Iβ enzyme properties
from prokaryotes [29], meaning that the plastids contain both the eukaryotic (e.g., Ara-
bidopsis AspAT5) and the prokaryotic form of AspAT. The latter is a bifunctional enzyme
possessing both AspAT activity and prephenate aminotransferase (PAT) activity (hereafter
named AspAT/PAT).

2.1.2. Asparate Kinase (AK)

Aspartate kinase (AK) is the first and the most crucial enzyme in the Asp-derived
amino acid pathway in the plastid. It catalyzes the phosphorylation of Asp, the first reaction
that leads to the biosynthesis of four essential amino acids: Met, Thr, Lys, and Ile [30]. The
concentration of Lys and Thr mediates the catabolism of the Asp, which indirectly affects
the synthesis of Met and Ile in plants [31,32]. It is difficult for scientists to breed crops
accumulating a large amount of one of the amino acids mentioned above since they in turn
control the breakdown of Asp. To effectively produce crops with a large amount of any of
these Asp family amino acids, the Asp metabolic flux arrangement (holistic approach) has
to be considered.

2.1.3. Aspartate Oxidase (AO)

Aspartate oxidase (AO; EC 1.4.3.16) catalyzes the first irreversible reaction in NAD
synthesis in many bacteria and plants. It is a B protein of quinolinate synthetase (QS),
which was first discovered in E. coli [33]. In plants, de novo synthesis of NAD starts
with the oxidation of Asp to α-iminosuccinate by the action of AO, and thereafter QS,
and quinolinate phosphoribosyltransferase (QPT) catalyzes the next reactions to yield
quinolinic acid and nicotinate mononucleotide, which finally undergo further enzymatic
changes to produce NAD in the plastid [34–36]. NAD is a key molecule in intermediary
metabolism in many plants’ physiological processes, including senescence, chlorophyll
synthesis, pollen development, sensitivity to abscisic acid (ABA) levels, drought, ultraviolet

https://MetaCyc.org
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radiation b (UVB), salinity, and heat shock [7–9]. NAD also acts as a co-factor in energy
transformation and electron transfer. Thus, manipulation of Asp in the plastid would likely
significantly impact NAD synthesis and the general metabolism of substance and energy
in plants.

2.1.4. Argininosuccinate Synthase (ASS)

Asp catabolism in the plastid plays a vital role in the synthesis of Arg, which can
further be catabolized to urea and finally degraded to form carbon dioxide and ammonia by
the cytosolic urease. It has been reported that the fourth N-atom of Arg is generated from
Asp, which is ligated to citrulline by argininosuccinate synthase (ASS). Argininosuccinate
lyase (AL) splits off fumarate, yielding the final product Arg [37]. In short, ASS catalyzes
the synthesis of arginosuccinate from Asp and citrulline, which is subsequently converted
into Arg through AL [38]. The catabolism of Asp, leading to the anabolism of Arg, is
essential for plants’ defense against abiotic and biotic stress. It provides precursors for
many signaling molecules such as nitric oxide (NO) and polyamines during stress [39].

2.1.5. Aspartate Transcarbamylase (ATC)

Aspartate transcarbamylase (ATC or ATCase), also known as aspartate carbamoyl-
transferase, is a ubiquitous enzyme that catalyzes the initial reaction between Asp and
carbamoyl Asp to form N-carbamoyl-aspartate in the pyrimidine biosynthesis pathway [40].
The larger part of the pyrimidine molecule (C4-C5-C6-N1) comes from the Asp, which
shows the critical role of Asp in DNA and RNA biosynthesis, and finally in cell multipli-
cation and repairs [41]. In plants, the first two enzymatic reactions of the Asp leading to
pyrimidine biosynthesis are localized in the plastid, but the rest of the reaction is located
outside the plastid, with all the steps being encoded by single genes [42,43].

2.1.6. Malate–Aspartate Shuttle

A critical role of Asp is that it transfers reduction equivalents produced during gly-
colysis across the mitochondrion membrane for oxidative phosphorylation in eukaryotes
to generate ATP through the malate–aspartate shuttle pathway. The malate–aspartate
shuttle consists of AspAT, and malate dehydrogenase (MDH), which converts malate to
Asp in the mitochondrion, and the reverse reaction occurs in the cytosol [44]. Asp is
transported to the cytosol via specific Asp carriers, increasing the NAD+/NADH ratio
when converted to malate by AspAT2 and MDH2 [45]. The Asp’s availability in cytosol
depends on the Glu/Asp carriers mediated by ions like Ca2+ [44]. At a lower Ca2+ level, the
malate–aspartate shuttle activities are stimulated, while at a higher level, α-ketoglutarate
dehydrogenase is activated in the mitochondrion matrix, resulting in a limitation of the
α-ketoglutarate for the malate–aspartate shuttle [46]. In the cytosol, oxaloacetate is syn-
thesized by the AspAT, which is finally reduced by NADH to malate. Malate is then
transported across the mitochondrial membrane by the malate-α-ketoglutarate carrier to
be oxidized by NAD+ back to oxaloacetate [47]. The NAD+/NADH ratio is lower in the
mitochondrial matrix than the cytosol, causing an imbalance in the pathway and therefore
repeating the process [44].

2.2. Aspartate Transporters

Asp synthesis and degradation pathways are compartmented [24,48]; thus, transport
between various intracellular compartments (i.e., chloroplast, mitochondrion, and cytosol)
is essential for Asp activity. Transporters play an essential role in distributing molecules
to regulate physiological processes connected to a specific cellular demand and causing
balance for effective growth and development. Asp transporters, just as any transporter,
play a significant role in the distribution and the balance of Asp in plants and other
organisms. For instance, Asp’s transport from the mitochondrion to the cytosol is necessary
for nucleotide formation and other metabolites for cell proliferation [13].



Molecules 2021, 26, 1887 5 of 17

Aspartate-glutamate carriers (AGCs) are types of mitochondrial carrier family which
are responsible for the mitochondrial exportation of Asp [49]. The malfunction of AGC
results in a significant drop in the proliferation of several cell lines [15,50]. In contrast,
mitochondrial respiration is stimulated by AGC1 activation [49]. However, to date, no
ortholog human AGCs have been reported in plants [51]. Human uncoupling proteins
(UCP2, UCP5, and UCP6) are other types of Asp transporter found in the mitochondrial
membrane [52], among which UCP2 shows high protein identity with Arabidopsis AtUCP1
and AtUCP2 (51% and 45%). The primary function of UCPs is to allow the exchange
of Asp in and Glu out through the mitochondrial membrane [51]. UCPs also play a
crucial role in nitrogen metabolism due to their ability to exchange amino acids in various
dicarboxylates [53,54].

The Arabidopsis AtUCP1 and AtUCP2 (also called PUMP/AT3G54110 and PUMP2/
AT5G58970, respectively) are notably the first reported mitochondrial carriers transporting
Asp and Glu in plants. These transporters also associate with malate–aspartate shuttle
(MAS) enzymes to export reducing equivalents of NADH from the mitochondrion [51].
AtUCPs equally transport Asp/Glu and cysteinsulfinate (Palmieri et al., 2001). AtUCP1
and AtUCP2 have sequence similarity of about 72%; however, they differ significantly
in their specific activity, making AtUCP1 more active in the transport of Asp/Glu than
AtUCP2 [51]. Additionally, a recent report shows that the knockout of lysine–histidine-type
transporter 1 (OsLHT1) in rice affected root uptake of Asp, which eventually impaired the
nitrogen translocation to the shoot, suggesting that OsLHT1 could possibly be an Asp
transporter as well [55]. Despite several putative Asp membrane transporters identified
to date in different genome databases, their transport capabilities in plants are yet to be
investigated. It remains to be seen whether and what other transporters in plants can take
up Asp under natural or stress conditions.

2.3. The Effect of Asp/Asn Homeostasis on Plants

Asp plays an essential role in the biosynthesis of Asn, noted for its primary role in
the recycling, storage, and transport of nitrogen in germinating seeds, vegetative organs,
and senescence organs [4]. The relationship between Asp and Asn is closely linked to the
catabolism of many metabolites. The efficient breakdown of Asp into Asn is essential for
desired nitrogen supply, especially during seed germination. Meanwhile, the elevated
ration of Asn to Asp is very critical for ammonium assimilation, stress, and syntheses
of nucleotides and amino acids, as well as the supply of cellular energy [56–58]. An in-
crease in the accumulation of Asp and a declined level of Asn have been observed when
asparagine synthase (AS) (which catalyzes ATP-dependent ammonia to Asp, yielding Asn)
was targeted by siRNA, which finally led to a decrease in the Asn to Asp ratio and thus
affected cell survival [59]. In soybeans, the increase in the AS1 levels in the leaves (source)
is positively correlated with seed protein concentration (sink), and expression of AS genes
is associated with the ratio of Asn to Asp in the leaves [60,61]. In Arabidopsis, the overex-
pression of AS1 (thus more Asp catabolism) correlates with an increase in seed storage
protein concentration due to the elevation of Asn levels, namely, the nitrogen levels [62,63].
Nevertheless, aspartate kinase (AK) (also called aspartokinase) is another enzyme that
competes with AS for Asp, which, therefore, potentially reduces the availability of Asp for
the synthesis of Asn, leading to the synthesis of Asp family amino acids [64]. On the other
hand, Asp can be synthesized from Asn by the enzyme asparaginase (ASNase) [65], which
is then used for amino acid biosynthesis [4]. In addition, an increase in Asp corresponds to
a decrease in Asn in the knockdown mutant expression of the Arabidopsis dihydrodipicolinate
synthase (DHPS) gene that leads to an increase in free Lys levels [66]. Hence, the appropriate
ratio of Asp and Asn modulated by the effective balance between AK and AS at any stage
of plant growth and in a specific tissue is essential for plant growth and defense and for
the optimum accumulation of essential amino acids for human/animal nutrition.
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3. Role of Asp in Growth and Stresses
3.1. Asp is an Endogenous Metabolic Limitation for Cell Proliferation

Cytosolic Asp has profound importance to the proliferating cells, as it determines the
cell’s survival, especially when Gln is limited [13]. The drop in cytosolic Asp resulting
from the knockdown of aspartate–glutamate carrier 1 (AGC1, known as ARALAR) leads to
the reduction of the proliferation of several cell lines [15]. On the contrary, the supply of
exogenous Asp or overexpression of an Asp transporter can bypass the need for an electron
transport chain to support cell proliferation [6], demonstrating that Asp biosynthesis is
a golden requirement for cell proliferation [13]. This has been further confirmed by the
finding that TCA can only fully restore cell growth if it partners with Asp biosynthesis,
thus, when AspAT is activated [15]. Further DNA content analysis by propidium iodide
staining and flow cytometry reveals that the requirement of Asp for cell growth is at least
partially because it sustains nucleotide biosynthesis [11,13].

3.2. Asp in Plants Coordinates Nitrogen Assimilation into Amino Acids

Asp and Glu and their amides make up more than one-third of the free amino acids
in Arabidopsis [3]. They link the in vivo metabolism of amino acids to the relevant organic
acids in the TCA cycle and the carbon metabolism in the glycolysis pathway [67,68]. When
carbon skeletons are limited, Asp is amidated to form Asn, which serves as an efficient
nitrogen transport and storage compound due to its relatively high N:C ratio (2:4) [69,70].
Under nitrogen stress, Asp appears to be one of the most importantamino acids [71–75].
It has been found that when N is sufficient, as a predominant amino acid translocated in
plant phloem, Asp supplied by the phloem is converted in the root to Asn to export N
to the shoot via xylem as part of the process of nitrogen assimilation, whereas, when N
is absent, Asp supplied by the phloem is diverted to the formation of malate to support
the metabolism cycle back to the shoot [74]. In a very recent study, higher Asp and Asn
contents were observed to be positively coordinated with the nitrogen use efficiency (NUE)
trait in potatoes with low N supply [75]. The above results suggest that Asp is imperative
for amino acid and organic acid biosynthesis, especially under fluctuating N conditions.
Asp coordinates nitrogen assimilation into amino acids such that the available carbon
skeleton is mobilized [27,76]. Further targeted regulation of Asp metabolism might be a
useful strategy to improve the NUE traits in plants.

3.3. Asp is a Drought Stress-Specific Responsive Metabolite

One of the most critical processes that affects plants under drought conditions is
the accumulation of solutes, including amino acids in the leaf tissues and the roots. Asp
concentration was recorded to increase by more than twofold in drought treatment in
Brassica napus [77], Astragalus membranaceus [78], and Triticeae [79]. Similarly, Asp has
shown the second-highest concentration (the second most activated compound) after ABA
in root exudates of the holm oak (Quercus ilex) upon drought treatment [80]. Additionally,
in chickpea plants treated with a plant growth-promoting rhizobacterium (PGPR) and
plant growth regulator (PGRs) consortium and grown under drought stress conditions, a
higher accumulation of Asp in the leaf of the tolerant variety was recorded as compared
to the sensitive variety [81]. In addition, a significant change of Asp has been recorded
in kale [82] and Caragana korshinskii [83], though its content declined upon drought stress.
Regardless, the great range of variation of Asp content upon drought exposure suggests
that Asp can serve as a drought-responsive biomarker.

3.4. The Variation of Asp Level Is Closely Linked to Stress Acclimation

When exposed to stress, plants accumulate a multitude of metabolites, particularly
amino acids. A line of studies suggest a close correlation between the variation of Asp
content and plant stress [84]. For example, under alkaline salt stress, a significant increase
(3.97-fold) in Asp and other metabolites, such as proline (Pro), Glu, serine (Ser), and alanine
(Ala), in wild soybean seedlings compared to semi-wild and cultivated soybean has been
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observed [85]. In response to 250 mM NaCl salt stress, the level of Asp increased by 11-fold
in the root and about 6.2-fold in the shoot of Aeluropus lagopoides [86]. Under the same
conditions, Asn, Lys, glycine (Gly), and Pro increased by 1.46- to 9.98-fold in the shoot,
while in the root, Gly, Pro, Phe, and ethanolamine increased by approximately 2.5- to
15.6-fold. NaCl-treated wheat seedlings showed a 15.75-fold increase in Asp, and a 1.6-fold
increase in total free amino acids compared to the control. Likewise, there was a significant
enhancement (2.7-fold) of Asp after plants were inoculated with Bacillus amyloliquefaciens
RWL-1 under salinity stress conditions [87]. The high accumulation of Asp and other amino
acids, such as Pro under salt stress, has played an essential role in plants in highly saline
conditions by maintaining the intracellular osmotic potential and stabilizing membrane
proteins [88]. Furthermore, the change of Asp content has been reported to be coupled
with the alteration of protein metabolism in salt-stressed plants [89].

In the same manner, the response of Asp to cold stress has been observed. For instance,
the level of Asp together with Pro and putrescine increased rapidly in leaves of strawberry
during cold (2 ◦C) acclimation processes [90]. In fig fruits during cold storage, the contents
of Asp, as well as Glu, were upregulated, while the level of most other free amino acids
decreased [91]. A heatmap matrix of a Pearson’s correlation coefficient test reveals that the
enhancement of Asp and Glu is positively correlated to water loss, glucose, and fructose
variables [91]. Likewise, the Asp content in rye substantially responded to cold hardening.
A larger amount of Asp was found in the variety with higher frost tolerant ability, especially
in the early phases of cold acclimation. The contents of Asp, Pro, Tyr, and glycine betaine
were observed to linearly increase in response to overwintering (cold stress) [92]. In
addition, a greater accumulation of Asp, Glu, and β-alanine in leaves, concomitant with
an enhancement of raffinose and 1-kestose in roots of wheat, has been demonstrated to be
associated with the improvement of phosphorus use efficiency (PUE) in P-efficient wheat
cultivars under low P supply [93]. These results clearly show the active response and
co-regulation activity of Asp and coupled amino acids, sugars, and organic acids to stresses,
suggesting that modulation of metabolite flux from Asp is likely beneficial for plant stress
adaption, as it provides the plant with essential metabolism substances and energy.

Oxidative stress is a common consequence for plants exposed to non-optimal en-
vironmental conditions. To cope with oxidative stress, plants employ the redox buffer
system, scavenging enzymes, and metabolic mechanisms to detoxify reactive oxygen
species (ROS) [94,95]. It has been found that the amounts of Asp, as with malate, 2-OG,
Glu, and hexose phosphates, were decreased in Arabidopsis roots treated with menadione
to elicit oxidative stress. On the contrary, these compounds increased and returned back
to the control levels following the removal of menadione [96]. The reactive and recovery
responses of Asp and derived compounds to oxidative stress are thought to be pivotal for
reconfiguring the metabolic network to help plants recover and survive [97].

3.5. Asp Acts as a Biomarker of Biotic Stress and Environment-Induced Exposure

As biochemically active compounds, free amino acids strongly respond to increased
amounts of toxic substances in the environment [84]. In agreement with this, the free amino
acid content increased in tomato plants grown in soil contaminated with arsenate (As(V)).
Among these free amino acids, Asp and Glu were intensively accumulated [98]. The
content of Asp was significantly reduced in aluminum (Al)-treated citrus roots, although
most of the amino acids, as well as some sugars (i.e., raffinose and trehalose), were in-
creased [99]. Asp, together with other amino acids relating to nitrogen metabolism, showed
high accumulation in response to the arbuscular colonization of Medicago truncatula Gaertn.
cv. Jemalong (A17) [100]. The level of Asp concentration was reported to be elevated in
the root, stem, and leaf tissue of Fusarium wilt-symptomatic watermelon compared to
the asymptomatic plants. As a consequence, it promotes the growth and development
of Fusarium oxysporum f. sp. niveum. [101]. In addition, a higher concentration of Asp
was detected in tomato seedlings grown from seeds primed with 100 nM jasmonic acid
(JA) treatments under nematode infection, displaying the vital role of Asp in the fight
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against nematodes during JA treatment in tomatoes [102]. However, disease suppression of
Fusarium crown rot showed a positive change of Asp in mycorrhizal asparagus, indicating
the possible implication of Asp in Fusarium infection [103].

Taken together, notable stress-related responses of Asp to variable environmental
exposures in plants have been observed, indicating an essential role of Asp in response
to stress (Table 1). Since Asp is a key precursor for the biosynthesis of many fundamental
metabolites, it can be reasonably inferred that the change of concentration of Asp fine-
tunes the availability of downstream metabolites that are indispensable for plants to grow
and to counteract various stresses. For instance, it fine-tunes central metabolism with
glycolysis (sucrose, hexose, pyruvate, etc.), the citric acid cycle (2-OG, succinate, etc.),
NAD, and nucleotides to support cell survival [9,11,78,79,83,90,91,96]; the essential amino
acids Met, Lys, Thr, Ile, and other amino acids to adjust the total amino acid pool and
protein metabolism [89,104]; and the organic N carriers Glu, Asn, and Gln to regulate
N mobilization, storage, and recycling [71,72,105–107]. In addition, alteration of Asp
levels can also be linked with malate activity as a consequence of stomatal opening, Ca2+

uptake inhibition, and amino acid transformation [74,86]. In addition, increasing Asp
concentration in plants during anaerobic stress decreases the cytoplasmic pH, which affects
the production of other intracellular metabolites, such as alanine and GABA [108].

Table 1. Induction and repression of Asp in different plant species under various stress conditions.

Stress Species Tissues (Stress
Period)

Asp Fold
Change

Change of
Asp-Associated

Metabolites

Physiological
Role Ref.

Drought Astragalus
membranaceus Roots (10 days) 2.3

↑Asp family
metabolism,
↑glutamate,

↑GABA,↑TCA cycle,
↑sucrose

Sensing water
status [78]

Cicer arietinum
L. (chickpea) Leaves −2.5~−6.1 ↑Thr, ↑Met, ↓Asn,

↑citrulline Osmoregulation [81]

Caragana
korshinskii

Leaves and
roots −0.32~−0.63

↑Asn,
↑sugars/glycosides,
↓Glu,↓isocitric acid

Drought-
responsive
metabolites

[83]

Triticeae Roots and
leaves >2

↑Succinate,
↑Trehalose, ↑Glu,
↑Asn, ↑Met, ↑Phe

Drought
stress-specific

responsive
metabolites

[79]

Brassica oleracea
L. var. acephala

(kale)
Leaves −1.3 ↓Glu, ↓Thr, ↓Ala,

↑Pro
Biomarker for

drought tolerance [82]

Salinity Aeluropus
lagopoides

Shoots and
roots 6.2~11 ↑Asn, ↑Lys, ↓malate

Stomatal opening,
inhibited Ca2+

uptake
[86]

Wheat Seedlings
(17 days) 15.75

↑Ile, ↑Lys, ↑Phe,
↑Pro, ↓Glu, ↓Arg,

↓Met

Protein
metabolism,

osmoprotection
[89]

N starvation or
low N

Non- nodulated
soybean

Phloem sap
(4 days) −3.7 ↓Asn, ↓Glu, ↑malate,

↑GABA

Transform to
malate to deliver
the amino acids

[74]

Maize Leaves ≈2 ↓Asn, ↓Glu Regulation of N
mobilization [72]

Solanum
tuberosum L.

(potato)

Shoots and
tubers of potato
cv. Kufri Jyoti

>5 ↑Thr, ↑Asn, ↑Glu, NUE efficiency [75]
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Table 1. Cont.

Stress Species Tissues (Stress
Period)

Asp Fold
Change

Change of
Asp-Associated

Metabolites

Physiological
Role Ref.

Tobacco Leaves >−2 ↑Glu, ↑Lys, ↑Ile,
↓Gln, ↓Arg, ↓Phe

Represents a
significant

proportion of the
total amino acid

pool

[104]

Soybean Xylem sap ≈8 ↓Asn, ↓Gln, ↑Glu,
↑Ala, ↑GABA

N recycling,
source of N in

alanine formation
[71]

Supplementation
of nitrate Soybean Roots ≈3 ↑Asn, ↑Glu, ↑Gln

Provide C
skeleton for the
synthesis of Asn

[105]

Low C Tobacco Leaves >−2 ↑Glu, ↑Asn, ↓Phe

Represents a
significant

proportion of the
total amino acid

pool

[104]

Light Sunflower Leaf discus ≈2 ↑Glu, ↑Gln

Convert to Asn
for N storage and
transport in the

dark

[106]

Tobacco Leaves 2.6 ↑Phe
Light-responsive

marker
metabolites

[104]

Cold
Fragaria ×
ananassa

(strawberry)

Leaves and
roots of Duch.

“Korona”
3–5 ↑Ile, ↑hexoses,

↑pentoses
Protective

metabolites [90]

Secale cereale
(rye) Plant crown 3 ↑Glu, ↑Pro Frost tolerance

improvement [92]

Ficus carica L.
(fig) Fruits >2

↑Glu, ↑Glucose,
↑fructose, ↓Arg,
↓GABA, ↓Phe, ↓Ile,

↓Pro

Cold-responsive
marker

metabolites
[91]

Low P
Triticum

aestivum L.
(Wheat)

Leaves 1.2 ↑Gln, ↑β-alanine,
↑raffinose, ↑1-kestose Enhanced PUE [93]

Fusarium wilt
Citrullus
vulgaris

(watermelon)

Leaves, stems,
and roots 33–43 ↑Lys, ↑Arg,

↑citrulline

Biomarker of
Fusarium wilt

disease
[101]

Fusarium
crown rot

Asparagus
officinalis L., cv.

“Welcome”

Mycorrhizal
asparagus

shoots
≈1.7 ↑Glu, ↑Arg,

↑citrulline, ↑GABA Disease tolerance [103]

Parasitic weed Faba bean Tubercles of
tolerant line ≈−0.4 ↓Asn, ↓Glu, ↓Gln,

↓GABA,↓sucrose
N metabolism of

the parasite [107]

Arbuscule Medicago
truncatula

Mycorrhizal
roots >10 ↑Glu, ↑Asn, ↑Gln,

↑sucrose, ↑trehalose

Associated with
higher N

availability
[100]

JA (100 nM) Tomato Seedlings 1.6
↑Asn, ↑Glu,
↓Gln,↓Lys,
↓Met,↓Arg

Osmoregulation [102]
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Table 1. Cont.

Stress Species Tissues (Stress
Period)

Asp Fold
Change

Change of
Asp-Associated

Metabolites

Physiological
Role Ref.

Oxidative stress Arabidopsis
thaliana Roots (6 h) ≈2

↓Glu, ↓malate,
↓succinate,

↓fumarate, ↓hexose
phosphates, ↑2-OG,
↑pyruvate, ↑citrate

Oxidative
stress-responsive

metabolites
[96]

Hypoxia Muskmelon Roots (6 days) 1.23 ↑Thr, ↑Glu, ↑Lys,
↑GABA

Hypoxia-
responsive
metabolites

[109]

Anoxia Rice Excised roots ≈−2
↑GABA, ↑Pro,

↑pyruvate,↓Glu,↓Gln,
↓Asn, ↓2-OG

Corresponds to a
weak fall in

cytoplasmic pH
[108]

Arsenate
(As(V)) Tomato

Aboveground
tissues and

roots
2.4–3.1 ↑Asn, ↑Gln, ↑Glu,

↑Arg, ↑Lys, ↑Ile
Marker for As(V)

stress [98]

Aluminum (Al) Trifoliate
orange Roots −2

↓Ile, ↓Glu,
↓malate,↓sugars,
↑Asn, ↑Lys, ↑Gln

Marker for Al
stress [99]

↑, upregulation; ↓, downregulation; Asp, aspartate; Glu, glutamate; Gln, glutamine; Arg, arginine; Ile, isoleucine; Pro, proline; 2-OG,
2-oxoglutarate; GABA, γ-aminobutyric acid; JA, jasmonic acid.

4. Asp Signaling and Its Association with Phytohormones

Signaling in plants has recently received much attention in most research areas, but
this is yet to be realized for Asp. Thus far, little is known about the plant Asp receptor.
In E. coli, the Asp receptor, a class of cell-surface signal-transducing proteins, has been
characterized. It transduces the transmembrane signal to the cytoplasm, mediating chemo-
taxis in bacteria, or adjusting metabolic functions, growth, differentiation, and division
in eukaryotic cells [110–114]. Recently, one of the methyl-accepting chemotactic proteins,
Tlp1 (Tlp stands for transducer-like protein), in Campylobacter jejuni has been found to
encode the Asp receptor (named CcaA). It only accepts Asp but no other amino acid as its
ligand [113]. External binding of Asp triggers changes affecting both the internal signaling
site and the internal adaptation site of the Asp receptor [115].

Though Asp receptors have not been characterized in plants, the Asp and phytohor-
mone interconnection, in general, has been proposed to mediate different developmental
processes in a plant’s life cycle through their signal pathways. Ethylene is a phytohormone
exerting multiple functions modulating plant growth and senescence. Ethylene biosynthe-
sis depends directly on the Asp-derived amino acid pathway in that the ethylene biosyn-
thesis precursor, 1-aminocyclopropane-1-carboxylate (ACC), is produced through and
regulated by Asp metabolism [116]. Moreover, ACC synthase (ACS), the key rate-limiting
enzyme of ethylene biosynthesis [117], similar to AspAT, is a pyridoxal-phosphate (PLP)-
dependent enzyme clustered into subgroup I of the α family of aminotransferases [118,119].
Further close examination of the ACS protein by X-ray structure analysis discloses its
functional similarity in terms of amino acids embracing the catalytic site to the AspAT
counterpart [120,121]. Accordingly, ACS10 and ACS12 show broad specificity for Asp
and aromatic amino acids [122]. Thus, it is not difficult to infer the central role of Asp
and AspAT in ethylene biosynthesis and signaling pathways [123]. This point of view
has been confirmed by the observation that disturbance of ethylene biosynthesis by ex-
ogenous application of the ethylene biosynthesis inhibitor α-aminoisobutyric acid (AIB)
shows a linear correlation between the level of Asp and the change in the root length and
shoot surface area [116]. Hence, Asp could be a key modulator of the ethylene and/or
ethylene signaling pathway, which probably aids plant root and shoot development in an
ethylene-dependent way.
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Indole-3-acetic acid (IAA)–amino acid conjugate synthesis pathways are among the
important regulatory mechanisms that control auxin activities during physiological and
pathophysiological responses. Several group II genes of GRETCHEN HAGEN3 (GH3)
encode IAA–amido synthetases in plants influence IAA homeostasis via IAA conjugation
pathways [124]. The IAA-conjugating pathways are entangled with most amino acids,
among which conjugation of IAA to Asp moieties, producing IAAsp, is predominant in
many plants [124–126]. In vitro assays in Arabidopsis showed that IAAsp is the primary
conjugate of IAA formed by GH3 genes, and exogenous application of IAA induces the
conversion of IAA to IAAsp [127]. A feeding experiment using labeled IAA shows that
de novo synthesis of IAAsp is the main route operating in conifer seedlings [124]. In
Vitis vinifera L., towards the onset of the ripening of grape berries, an increase in IAAsp
accumulation, along with low concentrations of IAA, has been observed [128]. It is worth
noting that the conjugation pathway of IAAsp is fast and inducible. This allows plants
to effectively control auxin homeostasis upon developmental and stress cues [129,130].
Although, generally, IAAsp is known as an intermediate for auxin degradation, it has
been established that Medicago truncatula hydrolase can hydrolyze IAAsp to generate free
IAA [131,132]. Consistently, IAAsp treatment increases the root length of pea [133]. IAAsp
is also involved in the carbonylation of protein and can therefore regulate tissue response to
abiotic and biotic stresses [129,130,134]. In addition, the concentration of IAAsp increased
more than twofold upon NaCl stress (200 mM) in Chinese cabbage seedlings [135].

Although some basics on Asp signaling and interconnection with phytohormones
(i.e., ethylene and auxin) have been described, the recognition and/or signal transduction
mechanisms of Asp remain mostly unknown. Further metabolomics analysis and mutant
and transgenic approaches will be helpful to identify genes associated with Asp signaling
and elucidate its mechanism in plants.

5. Conclusions and Future Perspective

The amino acid Asp serves as an important metabolic hub for the biosynthesis of
many metabolites, including the Asp family amino acids (essential amino acids), Arg, Glu,
Asn, aromatic amino acids (Tyr and Phe), nucleotides, proteins, TCA cycle intermediates,
glycolysis pathway intermediates, NAD, and hormonal conjugates, that are imperative
for plant growth and development, and for plants to react to abiotic stress and defense.
Regulation of Asp content, fluxes, and transport through the plant is thus critical for plant
adaptation to fluctuating environmental conditions. Accordingly, allocation and intercon-
version of Asp within plants are a feasible strategy to increase plant acclimation abilities.
However, to date, the biological principle controlling the biosynthesis and catabolism of
Asp under physiological and stress states has been poorly addressed. Further investigation
is required to elucidate the underlying metabolic and molecular mechanisms in the bio-
logical processes of Asp uptake, allocation, assimilation, and homeostasis, to gain deep
insights into the mode of action of Asp.

The recent increasing effort in plant genome sequencing and the extensive use of
genetic engineering tools will enable researchers to study the various pathways of Asp
metabolic flux extensively, and the enzymes involved in specific plants. This will advance
the study of Asp metabolism, transport, and stress signal integration and, consequently, aid
researchers to model the Asp metabolic network and target specific enzymes in a specific
tissue or subcellular compartment to precisely modulate the metabolic flux of Asp.
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