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Mounting evidence indicates that gut microbiome may be involved in the pathogenesis of
type 2 diabetes mellitus (T2DM). However, there is no consensus on whether there is a
causal link between gut microbiome and T2DM risk. In the present study, the Mendelian
randomization (MR) analysis was performed to investigate whether gut microbiome was
causally linked to T2DM risk. The single nucleotide polymorphisms (SNPs) that were
significantly related to exposure from published available genome-wide association study
(GWAS) were selected as instrumental variables (IVs). The robust methods including inverse
variance weighting (IVW), MR Egger, and weighted median were conducted to infer the
causal links. Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO)
and MR-Egger regression were used to test whether there was horizontal pleiotropy and
identify outlier SNPs. The estimates of IVW suggested that Streptococcaceae (odds ratio
(OR) = 1.17, 95% confidence interval (CI), 1.04–1.31, p = 0.009) was associated with higher
risk of T2DM in European population. In Asian population, the MR IVW estimates revealed
that there was a causal link between Acidaminococcaceae and T2DM risk (OR = 1.17, 95%
CI, 1.04–1.31, p = 0.008). There was no evidence of notable heterogeneity and horizontal
pleiotropy. However, after false discovery rate (FDR) correction, the causal link between gut
microbiome and T2DMwas absent (FDR, p > 0.05). In summary, using genetic instruments,
this study does not find evidence of association between the 28 gut microbiome families
and T2DM risk. However, Streptococcaceae and Acidaminococcaceae may have a
borderline positive correlation with T2DM risk.

Keywords: causality, gut microbiome, mechanism, Mendelian randomization, type 2 diabetes mellitus
1 INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and b-
cell dysfunction, which occurs mostly in middle-aged or elderly individuals (1). As a major
component of the global disease burden, the prevalence of T2DM is increasing (2). It is estimated
that by 2040, there will be 642 million adults worldwide with diabetes, and most of which are
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T2DM (3). The development of T2DM is mainly triggered by
genetic factors and unhealthy lifestyle. Obesity is the primary
predictor of T2DM which is responsible for more than half of
diabetes cases (4). T2DM is a lifelong disease, and there is no
cure. Mounting evidence suggests that gut microbiome may be
involved in the pathogenesis of T2DM (5, 6).

The gut microbiome is a complex microbial community
composed of a variety of bacteria living in the intestine.
Recently, there has been considerable interest in the roles of
the gut microbiome in regulating host physiological activities.
Studies demonstrated that the gut microbiome possessed the
properties that drove the development and maturation of the
immune system (7) and maintained the homeostasis (8). Also,
previous evidence showed that gut microbiome contributed to
the development of numerous diseases by regulating cell
differentiation (9), affecting the release of cytokines (10), and
regulating drug absorption and metabolism (11). Concerning
T2DM, gut microbiome dysbiosis is a clinical manifestation of
the chronic disease (12, 13). The reason for the involvement of
gut microbiome in the pathogenesis of T2DM may be that gut
microbiome dysbiosis results in increased membrane transport
of sugars and decreased branched-chain amino acid transport
and butyrate biosynthesis, which lead to an unbalanced oxidative
stress response (14). However, no consensus is reached on
whether there is a causal link between the gut microbiome
composition and T2DM risk.

Mendelian randomization (MR) is a commonly used
approach to uncover the causal link between exposure and
outcome (15), in which the genetic variations that are
significantly related to exposure serve as instrumental variables
(IVs). Being different from traditional observational studies, MR
approach can minimize the influence of the confounding factors
and reverse causation on the outcome (16). In the present study,
the large-scale genome-wide association study (GWAS)
summary-level data were used to perform two-sample MR
analysis to infer the causality of gut microbiome composition
and T2DM risk.
2 MATERIALS AND METHODS

2.1 Data Sources and Instrumental
Variable Selection
The single nucleotide polymorphisms (SNPs) that served as IVs
were from the latest GWAS, involving 18,473 subjects, which
explore the influence of host genetics on the gut microbiome
composition (17). The corresponding summary-level genetic
data of T2DM risk were derived from a large GWAS involving
77,418 T2DM cases and 356,122 healthy controls of East Asian
individuals (18). For the analysis of the European ancestry, the
data of T2DM were obtained from a meta-analysis of GWAS
with 62,892 T2DM cases and 596,424 controls (19). The
corresponding information of SNPs was abstracted, including
effect allele, other allele, effect size, standard error, and p-value.

The steps for selecting optimal IVs were as follows. First,
SNPs with a p-value less than the locus-wide significance level
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(1 × 10−5) were selected. Second, the genetic variations would be
excluded if the minor allele frequency (MAF) is less than 0.01
(20). Third, in order to avoid the impact of linkage
disequilibrium (LD) between the variables of interest on the
results, the clumping process was performed, in which R2 < 0.001
and clumping distance = 10,000 kb. Fourth, the corresponding
data of the above selected SNPs were extracted from the outcome
GWAS. When selected SNPs were absent from the outcome
GWAS, the proxy SNPs with high LD (r2 > 0.90) would be
chosen to substitute the variants of interest. Fifth, in
harmonizing process, the palindromic SNPs were excluded to
ensure the effects of SNPs on exposure correspond to the same
allele as the effects on the outcome. These stringent selected steps
were conducive to ensure the authenticity of the results.

These selected IVs must meet the following three core
assumptions. Firstly, IVs are significantly correlated with
exposure which means that the variants of interest can predict
exposure effectively. In the present study, F statistic was
performed to confirm whether the estimates were affected by
weak IVs. F statistic is expressed as R2(n-k-1)/k(1-R2) where R2

represents the estimated variance of exposure explained by the
selected IVs, k is the number of IVs, and n refers to the sample
size. Secondly, the IVs have to be independent of the outcome,
namely the IVs can only affect outcome through exposure.
Herein, MR-Egger regression and Mendelian randomization
pleiotropy residual sum and outlier (MR-PRESSO) were used
to confirm whether there was horizontal pleiotropy between IVs
and outcome. Thirdly, the IVs must be independent of the
confounding factors associated with exposure or outcome.

2.2 Statistical Analysis
The GWAS summary-level data were merged to infer the causal
link between gut microbiome composition and T2DM risk. In
the present study, the robust methods including inverse variance
weighting (IVW), MR Egger, and weighted median were
conducted to infer the causal links. IVW is a traditional
method that merges the Wald ratio estimates of each IV in a
meta-analysis manner (21). IVW equates to implement a
weighted linear regression of the associations of the IVs with
the outcome on the IVs with the exposure and intercept is
constrained to zero (16). In the absence of horizontal pleiotropy,
IVW enables to obtain unbiased estimates (22). MR Egger takes
into account the pleiotropic effects, and the causal estimates
represent the dose-response relationship between the genotype
and outcome (23). When the Instrument Strength Independent
of Direct Effect (InSIDE) hypothesis holds, MR Egger can get
consistent causal effect estimates. Weighted median method
allows some genetic variants are invalid, but only if at least
half of them are valid instruments (24).

The MR-Egger regression and MR-PRESSO were used to
confirm whether there was horizontal pleiotropy. MR-Egger
regression has the property that confirms the pleiotropy
between genetic instruments and outcome, and p-value greater
than 0.05 was regarded as no horizontal pleiotropy. However,
MR-Egger regression has lower precision and statistical power.
MR-PRESSO can detect horizontal pleiotropy and identify
pleiotropic outliers (25). If there was horizontal pleiotropy, the
February 2022 | Volume 13 | Article 780133
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analyses were repeated after removing these pleiotropic SNPs.
Heterogeneity between genetic instruments was quantified by
Cochran Q statistic. Leave-one-out sensitivity analysis was used
to test whether the overall estimates were affected by strongly
influencing SNPs. In addition, the Benjamini-Hochberg method
was used to correct the false-discovery rate (FDR) for multiple
tests. The statistical analyses were conducted by TwoSampleMR
(26) and MRPRESSO (25) packages in R (version 4.0.3).

3 RESULTS

3.1 The Selection of Instrumental Variables
Initially, SNPs that were significantly related to the 28 gut
microbiome families were selected. When excluding SNPs that
with LD and were absent in the outcome GWAS, the remained
variables of interest were selected as potential IVs. The detailed
information of the selected IVs is shown in Supplementary
Tables 1, 2.

3.2 The Estimates of Gut Microbiome
With T2DM
3.2.1 European
The estimates of IVW indicated that genetically predicted
Streptococcaceae (odds ratio (OR) = 1.17, 95% confidence interval
(CI), 1.04–1.31, p = 0.009) was positively related to T2DM risk
(Table 1; Figure 1). However, MR Egger and weighted median
found no evidence of the association between exposure and
outcome. The Q statistic showed that there was no notable
heterogeneity (p = 0.270). MR-Egger regression and MR-PRESSO
analysis further suggested no horizontal pleiotropy (p = 0.492 and
p = 0.331, respectively). The results of MR-PRESSO analyses found
evidence for significant horizontal pleiotropy between the IVs of
Christensenellaceae (p = 0.004), Enterobacteriaceae (p = 0.041),
Methanobacteriaceae (p = 0.046), Peptostreptococcaceae (p =
0.043), and Verrucomicrobiaceae (p = 0.020) and outcome. The
causal effect estimates were recalculated after removing the outlier
SNPs, and the results did not change substantially, except for
Methanobacteriaceae (OR = 0.93, 95% CI, 0.88–0.99, p = 0.029).
Leave-one-out sensitivity analysis showed that there were two
strongly influencing SNPs (rs17791387, rs186073) in the IVs
of Desulfovibrionaceae and one strongly influencing SNP
(rs11123059) in the IVs of Methanobacteriaceae (Supplementary
Figure 1). After removing the strongly influencing SNPs, the results
changed significantly (Desulfovibrionaceae: OR = 1.18, 95% CI,
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1.07–1.30, p = 0.001; Methanobacteriaceae: OR = 0.93, 95% CI,
0.88–0.99, p = 0.029). The detailed results are shown in
Supplementary Table 3.

3.2.2 Asian
The results of IVW indicated that Acidaminococcaceae (OR =
1.17, 95% CI, 1.04–1.31, p = 0.008) was the risk factor for T2DM
(Table 1; Figure 2). There was no evidence of notable
heterogeneity (p = 0.751) across instrument SNP effects. MR-
Egger regression showed that there was no horizontal pleiotropy
between the variants of interest and outcome (p = 0.593).
However, there were not enough SNPs for MR-PRESSO
analysis. The results of MR-PRESSO suggested that there was
significant horizontal pleiotropy of Bacteroidaceae (p = 0.014)
and rs234027 was a pleiotropic SNP. In addition, MR-PRESSO
detected two outliers (rs6060237 and rs7199026) in the
analysis of Desulfovibrionaceae. After removal of these
outliers, MR estimates remained null. In the sensitivity
analysis, strongly influencing SNPs were identified in the IVs
TABLE 1 | MR estimates of IVs for gut microbiome and T2DM.

Ethnicity Bacterial traits Nsnp Methods Beta SE OR (95% CI) p-value FDR p-value

European Streptococcaceae 9 IVW 0.15 0.06 1.17 (1.04–1.31) 0.009 0.962
MR Egger −0.02 0.24 0.98 (0.61–1.58) 0.948 0.965
Weighted median 0.14 0.08 1.15 (0.99–1.34) 0.071 0.663

Asian Acidaminococcaceae 3 IVW 0.16 0.06 1.17 (1.04–1.31) 0.008 0.224
MR Egger 0.25 0.14 1.28 (0.98–1.67) 0.322 0.939
Weighted median 0.15 0.08 1.16 (0.99–1.35) 0.051 0.607
February 2022
 | Volume 13 |
MR, Mendelian randomization; SNP, single nucleotide polymorphism; IVW, inverse variance weighted; IVs, instrumental variables; T2DM, type 2 diabetes mellitus; FDR, false-discovery
rate; OR, odds ratio.
FIGURE 1 | MR IVW estimates of genetic instruments for gut microbiome
and T2DM among individuals of European descent.
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of Acidaminococcaceae (rs6589457), Alcaligenaceae (rs7638039),
Clostridiaceae_1 (rs11752225 and rs6934446), Oxalobacteraceae
(rs36018452), Rikenellaceae (rs2290844, rs4264350 and
rs7832304) , and Verrucomicrobiaceae ( rs9349825)
(Supplementary Figure 2). Most results changed significantly
after removing strongly influencing SNPs (Acidaminococcaceae:
OR = 1.09, 95% CI, 0.89–1.34, p = 0.399; Alcaligenaceae: OR =
0.89, 95% CI, 0.81–0.98, p = 0.018; Clostridiaceae_1: OR = 0.83,
95% CI, 0.74–0.93, p = 0.001; Oxalobacteraceae: OR = 1.07, 95%
CI, 1.01–1.13, p = 0.024; Rikenellaceae: OR = 0.90, 95% CI, 0.84–
0.96, p = 0.002; Verrucomicrobiaceae: OR = 1.10, 95% CI, 1.00–
1.21, p = 0.042). However, after FDR correction, the causal effect
between gut microbiome and T2DM was absent (FDR p > 0.05).
The detailed results are shown in Supplementary Table 4.

3.2.3 Further Analyses
The inverse MR was conducted to explore whether there was
causal link between T2DM and gut microbiome. SNPs (p < 5 ×
10−8) significantly associated with T2DM risk were used as IVs
(Supplementary Tables 5, 6). For European, the IVW estimates
showed that T2DM was related to a decrease in the abundance of
Bacteroidaceae (OR = 0.97, 95% CI, 0.94–0.99, P = 0.042) and
Oxalobacteraceae (OR = 0.94, 95% CI, 0.88–0.99, p = 0.030). The
results of MR-Egger regression and MR-PRESSO suggested that
there was no significant horizontal pleiotropy. However, the
results changed substantially after FDR correction. For Asian,
the results of IVW indicated that T2DM was associated with
reduced Oxalobacteraceae (OR = 0.94, 95% CI, 0.88–0.99, p =
0.036). There was no significant horizontal pleiotropy between
IVs and outcome, but no evidence for genetic correlations of
Frontiers in Endocrinology | www.frontiersin.org 4
T2DM with gut microbiome after FDR correction. Exact values
are listed in Supplementary Tables 7, 8.
4 DISCUSSION

In the present study, the published available GWAS summary-
level data were used to perform two-sample MR. The results
revealed that genetically predicted level of some gut microbiome
families was causally related to T2DM risk. However, there was
no evidence for genetic correlation of the abundance of gut
microbiome with T2DM after FDR correction.

The gut microbiome is a complex colony of microorganisms
living in the gastrointestinal tract of the host. The gut microbiome
has a critical physiological role in metabolism and mounting
evidence demonstrates that gut microbiome compositions are
involved in numerous metabolic disorders. A study with 292
Danish individuals demonstrated that compared with subjects
with high intestinal flora richness, subjects with low intestinal
flora richness were characterized by obesity, insulin resistance
and dyslipidaemia (27). Cotillard et al. reported that subjects with
reduced gut microbial gene richness showed significant metabolic
disturbance and low-grade inflammation, which were
characteristics of T2DM (28). A metagenome-wide association
study (MGWAS) indicated that T2DM patients were
accompanied by moderate degree of gut microbiome dysbiosis
and the gut microbial markers might help classify T2DM (29). In
addition, compared with participants without diabetes, patients
with T2DM had a lower richness of gut microbiome (30). The
mathematical model of the metagenomic profiles established
based on the gut microbiome could identify T2DM with high
accuracy (31). Applying this model to women with impaired
glucose tolerance, it could identify women with diabetes-like
metabolism. A study indicated that insulin resistance was
closely related to gut microbial variations and gut microbiome
could be used to develop precise medical strategies to prevent and
delay T2DM (32). Recently, a separate-sample MR suggested that
Anaerostipes was a protective factor in the development of T2DM
(33). A study showed that constructed microbiome risk score was
consistently associated with T2DM and future glucose increment
and was related to a variety of blood metabolites derived from gut
microbiome (34). Maskarinec et al. demonstrated that T2DMwas
related to the abundance of some intestinal floras and gut
microbiome might cause chronic systemic inflammation and
T2DM through bacterial translocation (35). A study showed
that microbial-derived or microbial-modified metabolites in
serum could predict the risk of T2DM (36). However, the
available evidence was inconsistent and there was no consensus
on whether there was causal link between gut microbiome and the
occurrence of T2DM. In addition, the taxonomic groups of gut
microbiome that are responsible for T2DM were unclear.

There has been considerable interest in the potential molecular
mechanisms of gut microbiome in the onset and progression of
T2DM. Gut microbiome composition was involved in the
pathogenesis of T2DM by regulating inflammation, modulating
energy homeostasis, interacting with diet, affecting intestinal
permeability, insulin sensitivity, glucose, and lipid metabolism
FIGURE 2 | MR IVW estimates of genetic instruments for gut microbiome
and T2DM among individuals of Asian descent.
February 2022 | Volume 13 | Article 780133
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(37). Gut microbiome and microbial products induced the
production of interleukin (IL)-10 which improved glucose
metabolism and prevented aging-related insulin resistance (38,
39). Gut microbiome composition improved IL-22 production
and Treg cell differentiation, suggesting that they had the
properties that restored insulin sensitivity and alleviated the
symptoms of T2DM (40, 41). Increased intestinal permeability
is one of the clinical signs of T2DM. Akkermansia muciniphila
activated AMPK in the epithelium to improve the tight junctions
of the intestine and thereby reduced the intestinal permeability. In
addition, in the adipose tissue, Akkermansia muciniphila
increased the levels of 2-acylglycerol, 2-palmitoylglycerol, and
2-oleoyl glycerol which increased fatty acid oxidation and fat cell
differentiation (42). A study indicated that berberine had the
property of improving insulin resistance by decreasing the relative
abundance of gut microbiome, including Streptococcaceae (43). In
addition, human milk insulin was negatively associated with
Streptococcaceae, indicating that it might be related to the
occurrence and development of diabetes (44). These available
evidences indicate that gut microbiome composition may be
involved in the course of T2DM and affect disease symptoms.

Since the implementation of the MR approach reduced the
interference of confounding factors and the reverse causality of the
results, the present study might be more convincing than
observational studies. However, some limitations should be
mentioned. First, given the absence of the data of basic
demographic information and clinical manifestations, further
subgroup analysis could not be carried out. Second, the current
understanding of the gut microbiome limited our study.We lacked
sufficient clues to infer the molecular mechanisms of gut
microbiome and T2DM due to the absence of epidemiological
studies on gut microbiome and metabolic disorders. Third, SNPs
obtained based on genome-wide statistical significance threshold (5
× 10−8) were too limited for further study, therefore only the SNPs
that met the locus-wide significance level (1 × 10−5) were selected.
These restrictions limited the generalizability of the results and the
accuracy of the study might have been compromised.

In summary, the study is leveraging MR to find that there is
no evidence of the association between the 28 gut microbiome
families and T2DM risk. However, in view of the biological
plausibility, further studies are needed to explore the relationship
between gut microbiome and the risk of T2DM, which is
conducive to exploring the pathogenesis of diabetes.
Frontiers in Endocrinology | www.frontiersin.org 5
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