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Abstract: The basic leucine zipper (bZIP) transcription factor (TF) family is one of the largest gene
families, and play crucial roles in many processes, including stress responses, hormone effects. The TF
family also participates in plant growth and development. However, limited information is available
for these genes in moso bamboo (Phyllostachys edulis), one of the most important non-timber forest
products in the world. In the present study, 154 putative PhebZIP genes were identified in the moso
bamboo genome. The phylogenetic analyses indicate that the PhebZIP gene proteins classify into
9 subfamilies and the gene structures and conserved motifs that analyses identified among all PhebZIP
proteins suggested a high group-specificity. Microsynteny and evolutionary patterns analyses of
the non-synonymous (Ka) and synonymous (Ks) substitution rates and their ratios indicated that
paralogous pairs of PhebZIP genes in moso bamboo underwent a large-scale genome duplication event
that occurred 7–15 million years ago (MYA). According to promoter sequence analysis, we further
selected 18 genes which contain the higher number of cis-regulatory elements for expression analysis.
The result showed that these genes are extensively involved in GA-, ABA- and MeJA-responses, with
possibly different mechanisms. The tissue-specific expression profiles of PhebZIP genes in five plant
tissues/organs/developmental stages suggested that these genes are involved in moso bamboo organ
development, especially seed development. Subcellular localization and transactivation activity
analysis showed that PhebZIP47 and PhebZIP126 were localized in the nucleus and PhebZIP47 with no
transcriptional activation in yeast. Our research provides a comprehensive understanding of PhebZIP
genes and may aid in the selection of appropriate candidate genes for further cloning and functional
analysis in moso bamboo growth and development, and improve their resistance to stress during
their life.
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1. Introduction

Transcription factor (TF) proteins play crucial roles in activating gene expression by binding to the
promoter regions of target genes. The basic leucine zipper (bZIP) domain encoding genes, generally
associated with stress resistance and control many crucial biological processes in plants, form one
of the largest TF families in eukaryotes, and are named for a conserved bZIP domain containing a
basic region and a leucine zipper sequence of 60–80 amino acid residues [1]. The basic region has a
conserved N-x7-R/K-x9 motif, which is responsible for DNA binding and nuclear localization, while
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the leucine zipper region is composed of several heptad repeats of leucine residues or other bulky
hydrophobic amino acid, such as isoleucine, valine, phenylalanine, or methionine [2].

To date, the bZIP TF genes have been predicted or identified using genome-wide analyses in
multiple plants. Seventy-five bZIP TF genes have been found in Arabidopsis thaliana [3]. In addition, the
genes have also been characterized in several grass family (Gramineae) species, including 89 bZIP TF
genes in Oryza sativa [4], 92 in Sorghum bicolor [5], 125 in Zea mays [6], 96 in Brachypodium distachyon [7],
and 187 in Triticum aestivum [8]. In addition, increasing evidence also shows that bZIP TFs play essential
roles in regulating the integration and development of many tissues and organs, including vascular
development [9], floral induction and development [10–17], seed maturation and germination [18,19],
and embryogenesis [20,21]. Other studies also have found that bZIP TFs to be crucially involved in
various plant hormone and stress responses, including abscisic acid (ABA) [22], gibberellin (GA) [23],
ethylene [24], pathogen infection [25], drought [26], cold [27], heat [28], and high salinity stress [29].
For example, the model plant Arabidopsis thaliana bZIP TF genes (AtbZIPs) AtbZIP36, AtbZIP37, and
AtbZIP38 are up-regulated in response to drought, salt stress, and following ABA treatment [30].
In more recent studies, Hossain et al (2010a,b) [31,32] found that two Oryza sativa bZIP TF genes (OsbZIPs),
OsbZIP12 and OsbZIP46, are also strongly up-regulated by the stresses mentioned above, as well as by
phytohormone treatment. Overall, the bZIP TFs play a vital role in various processes, protecting plants
against a variety of stresses, and are also involved in responses to various plant hormone signals [33].

Moso bamboo (Phyllostachys edulis) belongs to the Poaceae family, represents the only major
lineage of grasses that is native to forests, is one of the most important non-timber forest products and
has great ecological, cultural, and economic value in the world [34]. It is used as an important source of
timber, food, and paper material in daily life [34]. Extreme climate and unfavorable growth conditions
such as excess salinity, soil depletion, drought, cold and heat stress, and wounding largely limit the
growth of moso bamboo. The moso bamboo has evolved various adaptive mechanisms to deal with
varied, adverse environmental factors, and survive those stresses. To our knowledge, however, very
limited information is available regarding the bZIP TF gene family in moso bamboo, its multiple roles
in stress and hormone effects not yet studied, until now. We want to preliminarily explore the function
of bZIP TF gene in the stress and hormone response, and whether these genes play an important role
in regulating growth and development as well as stress resistance in moso bamboo during their life.

We identified 154 putative bZIP TF genes (PhebZIPs) from the P. edulis genome, and investigated
genomic structure and phylogenetic relationships with counterparts from the other Poaceae species
O. sativa and B. distachyon. We systematically analyzed conserved motifs, microsynteny and evolutionary
patterns of the encoded PhebZIP proteins, and located cis-regulatory-elements in the genomic sequences.
According to the number of the cis-regulatory elements, 18 genes were selected to examine the
expression of PhebZIP genes in response to three different phytohormones, as well as in different
tissues/organs/developmental stages. For deeper study, we cloned two genes from 18 genes and
analyzed their subcellular localization. In addition, the PhebZIP47 gene of these two genes was highly
expressed in all hormone treatments and tissues was selected for transactivation activity analysis.
In general, we provide a basis for the screening of appropriate candidate PhebZIP genes for further
cloning to know the molecular mechanisms in hormone response and improve the stress resistance of
moso bamboo.

2. Results

2.1. Identification of bZIP Genes in moso bamboo

The candidate PhebZIPs were named based on chromosomal locations, PhebZIP1 to PhebZIP154,
from top to bottom, in the present study. The proteins encoded by the 154 predicted full-length PhebZIP
genes range from 80 (PhebZIP15) to 839 (PhebZIP134) amino acids (aa), and from 8679.74 to 91904.76 Da
in relative molecular weight. The isoelectric points (PIs) of the PhebZIP proteins are predicted to range
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from 4.7 (PhebZIP28) to 11.73 (PhebZIP141). Detailed information for the examined bZIP proteins is
shown in Table S1.

2.2. Phylogenetic Analysis of bZIP Proteins in the Three Different Plant Species

A comprehensive phylogenetic tree containing 339 bZIP gene protein sequences from three
monocot species (96 from B. distachyon, 89 from the O. sativa, and 154 from P. edulis) was estimated
(Figure 1). The OsbZIP and BdbZIP sequences were obtained, and we generated a phylogenetic tree
using the Neighbor-joining (NJ) algorithm in MEGA software (MEGA6.0) with the PhebZIP sequences.
Detailed bZIP TF gene information from rice and B. distachyon is given in Table S2. According to the
comprehensive phylogenetic tree, the result showed that the predicted PhebZIP gene family cluster
into 9 subfamilies, named groups B–J. The three tested monocot species had representatives in most all
subfamilies, group A only contains B. distachyon sequence.
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2.3. PhebZIP Gene Structure, Conserved Protein Motifs 

Figure 1. Phylogenetic tree and distribution of bZIP protein from three plant species: rice, Brachypodium
distachyon, and moso bamboo. The phylogenetic tree was constructed using the neighbor-joining
method as implemented in MEGA6.0 from a bZIP protein sequence alignment. Bootstrap values from
1000 replicates are displayed at each node. The proteins on the tree can be divided into ten clades and
the different clades are indicated by different colors.
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2.3. PhebZIP Gene Structure, Conserved Protein Motifs

The exon-intron structure of the 154 PhebZIP genes was examined to obtain insight into the
family’s structural evolution (Figure 2). The results showed that the number of introns of PhebZIP
genes varied from 0 to 17. Interestingly, no intron was detected in PhebZIP genes of subfamily I and H.
In summary, most of PhebZIPs belonging to the same groups showed similar exon-intron structures,
which indicates their close evolutionary relationship and the classification of subfamilies.
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Figure 2. Unrooted tree of the PhebZIP gene family and exon/intron organization of moso bamboo
(Phyllostachys edulis) bZIP proteins. (A) The numbers above or below branches on the phylogenetic tree
indicate node bootstrap values are based on 1000 replicates. The unrooted tree was constructed with
MEGA v. 6.0 software by the Neighbor-Joining (NJ) method with 1000 bootstrap replicates. The middle
set of numerals on the tree represent eight PhebZIP groups. (B) Yellow rectangles represent exons, grey
lines represent introns, and blue boxes represent untranslated regions (UTRs).

The MEME Web server was used to investigate the diversity of motifs in the translations from our
candidate PhebZIP genes. MEME motifs were captured and designated motif 1 to motif 20 (Figure 3).
Notably, almost all of the PhebZIPs translations contain motif 1 and subfamily F only contains motif 1.
Furthermore, motif 17 is only found in subfamily B and motif 8 also presents exclusively in subfamily
G, indicating that these motifs might have a special function. In general, many of the PhebZIPs encoded
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proteins of the same subfamily contain very similar motif compositions and they might have had
similar functions.
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Figure 3. Schematic representation of 20 conserved motifs in PhebZIP proteins. Motifs of the PhebZIP
proteins were identified using the MEME online tool. Each motif is indicated by different colored
blocks, with respective numbers in the center of the motifs. The number in boxes (1–20) represents
motif 1–motif 20. The position and length of each colored box represents the actual motif size.
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2.4. Chromosomal Location, Microsynteny and Evolutionary Patterns of PhebZIP Genes

Gene duplication events play a vital role in the evolution of genes and can lead to the appearance
of orthologous and paralogous pairs. According to the chromosomal location map (Figure S1), 154 bZIP
genes of moso bamboo were distributed irregularly across 23 chromosomes. To further investigate
the evolution of the PhebZIP gene family, using microsynteny analysis, we investigated the genome
duplication events within moso bamboo (Figure 4). A total of 132 collinear pairs were identified in
moso bamboo (Table S3). To estimate evolutionary rates and determine the relative divergence of
moso bamboo, the Ks values and Ka/Ks ratios were estimated for the paralogous (Pe-Pe) gene pairs
(Figure 5). The frequency distribution of relative Ks values peaked at 0.1–0.2 (Figure 5A), suggesting
that a large-scale genome duplication event occurred around 7–15 MYA creating the moso bamboo bZIP
TF gene paralogous pairs. A Ka/Ks value of < 1 indicates that a gene underwent negative or purifying
selection, while Ka/Ks =1 and > 1 indicate neutral selection, and positive selection, respectively. All the
bZIP TF gene paralogue Ka/Ks ratios in moso bamboo are < 1 (Figure 5B), indicating that the PhebZIP
family paralogous principally underwent purifying selection.
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Figure 5. Ks and Ka/Ks value distribution of the bZIP genes in the genomes of moso bamboo
paralogous gene-pairs (Pe-Pe), viewed through the frequency distribution of relative Ks and Ka/Ks
modes. Distribution of Ks and Ka/Ks values were obtained from paralogous gene-pairs (Pe-Pe) in the
moso bamboo genome (A,B).

2.5. Analysis of PhebZIP cis-Regulatory Elements

Gene function and regulation are largely determined by cis-regulatory elements [35]. Three types
of cis-acting elements involved in gibberellin, abscisic acid response and MeJA were identified in
PhebZIP gene regulatory regions in our study (Table S4). The cis-regulatory element analysis shows
that the 18 selected PhebZIP genes contain many elements associated with GA, ABA and MeJA
treatments (Figure 6). Regarding hormone-related cis-acting elements, gibberellin responsive elements
(GARE-motif, P-box, and TATC-box), abscisic acid responsive elements (ABRE), and MeJA stress
responsive elements (CGTCA-motif) are found in the promoters of 10, 17, and 15 PhebZIP genes,
respectively [36–38]. Notably, PhebZIP88 possesses 13 ABRE elements, PhebZIP68 and PhebZIP142
have 11 ABRE elements, respectively. There are 14, 96 and 50 elements that were associated with GA,
ABA, and MeJA, respectively. Since these genes had the higher number of cis-regulatory elements
related to GA-, ABA- and MeJA-responses; were further selected for qRT-PCR analysis.
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Figure 6. Analysis of Cis-acting elements in the promoter regions of PhebZIP genes. (A) The number of
each cis-acting element in the promoter regions (2 kb upstream of the translation start site) of PhebZIP
genes. (B) Statistics for the total number of PhebZIP genes, including the corresponding cis-acting
elements (red dots) and the total number of cis-acting elements in the PhebZIP gene family (blue boxes).
Based on functional annotations, the cis-acting elements classify into five major groups: gibberellin,
abscisic acid, and MeJA.
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2.6. PhebZIP Gene qRT-PCR Analysis

The cis-regulatory elements analysis indicates that the 18 selected PhebZIP genes contain a large
number of elements which are related to ABA-, GA- and MeJA-responses. Therefore, these results led
us to wonder whether these selected genes were up-regulated in these hormone treatments and in
different tissues/organs/developmental stages by qRT-PCR analysis.

The MeJA application can stimulate the expression of defense plant genes. Under the treatment,
the expression of PhebZIP21, −26, −47, −68, −97, −105 and −144 was up-regulated, while PhebZIP59
was down-regulated, compared with 0 h (Figure 7). Furthermore, the expression of PhebZIP47 and
PhebZIP68 peaked at 1 h; PhebZIP21, and PhebZIP26 peaked at 3 h; and PhebZIP105 and PhebZIP144
peaked at 6 h. The peak expression of PhebZIP97 was observed at 12 h.
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Figure 7. qRT-PCR expression analysis of selected PhebZIP genes following methyl jasmonate (MeJA)
treatment. Relative expression levels of bZIP genes were examined by qRT-PCR and normalized with
respect to the reference gene TIP41 under drought stress treatment. Bars represent standard deviations
(SD) of three biological replicates. Y-axes indicate the scale of the relative expression levels. X-axes
show time courses of MeJA stress treatments for each gene.
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Under ABA treatment (Figure 8), the relative expression of 7 PhebZIP genes (PhebZIP26, −47, −59,
−77, −92, −105 and −142) was up-regulated, whereas the expression of PhebZIP97 was down-regulated
at all time-points compared with the control. Additionally, the expression level of PhebZIP26, PhebZIP59,
PhebZIP77 and PhebZIP142 peaked at 1 h, while that of PhebZIP92 peaked at 3 h after treatment. Notably,
the expression of PhebZIP105 peaked at 6 h.
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Figure 8. qRT-PCR expression analysis of selected PhebZIP genes following abscisic acid (ABA)
treatment. Sampling occurred 0, 1, 3, 6, 9, 12, and 24 h after treatment and the relative expression
levels were analyzed. Untreated sample expression levels = 1. X-axes represent time points after ABA
treatment. Y-axes represent relative gene expression values normalized to the reference gene TIP41.
Bars indicate standard deviations (SD) from three biological replicates.
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For the GA treatment, the expression of 16 PhebZIP genes (PhebZIP21, −25, −26, −36, −47, −59, −68,
−72, −77, −88, −92, −105, −117, −126, −142 and −144) was found to be up-regulated at each time-point,
compared with the control (Figure 9). Additionally, PhebZIP36 showed the greatest up-regulation
(about 300-fold). The paralogous gene pair also showed similar expression patterns in response to GA.
Finally, one of these gene (PhebZIP47) is up-regulated under all three treatments.
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Figure 9. qRT-PCR expression analysis of selected PhebZIP genes following gibberellic acid (GA)
treatment. The Y-axis indicates the relative expression levels; 0, 1, 3, 6, 9, 12, and 24 (X-axis) indicates
hours of treatment. Mean values and standard deviations (SD) were obtained from three biological and
three technical replicates.
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To investigate possible functions of PhebZIP genes at different developmental stages or in different
organs, we used qRT-PCR to examine the expression profiles of the 18 PhebZIPs in young leaves (L1),
mature leaves (L2), roots (R), stems (St), and seeds (Se). As shown in Figure 10, nine genes (PhebZIP21,
−47, −59, −68, −88, −97, −117, −142 and −144) were up-regulated in all tissues, while the remainder
showed tissue-specific expression. For instance, all of the genes showed high expression levels in Se
and PhebZIP23 showed high mRNA accumulation in both St and Se. Of the only one pair of paralogous
genes, PhebZIP88 and −142 showed similar expression patterns in all organs. Beside the paralogues
pair, the PhebZIP 21 and −47, PhebZIP144 and −59 also had similar expression patterns.
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Figure 10. Expression analysis of PhebZIP genes across different tissues and developmental stages.
Samples were obtained from young leaves, mature leaves, roots, stems, and seeds. Color scale erected
vertically at the right side of the picture represents log10 expression values, green indicates lower and
red higher transcript abundance. L1: mature leaves; L2: mature leaves; R: roots; St: stems; Se: seeds.

2.7. Subcellular Localization and Transactivation Activity Analysis

For deeper study, we cloned two genes (one was highly expressed in all hormone treatments and
the other was only highly expressed under GA treatment) from 18 genes and analyzed their subcellular
localization. In addition, the PhebZIP47 gene of these two genes was highly expressed in all hormone
treatments and tissues was selected for transactivation activity analysis. As shown in Figure 11, the
control treatment shows green fluorescence throughout the membrane and within the cell nucleus,
and the PhebZIP47-GFP and PhebZIP126-GFP fusion genes’ green fluorescence signals are specifically
distributed in the nucleus, consistent with previous predictions that TF binding of specific cis-elements
occurs in the nucleus.

All the plasmids were independently transformed into the Y2HGold yeast strain and
exhibited visible white colonies on the SD/-Trp medium to explore the transcriptional activity
of PhebZIP47. The results showed only the positive controls grew well and turned blue in the
SD/-Ade/-His/-Trp/X-a-GAL medium. In contrast, the pGBKT7-PhebZIP47 and negative control group
did not grow on this medium (Figure 12), indicating that this gene has no transcriptional activity.
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(PhebZIP47-GFP, PhebZIP126-GFP) and GFP as a control were transiently expressed in N. tabacum leaves
and observed under a fluorescence microscope.
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Figure 12. Transactivational analyses of PhebZIP47 in yeast Y2HGold strain. The positive constructs,
negative constructs, and fusion constructs were transformed into yeast Y2HGold strain and successively
incubated in SD/-Trp media and SD-His/-Ade/-Trp plate supplemented with X-a-GAL.

3. Discussion

Increasing evidence shows that the bZIP TFs play crucial roles in various developmental and
physiological processes and involved in various plant hormone and stress responses in plants. Much of
the research into the functions of the bZIP genes have been characterized in model plants, especially in
Arabidopsis thaliana [3], and some grass family (Gramineae) species including Oryza sativa, Sorghum bicolor,
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Zea mays, Brachypodium distachyon, Triticum aestivum [4–8]. To our knowledge, however, very little
is known about this family in moso bamboo, the only major lineage of grasses. Moso bamboo is
one of the most important species for afforestation and timber and has great ecological, cultural, and
economic value in the world [34]. Compared with other gramineous plants, research on the function
and growth of bamboo has evolved slowly, especially in regard to its response to adverse environmental
conditions and plant hormones. Therefore, we want to select a gene family and preliminarily screen
some functional genes related to plant growth and development, and stress and hormone response
to solve some problems that bamboo will encounter in its growth. The bZIP TF gene family, one of
the largest TF families in the eukaryotes, is involved in many biological processes, including plant
growth and development, and stress and hormone response. Therefore, we selected this gene family
for further analysis.

In this report, we used phylogenetic analysis to classify bZIP TF genes into 10 groups—154 PhebZIP
genes, along with 89 bZIP genes from rice, and 96 from Brachypodium distachyon (Figure 1). We also
examined their evolutionary history and selected 18 genes have the higher cis-elements under GA,
ABA and MeJA stress conditions. For deeper study, two genes were selected for subcellular localization
and PhebZIP47 gene with high expression under three treatments and in five tissues were selected for
transactivation activity analysis. The information above provides a comprehensive overview of the
bZIP gene family in moso bamboo and lays the foundation for future functional characterization of
individual PhebZIP genes.

3.1. The Distribution and Divergence Times of bZIP Gene Family

Previous research has found that intron numbers of rice and B. distachyon are 0–12 and 0–13,
respectively [4,7]. And in our research, the intron/exon structural analysis showed that the number
of introns in the PhebZIP genomic sequences varies from 0 to 17 (Figure 2). This suggested that
there were similar gene structure diversity of bZIP genes in different species. Although it has
been reported that duplicated genes rarely diverge with respect to their biochemical function; gene
duplication is considered to provide the raw material for evolution; duplicated genes may undergo
substantial changes in their structures and/or regulatory mechanisms allowing them to assume novel
roles [39,40]. The plant specificity is often the result selective gene loss or gain during evolution
and can involve chromosomal rearrangements and fusions, such as gene duplication with the three
principal types of exon/intron diversification: exon-intron gain/loss, exonization/pseudo-exonization
and insertion/deletion [39]. Most of the PhebZIP genes in subfamilies I, G, E, F, D and B contain
0–6 introns; the rest subfamilies C, J and H, most of the PhebZIP genes have the most introns. The MEME
conserved motif analysis shows that motif 17 and 18 are unique to subfamily D, motif 8 is only found
in subfamily G, and subfamily F only contains motif 1. In addition, the motifs 1 is present in most
of the PhebZIPs. Many of the PhebZIPs encoded proteins of the same subfamily contain very similar
motif compositions.

According to the chromosomal location map (Figure S1), 154 bZIP genes of moso bamboo were
distributed irregularly across 23 chromosomes. To estimate evolutionary rates and determine the
relative divergence of moso bamboo, the Ks values and Ka/Ks ratios were estimated for the paralogous
(Pe-Pe) gene pairs (Figure 5). The frequency distribution of relative Ks values peaked at 0.1–0.2
(Figure 5A), suggesting that a large-scale genome duplication event occurred around 7–15 MYA
creating the moso bamboo bZIP TF gene paralogous pairs. A Ka/Ks value of < 1 indicates that a
gene underwent negative or purifying selection, while Ka/Ks =1 and > 1 indicate neutral selection,
and positive selection, respectively [41,42]. All the bZIP TF gene paralogue Ka/Ks ratios in moso
bamboo are < 1 (Figure 5B), indicating that the PhebZIP family paralogous principally underwent
purifying selection.
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3.2. PhebZIP Genes Contain Higher Number of cis-Elements Were Selected for qRT-PCR Analysis

Accumulated evidence has confirmed that many bZIP TFs participate in varied developmental
processes, and stress and hormone responses, including abscisic acid (ABA) [22], gibberellin (GA) [23],
ethylene [24], pathogen infection [25], drought [26], cold [27]. It is worth noting that gene function and
regulation are largely determined by cis-regulatory elements [35]. The cis-elements analysis showed
that the PhebZIP gene containing many promoter elements related to hormone and stress response.
However, we ultimately selected 18 PhebZIP genes containing a large number of promoter elements
associated with GA, ABA, and MeJA-response for further analysis by qRT-PCR.

From the cis-elements analysis, the gibberellin-responsive cis-regulatory elements (GARE motif,
P-box, and TATC-box) are seen in 10 of the PhebZIP genes. Among these genes, nine genes have
one or more elements, and are highly expressed under GA treatment. Only one gene (PhebZIP97)
contains one element and are not highly expressed under GA treatment. On the contrary, one moso
bamboo genes PhebZIP97 has no CGTCA-motif elements, but is highly expressed after MeJA treatment.
This phenomenon suggests that the number of promoters is related to gene expression in respond
to adverse conditions but not the only criterion, and the expression induction of genes are complex
biological processes.

Moso bamboo will encounter all kinds of adverse environmental conditions during their life. MeJA
as a plant hormone and signal molecule related to injury, is widely existed in plants [25]. Exogenous
application can stimulate the expression of defense plant genes and induce chemical defense. Under
MeJA, which simulated mechanical damage and insect feeding have similar effects, seven of PhebZIP
genes were significantly up-regulated, suggested that these gene increase resistance to stress. The ABA
plays a vital role in plants responding to abiotic stress. In Arabidopsis, ABF2, ABF3, and ABF4 were
significantly up-regulated by ABA. Further functional analyses showed that these genes were involved
in the regulation of ABA-mediated processes, such as root elongation and seed germination [43].
In our research, the relative expression showed that seven of selected PhebZIP genes to be significantly
up-regulated, and one gene was down-regulated after ABA treatment, indicating the comprehensive
response of bZIP genes to ABA in moso bamboo. GA, which are tetracyclic diterpenoid growth factors,
are essential regulators in many aspects of plant development, including seed germination, stem
elongation, and flowering [23]. The expression pattern analysis showed that almost all of the genes
we selected were highly expressed under GA treatment. The results suggest that these genes may be
largely involved in plant development and growth.

To further understand the expression of these genes in different tissues/organs, growth and
development, five organs were selected for qRT-PCR and the result indicated that most of the genes
are expressed in these tissues, possibly suggesting that these genes play important roles and have
widespread involvement in plant growth and development, and is consistent with previous research in
Arabidopsis [3]. Simultaneously, the expression pattern analysis of tissues also shows all PhebZIP genes
to be highly expressed in seeds, which may play a vital role in moso bamboo seed maturation [18]. It is
worth noting that the expression patterns of paralogous PhebZIP gene pairs under the three hormone
treatments and in the five organs are very similar. This further proves that these paralogous gene
pairs are functionally similar. In summary, the expression profiles of 18 selected PhebZIP genes under
GA, ABA, and MeJA and in five organs revealed that these genes are widely involved in growth and
development, stress and hormone response.

3.3. Subcellular Localization and Transactivation Activity Analysis

In this study, the subcellular localization of PhebZIP47 and PhebZIP126 in the nucleus is consistent
with previous predictions of bZIP TF binding to cis-elements in the nucleus, thus, these two genes
are typical nuclear localization transcription factors. It is worth noting that the PhebZIP47 was
highly expressed under three hormone treatments and in all tissues. We want to know if this gene
is a transcriptional activator. The transactivation activity analysis showed that PhebZIP47 had no
transcriptional activation activity in yeast. Similar results were observed in rice that OsbZIP71 has
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no transcriptional activity in yeast [44]. This phenomenon may be explained by the activation of this
protein possibly relying on some posttranslational modifications or needing to be activated by some
unknown upstream proteins [45].

4. Material and Methods

4.1. PhebZIP TF Database Searches

All of the annotated protein sequences from the moso bamboo genome database (http://server.ncgr.
ac.cn/bamboo/index.php) were downloaded to identify genomic bZIP TFs [46]. Moreover, to avoid
missing any moso bamboo bZIP genes, we used the Hidden Markov Model (HMM) of the bZIP domain
(Pfam PF00170) to confirm them in our protein dataset using their Web-based HMM search tool [47,48].
The common domains of the Rice and B. distachyon gene families were used in Blastp (e-value = le−5)
to identify corresponding moso bamboo gene families. Finally, all non-redundant candidate PhebZIP
sequence translations were checked against the PFAM (https://pfam.xfam.org) (access in January 2019).
databases to confirm the existence of the bZIP domain [49]. Redundant sequences and those without
bZIP domains were manually removed from our dataset.

4.2. PhebZIP Genes: Phylogenetic Classification, Intron/Exon Structural Analysis, and Conserved Motifs

Rice and B. distachyon bZIP protein sequences were obtained from the Rice Genome Annotation
Project (http://rice.plantbiology.msu.edu/)(access in January 2019). [50] and Brachypodium Genome
Database (http://www.plantgdb.org/BdGDB/)(access in January 2019). [7] databases, respectively.
Multiple sequence alignments of bZIP proteins from moso bamboo, rice, and B. distachyon were
performed using the ClustalW program [51]. MEGA6.0 software was used to construct a combined
phylogenetic tree (neighbor-joining with 1000 bootstrap replicates) [52]. The PhebZIP only gene protein
sequence phylogenetic tree was obtained using the same methods. A candidate PhebZIP exon/intron
gene structure was visualized using the gene structure display server (http://gsds.cbi.pku.edu.cn)
(access on in January 2019). [33]. Additionally, the PhebZIP encoded protein sequence motifs, which
may or may not correspond to previously documented motifs, were identified using MEME online
(http://meme-suite.org/tools/meme) (access in January 2019). with our PhebZIP protein sequence
alignment [53].

4.3. Chromosomal Location

Based on chromosomal position information provided by the ncgr database (http://server.ncgr.
ac.cn/bamboo/index.php) (access in January 2019), a chromosomal location image for the PhebZIP
genes was obtained using the MapInspect software (http://www.plantbreeding.wur.nl/uk/software_
mapinspect.html) (access in January 2019).

4.4. Microsynteny and Evolutionary Patterns of the bZIP Genes in moso bamboo

The duplication of bZIP genes were identified using MCScanX (http://chibba.pgml.uga.edu/

mcscan2/) (access in January 2019). [54]. First, whole-genome protein sequences from moso bamboo
were searched using BLASTP with an E-value cutoff of 1e−10, and identity > 50%. Then, the default
parameters of MCScanX were used for detecting the synteny regions. Finally, based on information
about collinear pairs and genetic location, circos was used to create collinear analysis diagrams [55].
The selective pressure and the occurrence of duplication events were estimated on the datasets by
calculating non-synonymous (Ka) substitution and synonymous (Ks) rates between the collinear pairs.
A synonymous substitution (Ks) is defined as a mutation in which a nucleotide base is replaced by
a different base in a protein-coding region of a gene that does not result in an amino acid change
in the encoded protein, while a non-synonymous substitution (Ka) results in a change in the amino
acid sequence of a protein [56]. The non-synonymous and synonymous substitution rates were then
calculated using DnaSP 5 to analyze gene duplication events [57,58]. The Ks value was used as a proxy
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to estimate the timing of large-scale duplication events [59], with Ks converted into a time framework
using the formula T = Ks/2λ × 10−6 Mya [60]. The clock-like synonymous substitution rate variable (λ)
was specified at 6.5 × 10−9 years, as per previous estimates [46].

4.5. Analysis of PhebZIP TF Putative Promoter Regions

We examined 2000-bp regions upstream of the transcriptional start in all of our candidate PhebZIP
sequences to identify putative cis-elements in these promoter regions. We used the Web-based promoter
search Plant-CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (access in January
2019). [61] to identify those putative cis-acting elements related to stress responses, hormone effects.

4.6. Plant Materials and Phytohormone Treatments

Moso bamboo seeds were identified and provided by the Guilin Forestry Bureau, Guilin, Guang
Xi Province, China, and were grown in plastic containers in a greenhouse under a 14-h-light/10-h-dark
photoperiod at 25 ± 2 ◦C and 60–80% humidity. For phytohormone treatments, the young leaves of
three-month-old moso bamboo seedlings were sprayed with 10 µM ABA, 100 µM GA, and 100 µM
MeJA, separately. All samples were collected at 0, 1, 3, 6, 12, and 24 h separately from seedlings after
stress application and untreated leaves (0 h) were used as a control. To obtain tissue-specific expression
profiles of PhebZIP genes, the tissues of young leaves, mature leaves, roots, stems, and seeds from
seedlings were also collected. All plant samples were immediately frozen in liquid N2 and stored at
−80 ◦C for RNA extraction. Three biological and three technical replicates were performed to reduce
experimental error.

4.7. RNA Extraction and qRT-PCR Analysis

Total moso bamboo leaf RNA under different stresses, and from different organs, was extracted
with TRIzol reagent (Invitrogen, NH, USA) according to the manufacturer’s instructions. The primer
pairs for the 18 selected PhebZIP genes were designed using Primer Express 3.0, and the specificity of
primers was checked using BLAST searches against a coding sequence (CDS) database downloaded
from the moso bamboo genome database (http://server.ncgr.ac.cn/bamboo/index.php) (access in January
2019). [46]. The tonoplast intrinsic protein 41 (TIP41) gene, which is stably expressed in moso bamboo,
was used as a reference to normalize expression data [62]. The qRT-PCR amplifications using SYBR
Green Master Mix reagent (Applied Biosystems) were performed on an ABI 7300 Real-Time system
(Applied Biosystems) in 20 µL reactions containing 1 µL of each gene-specific primer, 1 µL of cDNA
sample, 7 µL ddH2O, and 10 µL SYBR Green Master Mix reagent (Applied Biosystems) [63]. All primers
for amplification of PhebZIP genes are given in Table S5. The qRT-PCR amplification conditions were:
95 ◦C for 30 s, followed by 40 cycles of 95 ◦C for 10 s, 55 ◦ C for 15 s, and 72 ◦C for 10 s. A melting
curve analysis was performed to determine those primers with the highest specificity and efficiency.
The relative expression levels were assessed based on the 2−∆∆CT method [64].

4.8. Subcellular Localization Analysis of PhebZIP47 and PhebZIP126

The full-length PhebZIP47 and PhebZIP126 coding sequences were cloned and inserted into
the pCAMBIAI1305 vector (TaKaRa, Beijing, China), which contains a GFP gene. The constructed
PhebZIP47-GFP and PhebZIP126-GFP vectors were then separately transformed into Agrobacterium
tumefaciens EHA105 (BIO-RAD, Hercules, CA, USA), and syringes were used to inject the suspensions
into N. tabacum (tobacco) leaves. The PhebZIP47-GFP and PhebZIP126-GFP expressions were observed
using confocal laser scanning microscopy (CarlZeiss LSM710).

4.9. Transactivation Activity Analysis of PhebZIP47

The transactivation activity analysis of PhebZIP47 protein in yeast was determined as per the
previously described method [65]. DNA fragments containing the whole open reading frames of
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PhebZIP47 was cloned and then inserted into the pGBKT7 vector (Clontech, Palo Alto, CA, USA) to
create the pGBKT7-PhebZIP47 construct. Then, the recombinant vector, the negative control pGBKT7
plasmids and the positive control pGBKT7-53+pGADT7-T were used to transform the AH109 yeast
strain according to the manufacturer’s protocol (Stratagene, Santa Clara, CA, USA). The transformed
strains were grown on SD/-Trp and SD/-Trp/-His/-Ade/X-a-Gal plates at 30 ◦C for 3–5 days.

4.10. Ethics Approval and Consent to Participate

The seeds of moso bamboo were collected from Guilin in Guang Xi Province, China in June, 2018.
And the seeds were provided and identified by the Guilin Forestry Bureau. All the materials of moso
bamboo used and analyzed were public and available for non-commercial purposes. This article did
not contain any studies with human participants or animals performed by any of the authors.

4.11. Availability of Data and Materials

The genome sequences of moso bamboo, rice and Brachypodium distachyon were obtained from
the moso bamboo NCGR server (http://server.ncgr.ac.cn/bamboo/index.php) (access in January 2019).
Rice Genome Annotation Project database (http://rice.plantbiology.msu.edu) (access in January 2019)
and Phytozome database (https://phytozome.jgi.doe.gov) (access in January 2019)., respectively. Moso
bamboo bZIP gene IDs were listed in Table S1. The IDs of rice and Brachypodium distachyon bZIP gene
were exhibited in Table S2.

5. Conclusions

Our results represent the first genome-wide identification and analysis of the bZIP TF family in
moso bamboo. This includes phylogenetic tree, protein motif prediction, gene structure, microsynteny
and evolutionary patterns, all of which suggested a complex evolutionary history of this family in
moso bamboo. The expression profile analyses of 18 selected PhebZIP genes demonstrate that these
genes play pivotal roles in many processes, including stress response, hormone signaling, and in plant
growth and development. This research provides a comprehensive understanding of PhebZIP genes
and may aid in the selection of appropriate candidate genes for further cloning and functional analysis
in moso bamboo growth and development and improve their resistance to biological and abiotic stress.
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bZIP Basic leucine zipper
TFs Transcription factors
GA Gibberellin
ABA Abscisic acid
MeJA Methyl jasmonate
MYA Million years ago;
qRT-PCR Quantitative real-time reverse transcription PCR
TIP Tonoplast intrinsic protein
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