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Summary

A new microscopic principle based on radiometric stereo mi-
croscopy is presented, which is designed for investigating
macro-dispersion of filler in rubber. The image acquisition
is combined with a stereological method of estimating the
volume-weighted size distribution of the filler particles. Exper-
imental results for carbon black filler in rubber obtained by
radiometric stereo microscopy are compared with those from
microtomography using synchrotron radiation, and, further-
more, a simulation study is used for evaluation. It turns out
that using the new three-dimensional microscopic method,
the size distribution of the filler particles can be estimated from
fresh cuts of rubber with high accuracy, and thus it is an in-
teresting alternative to well-established dark field microscopy.

Introduction

It is widely known that as an integral part of many imag-
ing techniques, a wide range of image-processing algorithms
is used. The probably most prominent example is computer
tomography, where the tomographic reconstruction can be
seen as an image-processing step. Much less accepted, how-
ever, is the fact that also image analysis is very closely tied
to image acquisition. The reason for that might be that man-
ufacturers of microscopes often focus on a widespread field
of application with specific data analysis requirements. In
the present article, we will give an example, namely mea-
surement of macro-dispersion in rubber, in which acquisition,
processing and analysis of images are closely interwoven. Fur-
thermore, well-established but more expensive image acqui-
sition techniques (in our case microtomography, µCT, with
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synchrotron radiation) and computer simulation are often ap-
plied to evaluate new and innovative techniques concerning
their accuracy.

Macro-dispersion of globular filler particles (e.g. carbon
black or silica) in a rubber matrix is an important quantity
that depends on manufacturing parameters and influences
various rubber properties. Therefore, it must be carefully ad-
justed during the incorporation process and investigated by
industrial quality control. As pointed out in the industrial
standard ASTM D7723–18 (2018), the macro-dispersion of
filler particles is defined as the (volume-weighted) size distri-
bution of the filler on a scale less than 100 µm but larger than
2 µm; see also ASTM D663–14 (2014) for dispersion of carbon
black in rubber and ASTM D3053–17a (2017) for standard
terminology used in rubber industry. Figures 1A to 1D outline
the formation of nodges in a fresh cut. Quality control is usu-
ally based on freshly made planar sections (so-called fresh cuts)
through rubber specimen, where a razor plate (or alternatively
a discotom) is used for cutting. After stress retention of the rub-
ber, one obtains no flat but rather a rough cutting surface in
which the filler particles appear as imprints or bumps, called
nodges in the industrial standard. These nodges can be made
visible by classical light microscopy under dark field (DFM) il-
lumination, e.g. the systems disperGRADER+ from TECHPRO
or the disperGRADER Alpha View from Alpha Technologies,
which were specifically designed for rubber (and plastics) in-
spection. However, it has proved to be very difficult estimating
the size distribution of the filler particles from the observed
white spots in dark field images, because the size of the white
spots strongly depends on imaging parameters as well as the
threshold to be chosen for binarization of the dark field images.
Even if an appropriate threshold could be chosen based on
an objective criterion, e.g. Otsu’s threshold Otsu (1979), that
would allow to segment the section profiles and to measure
their sizes accurately, it would still be necessary to compute
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Fig. 1. Scheme of forming nodges after retention in a freshly made cut: (A) filler particles close to the section plane before cutting the rubber, where the
arrows mark the particle shift during cutting, (B) shifted particles induce elastic deformation of the rubber matrix, (C) the particle positions after retention
of the rubber matrix, (D) the nodges (imprints and bumps) in the fresh cut and (E) a sphere of diameter s3 = 2r , a sphere cap (green) and its height h, the
size s1 of a bright spot from a bump, the size s2 of the section profile (blue).

the size distribution of the filler particles from an estimated size
distribution of the section profiles, e.g. by solving Wicksell’s
corpuscle problem; see Wicksell (1925). The latter is numeri-
cally instable, i. e. small errors of the estimated size distribution
of the section profiles lead to large errors of the computed filler
size distribution (Ohser & Sandau, 2000). Applying DFM com-
bined with filler dispersion estimation as described in ASTM
D7723–18 (2018) appears to be a fingerprint method only.
For this reason, the new microscopenSPEC 3D from Nanotron-
ics, New York, was applied for rubber inspection. The principle
used for surface imaging is based on radiometric stereo (also
known as photometric stereo or shape from shading) allowing for
perfect three-dimensional reconstruction of curved surfaces of
fresh cuts (Woodham, 1980; Zhang et al., 1999). From this
reconstruction, it is possible to estimate the depth of particle
imprints, respectively, the height of bumps (in the following
referenced as height of nodges) as well as their volumes.

The stereological problem to be solved is the estimation of
the size distribution of the globular filler particles in rubber
from samples of the height and volume of nodges, where the
shape of the particles is assumed to be spherical. The problem
is similar to Wicksells corpuscle problem, where the diame-
ter distribution of a macroscopically homogeneous system of
spheres embedded in an opaque matrix is estimated from the
diameter distribution of section circles observed in a planar
section through the specimen (Wicksell, 1925, 1926). We
present a new stereological formula, which relates the size dis-
tribution of the filler particles to the volume-weighted height
distribution of the nodges. The corresponding integral equa-
tion is solved numerically, where methods published, e.g. in
Ohser & Mücklich (2000) and Chiu et al. (2013) are adapted
to the specific problem. The accuracy of the method is eval-
uated by a simulation of nodge formation during the cutting

process based on an assumption made for the filler particle
distribution. Furthermore, the filler particle distribution stere-
ologically estimated from the height and volume of nodges
observed by radiometric stereo is compared with that esti-
mated from three-dimensional (3D) images obtained by µCT
using synchrotron radiation.

Materials and methods

The critical influence of filler dispersion on rubber quality has
been a broad area of study for nearly 70 years, where we re-
mark that in industrial quality control the dispersion of filler
was usually not measured directly. Instead, materials testing
methods were applied to conclude on the compounding en-
ergy of the rubber, which in turns is influenced by the filler
dispersion. Hess & Chrico (1977) gives a good introduction
to carbon black dispersion and describes various methods to
characterize dispersion. These methods can broadly be put into
three categories: electrical methods, mechanical methods and
optical/microscopic methods. Optical methods have become
common as direct, rather than cumulative measurement for
dispersion; see also Wang (2005) and Le et al. (2008).

Until now, DFM has been established as the standard two-
dimensional (2D) image acquisition method for detecting filler
particles in fresh cuts, but it is limited by several factors, most
relevant being that a single light vector is used (or multiple
vectors simultaneously). Frequently, this can lead to pixels
being covered by shadows. For this reason, the 3D topology of
the surface cannot be reconstructed from conventional dark
field images.

In the standard ASTM D7723–18 (2018), the calculation
of macro-dispersion in a rubber matrix is regulated. In terms of
this standard macro-dispersion is the size distribution of filler
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particles with size at least 2 µm. Because of the large number
of small filler particles, the representation of the size distribu-
tion as the classical number-weighted size distribution does
not make sense. Instead, we will use the volume-weighted
size distribution below. This is analogous to the estimation of
the area-weighted size distribution of the white spots in dark
field images. Furthermore, in ASTM D7723–18 (2018) the so-
called degree of dispersion defined as 1 − URF/L , where URF
denotes the area fraction of the unresolved filler (and URF is
usually estimated from DFM images as the area fraction of the
white spots of size at least 2 µm), L is filler volume fraction
in the compound (which is a technological parameter of the
filler reinforcement process), and the degree of dispersion is
usually given in per cent. The volume fraction L is estimated
from the filler mass, the filler density, the compound mass and
the compound density. If these data are unknown, L is set
to its technological maximum, L = 35%. Basically, the area
fraction of the section profiles of the unresolved filler is equiv-
alent to its volume fraction, but there are two problems: The
first one is the arbitrary choice of the lower limit of the particle
size for the macro-dispersion. In the industrial standard, it is
forced as 2 µm, but in most 2D inspection systems this limit is
set for the size of the particle section profiles (s2 in Fig. 1E), not
for the size s3 of the particles themselves, where we remark
that even large particles can have small section profiles. The
second problem is that there is only a weak relationship be-
tween the size of the bright spots (s1 in Fig. 1E) in DFM images
(resulting from the bumps in the fresh cuts) and true size s2 of
the section profiles. In most cases, bright spots appear much
larger than the corresponding section profiles. Furthermore,
imprints are hard to see in dark field images and, as a conse-
quence, they might be undetectable. These disadvantages of
DFM can be overcome, e.g. by radiometric stereo microscopy
(RSM) or µCT using synchrotron radiation, where RSM can be
applied in laboratories for industrial quality control and µCT
is recommended for validating measurements.

Imaging of nodges using radiometric stereo

Radiometric stereo images can be obtained from a single
CCD camera under subsequent illumination from six constant
lighting vectors at identical angles of incidence of 45◦ in rela-
tion to the optical axis, where the azimuthal distance between
the lighting vectors is 60◦. Here, we use the camera type Al-
lied Vision Prosilica GT 2750, a sensor Sony ICX694 with
a maximum frame rate of 19.8 fs−1. A Nanotronics system
nSPEC 3D applies a standard 20× Olympus objective with a
numerical aperture (NA) of 0.40 and a working distance of
12 mm (see Fig. 2). The system uses broad spectrum white
light microscopy with LEDs (Prizmatix Ultra High LED White
Light) as an illumination source. An illumination mode along
a modified dark field channel has been constructed, where an
oblique and opaque disk is rotated according to pre-defined
algorithmic instructions to various locations on this channel,

Fig. 2. Scheme of the microscope nSPEC 3D with the six light vectors
LV1, . . . ,LV6 representing the positions of the LEDs relative to the focal
point of the objective. The angle between the light vectors and the optical
axis is 45◦, and the azimuthal distance between them is 60 degrees.

suppressing illumination from the complete dark field chan-
nel by blocking all but a single lighting vector. The six 2D
images are acquired by the camera with 2750×2200 pixels.
The adjusted pixel size at 20× is 0.227 µm.

The captured 2D images are processed further by some pre-
processing steps that include sequentially improved exposure.
The latter is based on a pre-sampling out of a separate database
consisting of the 1500 images taken by radiometric stereo
from carefully selected samples. The improved exposure is set,
and the individual illumination vectors are adjusted to have
consistent lighting for future scans. In this way, the system
improves with time (from one reconstructed topography to
the next) when various fields of view of the sample or samples
of the same type are investigated. By using the multiple vec-
tor lighting system combined with this kind of auto exposure
settings, one obtains six pre-processed 2D images as the input
for topography reconstruction of the fresh cut.

In the nSPEC 3D, the reconstruction of topography by ra-
diometric stereo from the six pre-processed 2D images relies
on calculation of surface normals using Lambert’s equation
(Woodham, 1974, 1980; Ray et al., 1983; Zhang et al., 1999);
see also Miché et al. (2005) and Arecchi et al. (2007), where the
normals of the curved surface are calculated from the lighting
vectors LV1, . . . ,LV6 and the measured intensities represented
by the pixel values of the 2D images. The core is the solution of
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Fig. 3. Visualizations of the reconstructed surface of fresh cuts of rubber with low degree of dispersion. The images were taken by radiometric stereo using
the microscope nSPEC 3D with a 20×/0.40NA: In both images, the curved surface is encoded as the height depending on the pixel position, 825×660
pixels of size 1.91 µm. The resolution on the z-direction is about 1.0 µm.

a linear equation system (which of course is overdetermined
for six lighting vectors and therefore usually solved by singular
value decomposition). As a pre-condition of the applicability of
this technique, it is assumed that a sample is Lambertian in na-
ture; however, sometimes spectral distortion are observed on
samples that are not purely Lambertian (Frankot & Chellappa,
1990). In the simplest case, these distortions can be detected
by simple thresholding the reconstructed topography, where
values at least a given threshold level are ignored, because
they cannot come from a sufficiently smooth Lambertian sur-
face. The resulting gaps in the reconstructed topography are
filled by the mean pixel value of the nearest four neighbouring
pixels. In the optical setup of the nSPEC 3D, each of the lighting
vectors illuminates only a partial field of view; therefore, only
those with varying in pixel values in the obtained image are
used for calculating the normals. Any light that does extent
beyond the field of view, due to ambient light, or surface shape,
is not recorded on the imaging sensor. Fig. 3 shows examples of
the reconstructed topography of fresh cuts of rubber infiltrated
with carbon black.

Finally, a reflectance mapping can be derived from the re-
constructed topography, whose information could in turn be
used for future reconstruction of the topography of further
field of views of the same sample or of other samples. There-
fore, not only the exposure is sequentially improved but also
database for the improvement of the exposure (used in the
pre-processing step) can be updated with each reconstruction.
This is an important aspect of our approach and has provided
good results for surfaces with Lambertian quasi-specular re-
flectance. A challenge has traditionally been to provide this
information in the presence of non-uniform albedo. Radio-
metric stereo observed here shows no such effect.

The frame rate of RSM in the present setting is about
0.35 fs−1. This involves the capturing of the six 2D images (cor-
responding to the six light direction vectors LV1, ...,LV6), the
pre-processing of the images, the reconstruction of the 3D to-
pography and the updating of the database. As a consequence,
the RSM is more time consuming than DFM. Nevertheless, this
frame rate of RSM should be sufficient for many applications
in industrial quality control.
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Radiometric stereo has several key advantages over other
techniques such as microscopy based on focal stacking, also
known as shape from focus or depth from defocus (DFD). Focal
stacking uses the bright-field channel of an optical microscope
with an objective of high numerical aperture and captures a
sequence of 2D images at different focal depths, where in each
of these images different parts of the specimens topography are
in focus. Roughly speaking, the core of DFD is the detection
of the in-focus regions of each image. Then the height of the
topography at a position is estimated from the index of that 2D
image, which is in-focus at this position. More precisely, the
height is estimated as the product of the index and the focal
stacking step width; see, e.g. Chen et al. (2008) and Clark &
Brown (2015) for more details and advanced techniques. Two
aspects of defining shape and z-height are problematic. Most
notable is the inability to define the top focus plane due to the
likelihood of the final step size over or under shooting the top of
the feature. Furthermore, by DFD the reconstruction of those
surface elements of the topography is faulty, for which the
surface normal is approximately perpendicular to the optical
axis. In RSM, this problem usually does not occur because
the directions of illumination considerably differ from that of
the detection.

Microtomography of filler in rubber

Tomographic data sets were acquired at beamline ID19 of the
European Synchrotron Radiation Facility (ESRF) in Greno-
ble, France (Weitkamp et al., 2010). In order to limit poten-
tial dose issues to the sample while maintaining sufficient
contrast, a photon energy of 35 keV was chosen. In order
to reach sufficient photon flux density in combination with
a narrow bandwidth illumination, the beamline’s double-
multilayer monochromator was used to select the correspond-
ing harmonics from two undulators (type: u32). Additionally,
16 so-called compound-refractive lenses where inserted into
the X-ray optical beampath as collimators in order to further
increase the photon flux density at the position of the sample.
A mild diffuser upstream of the sample was used to reduce
wave front modulations due to the multilayer reflection (Rack
et al., 2010). An indirect X-ray image detector was applied in
order to obtain highly resolved radiographic projection images
of the sample: a 10×/0.3NA microscope objective projects the
luminescence image of a single-crystal scintillator via a tube
lens onto the sCMOS-based sensor of a camera (type: pco.edge
5.5, PCO AG, Germany). The effective pixel size of the imag-
ing system was 0.64 µm (Douissard et al., 2012). In order to
enhance the contrast, so-called propagation-based phase con-
trast was used. Here, by leaving a drift space between sample
and detector (40 mm in our case) the refraction at interfaces
results in an edge enhancement; see Cloetens et al. (1996). To
guaranty good tomographic reconstruction with a sufficient
signal-to-noise ratio, 3600 projection images were acquired
over a 180◦ scan. For the reconstruction by means of filtered

back-projection in combination with phase-retrieval using Pa-
ganin’s approach, the in-house developed software PyHST_2
was used (Paganin et al., 2002; Weitkamp et al., 2011; Mirone
et al., 2014). The high contrast in the images between the filler
particles and the rubber matrix enables further image process-
ing and analysis.

The use of partially coherent X-rays easily available at a
synchrotron light source is highly beneficial for contrast, es-
pecially for weakly attenuating samples. Frequently, when
laboratory-based X-ray sources are used, the contrast within
the images is roughly given by the local physical mass den-
sity. Hence, materials with similar densities like in the present
case are poorly contrasted. The use of (partially) coherent il-
lumination in combination with phase-retrieval techniques
allows for exploiting the full (complex-valued) refractive index
of the materials. The application of phase-retrieval techniques
allows one to establish a direct correlation between a voxel, its
grey-value and the corresponding material phase it represents.
The resulting contrast is an order of magnitude more sensitive
to material changes than the plain attenuation signal.

Estimation of particle size distribution

Now, we present an approach to estimate the size of filler par-
ticles based on the fresh cuts. First, the RSM images require
some image processing steps. The additive shading in images
of fresh cuts obtained by radiometric stereo can be removed
by generating a reference image using alternate filtering, i.e.
morphological opening followed by closure (see, e.g. Angulo,
2011) with adapted structuring elements. The reference image
is subtracted from the original one. The nodges in the image
difference are segmented by watershed transform (Beucher &
Meyer, 1993), where the local minima and maxima of the
surface of the fresh cut serve as markers, and oversegmenta-
tion can be suppressed by a so-called h-min-transform (Soille,
1999).

The stereological problem consists of estimating the size
distribution of the filler particles in the rubber matrix from
observations of height and volume of nodges in freshly made
cuts. This problem can only be solved if information about
the particle shape is available. To make the problem feasi-
ble, we will assume in the following that the filler particles
are of spherical shape, where the half mean particle size (i.e.
the mean width over all space directions) serves as an esti-
mate of radius of the adapted sphere. The sphere assumption
is justified by two facts: First, from tomographic investiga-
tions we know that carbon black consists of globular parti-
cles of approximately spherical shape; see Section Tomogra-
phy. Second, the macro-dispersion of the filler is characterized
by the volume-weighted particle size distribution instead of
the classical number-weighted size distribution, and even es-
timates of volume-weighted distributions are robust with re-
spect to deviations from spherical shape, i.e. small deviations
from spherical particle shape induce only a small bias of the
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stereologically estimated volume-weighted size distribution;
see Ohser & Mücklich (2000), Chapters 6 and 7.

Stereological equation

Let r be the radius of a spherical filler particle inducing a
nodge in the fresh cut. Instead of nodge height and volume,
we consider the height h and volume v of the sphere cap
cut off by the section plane (see Fig. 1E). A simple geometric
consideration yields the relationship

v(r, h) =
{

π
3 h2(3r − h), h ≤ r
0, otherwise

,

which makes clear that the radius r of an individual parti-
cle could be obtained from the height h and the volume v.
However, one should take into account that h and v differ
from the observed height respectively, volume of the nodges.
That is why we are choosing a stochastic approach and esti-
mate the particle size distribution from the height distribution
of nodges.

First, we introduce the filler particle density NV (i.e. the
mean number of filler particles per unit volume of the rubber
specimen) and the nodge density NA (the mean number of
nodges per unit area of the fresh cut) which are related to each
other by NA = 2NV r̄ , where r̄ is the mean particle radius. As-
sume now that the sphere radius distribution has a probability
density function f (r ) and the third moment exists, then

fV (r ) = 4π

3v̄
r 3 f (r )

is the probability density function of the volume-weighted ra-
dius distribution, which serves as a quantity characterizing
the degree of dispersion. Here, the mean particle volume

v̄ = 4π

3

∫ ∞

0
r 3 f (r )d r

is used as a normalization constant. The corresponding prob-
ability distribution function FV (r ) = ∫ r

0 fV (s) d s for r ≥ 0 can
be interpreted as follows: The expression NV (1 − F (r )) is the
mean number of spheres per unit volume with radii at least
r , and VV

(
1 − FV (r )

)
is the volume fraction of spheres with

radii at least r . Furthermore, let G V (h) be the probability dis-
tribution function of the volume-weighted height distribution
of the sphere caps, i.e. VA

(
1 − G V (h)

)
is the total volume of all

nodges per unit area of the fresh cut with heights at least h,
where VA is the total volume of all sphere cups per unit are of
the fresh cut.

The corresponding probability density function gV (h), as far
as it exists, is related to fV (r ) by the integral equation

gV (h) = 1
c

∫ ∞

0
v(r, h) f (r ) d r

= 3v̄

4πc

∫ ∞

h

h2

r 3
(3r − h) fV (r ) d r, h ≥ 0, (1)

where c is again a normalization constant (chosen such that
gV (h) forms a probability density function). The kernel of the
integral on the right-hand side of Eq. (1) is (up to a multi-
plication constant) the function v(r, h)/ 2π

3 r 3, which can be
interpreted as the (conditional) probability that the volume of
a sphere cup of random height is less than the volume of a
sphere cup of height h, given that the (random) sphere radius
is r and the sphere hits the fresh cut. As a consequence, Eq. (1)
is a special case of the Volterra equations considered in Ohser
& Nagel (1988), where a mathematical proof is given; see also
Ohser & Sandau (2000) for a review on inverse problems of
estimating particle size distributions.

Gamma distributed radii. To give an impression of how Eq. (1)
works, we compute the probability density function gV (h) of
the volume-weighted height distribution of the sphere caps
for given probability density function fV (r ) of the volume-
weighted radius distribution. One gets explicit formulas, e.g.
for the very rich class of gamma distributed particle radii with
the distribution parameters λ > 0 and α > 0. From

f (r ) = λαrα−1

�(α)
e−λr , r ≥ 0

with Euler’s gamma function �(z) = ∫ ∞
0 tz−1e−t d t it follows

from integration by parts

fV (r ) = λ3+αr 2+α

�(3 + α)
e−λr , r ≥ 0,

which is again the probability density function of a gamma
distribution with the parameter α + 3. Now, putting fV (r ) in
Eq. (1) yields

gV (h) = 4h2λ3
(
3�(1 + α, λh) − λh�(α, λh)

)
3�(4 + α)

, h ≥ 0,

where the recursion formula �(1 + z, u) = u�(z, u) + uze−u

was exploited for the upper incomplete gamma function
�(z, u) = ∫ ∞

u tz−1e−t d t. The mean radius is r̄ = α/λ, and the
volume-weighted mean is r̄V = (α + 3)/λ.

In the following, we will make use of the fact that for α = 1
the gamma distribution simply forms an exponential distri-
bution, and for α = n

2 and λ = 1
2 the gamma distribution is

equivalent to a chi-square distribution.

Exponentially distributed radii. For the density function
f (r ) = λ e−λr , r ≥ 0, we have

fV (r ) = λ4r 3

6
e−λr , r ≥ 0 and

gV (h) = λ3h2

18
(3 + 2λh) e−λh, h ≥ 0.

The functions fV (r ) and gV (h) are depicted in Fig. 4A for
λ = 0.4. For exponentially distributed radii, the difference of
both functions is very small and, as a consequence, an estimate
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Fig. 4. The probability density functions fV (r ) and gV (h) for (A) exponentially distributed radii with λ = 0.4 and (B) for chi-square distributed radii with
n = 7.

of gV (r ) could be used in this case as an estimate of the macro-
dispersion fV (r ).

Chi-square distributed radii. For χ2
n -distributed radii with the

probability density function

f (r ) = r
n
2 −1

2
n
2 �

(
n
2

) e− r
2 , r ≥ 0

it is

fV (r ) = r 2+ n
2

23+ n
2 �

(
3 + n

2

) e− r
2 , r ≥ 0

and

gV (h) =
h2

(
6�

(
1 + n

2 , h
2

) − h�
(

n
2 , h

2

))
12�

(
4 + n

2

) , h ≥ 0.

It is easy to see that fV (r ) is the probability density function
of the chi-square distribution with the parameter n + 6. A
comparison of both functions for higher order n shows that
they can considerably differ (see Fig. 4B). This shows that in
general an estimate gV (r ) cannot serve as a suitable estimate
for the macro-dispersion fV (r ).

Stereological estimation

The above explanation might suggest that the height distribu-
tion of the nodges is to be evaluated from the size distribution
of the filler particles. Of course, that is not the case. Instead,
from the height distribution of the nodges, which can be de-
termined at a fresh cut, we have to estimate the particle size
distribution. This means that we have to solve an inverse
problem, where the integral equation (1) must be solved for
the unknown macro-dispersion fV (r ). For this purpose, we
turn form the probability density functions fV (r ) and gV (h)

to the corresponding probability distribution functions FV (r )
and G V (h), respectively. Integration of Eq. (1) yields

G V (h) =
∫ h

0
gV (t) d t = c

∫ h

0

∫ ∞

0
v(r, t) f (r ) drd t

= 3v̄

4πc

∫ ∞

h

h3

r 3

(
r − h

4

)
FV (d r ), h ≥ 0 (2)

which is a Volterra integral equation. This equation can be
solved as follows: Let � be the width of the bins for the height h
of the nodges as well as for the radius of the particles. Further-
more, let be chosen a bin number m such that m� is largest
height occurring in the sample. Then numerical integration of
the right-hand side of Eq. (2) by simple rectangular quadrature
rule gives the linear equation system

G V (k�) = 3v̄

4πc

∫ ∞

h

(k�)3

r 3

(
r − k�

4

)
FV (d r )

≈ 3v̄�

4πc

m∑
i=k

k
i

(
i − k

4

)
(FV (i�) − FV ((i − 1)�)) ,

k = 1, . . . , m.

Finally, introducing the vectors ϕ = (ϕi ) and ϑ = (ϑk ) of
the relative frequencies (histograms) ϕi = FV (i�) − FV ((i −
1)�) for i = 1, . . . , m respectively, ϑk = G V (k�) − G V ((k −
1)�) for k = 1, . . . , m, the last equation can be rewritten as

ϑ ≈ 3v̄�

4πc
Pϕ (3)

with the upper triangular matrix P = ( pki ) of coefficients

pki = k3

i 3

(
i − k

4

)
− (k − 1)3

i 3

(
i − k − 1

4

)

for k = 1, . . . , m, i = k, . . . , m and pki = 0 for i < k. The
transition matrix P is regular, i.e. its inverse P−1 exists, and
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thus the unknown vector ϕ of the frequencies of the volume-
weighted particle size distribution can be obtained from the
vector ϑ of the frequencies of the volume-weighted height of
nodges by

ϕ ≈ 4πc
3v̄�

P−1ϑ, (4)

where the vector ϑ is replaced by an estimate obtained from a
sample of height and volume of nodges observed in the fresh
cut, e.g. by radiometric stereo.

Examples of estimating the histogram ϕ of the filler particle
size distribution from the histogram ϑ of the nodge height
distribution estimated using Eq. (4) are shown in Fig. 5 where
images taken by RSM. Fig. 5A is for a rubber (R1) in an early
state of carbon black filler incorporation and in Fig. 5B is for
a rubber (R2) with advanced incorporated carbon black. As
one can see, the estimate ϑ can be considerably different from
ϕ as in Fig. 5A, but it is also possible that ϑ is close to ϕ as in
Fig. 5B. The root-mean-square deviation between the ϑk and
the ϕk (est) given by√√√√ 1

m

m∑
k=1

(
ϑk − ϕk (est)

)2

is 4.1% for the rubber specimen R1 and 0.8% for R2, respec-
tively. Notice that the condition number of the transition ma-
trix P is small and, as a consequence, small errors of esti-
mating ϑ usually induce only small errors of the expression
on the right-hand side of Eq. (4). For example, for m = 12
the condition number with respect to the spectral norm is
cond P = 1.141. For comparison, under similar conditions
the condition number of the transition matrix for the numeri-
cal solution of Wicksell’s corpuscle problem is 8.28, i.e. solving
Wicksell’s problem is much more numerically instable.

The total time for processing the RSM images, including
the segmentation of the nodges and measuring their height
and volume, is about 0.5 s. It depends slightly on the nodge
number. The core of the solution of the stereological problem
given by Eq. (4) is the computation of the inverse of the ma-
trix P which is done for a usual bin number 12 ≤ m ≤ 20
in nanoseconds.

Evaluation

The stereological method presented in the previous section
is now evaluated in a twofold way: First, a simulation study
is made, where the nodges in a fresh cut are generated by
simulating the shift of the filler particles during virtual cut-
ting and the deformation field after retention is computed
by finite element method. This allows a comparison of the
stereologically estimated filler size distribution with the true
one used as input of the simulation. Second, the estimated
filler size distribution is compared with that one obtained by
segmenting the filler particles in µCT images of the rubber mi-
crostructure.

A direct comparison of results from RSM and DFM is not
possible, because RSM generates 3D images of the curved sur-
face of fresh cuts while DFM images are 2D, and from these 2D
images one can estimate only the lateral extent of the nodges.
The two quantities, namely the size distribution of the particles
and the distribution of the lateral size of the nodges, are not
comparable. It can be concluded, however, from the distribu-
tion of the lateral nodge size (s1 in Fig. 1E) on the distribution of
the particle size s3, where we remark that in case of Rayleigh-
distributed particle sizes both distributions are identical; see
Ohser & Mücklich (2000). (The latter, in turns, is only fulfilled
if the size s1 of the nodges in fresh cuts is identical with the size
s2 of the particle section profiles in the corresponding planar
section, which is generally not the case.) But one can also give
examples in which both distributions differ: For example, if all
particles are of the same size, then the mean lateral size of the
nodges is π/4 times smaller than the particle size. If, on the
other hand, the particle size is χ2

n -distributed with n ≥ 6, then
the mean lateral size of the nodges is larger than the mean
particle size. In other words, whether measurements made on
RSM and DFM images match or not depends on the particle
size distribution itself, but that is just the quantity we want.
Furthermore, we state that the stereological estimation of the
particle size distribution from samples of lateral nodge sizes
(obtained from DFM images) by solving Wicksell’s corpuscle
problem is numerically more unstable than estimating the
particle size distribution from samples of height and volume of
nodges (obtained from RSM images). This follows immediately
from comparison of the condition numbers for the transition
matrices P ; see Section Stereological Equation. Finally, mea-
surements of the lateral nodge size s1 made on DFM images
can considerably differ from the size s2 of the section profiles;
see Fig. 1E. This difference, which depends on the contrast of
DFM images as well as on the choice of the threshold level for
binarization, can lead to an considerable bias of the estimated
particle size distribution.

Simulation study

We start from a spatial system of spheres whose centres form a
Poisson point field, i.e. the number of spheres in the specimen
is Poisson distributed and the centres are uniformly distributed
in the specimen. Furthermore, the random radii are stochasti-
cally independent of each other and exponentially distributed
with λ = 1 µm−1 (i.e. r̄V = 4 µm). The use of the Poisson point
field is motivated by the fact that the small number of particles
per unit area and the small particle size imply that overlap-
ping is rare and, thus, affects the results of the simulation only
slightly. The filler particles are assumed to be inelastic, and for
the uniform Young’s modulus and the uniform Poisson’s ratio
of the rubber matrix we are setting E = 0.1 GPa and γ = 0.5,
respectively. In the initial state, the stress field is assumed to
be zero almost everywhere. For a chosen section plane with a
normal direction parallel to the z-axis, all spheres hitting this
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Fig. 5. Histograms ϑ and ϕ of volume-weighted distributions of nodge height respectively, filler particle size, bin width of 2 µm: (A) rubber R1 with an
early state of filler incorporation, data from 217 nodges; (B) rubber R2 with an advanced incorporation, data from 276 nodges.

Fig. 6. Visualization of nodge patterns in fresh cuts simulated by numerical computation of the deformation of a rubber specimen after virtual cutting a
rubber specimen with a razor plate: (A) a low and (B) a higher number of spherical filler particles per unit volume of the specimen.

plane are shifted perpendicular to this plane as long as they
are only touching the plane; see Fig. 4B. These shifts induce
a stress field in the rubber matrix (Bathe, 1996; Zienkiewicz
et al., 2005); see also Chapter 9 in Ohser & Schladitz (2009).
Now, the cut along the section plane is performed, i.e. the nor-
mal strain εz as well as the shear strains γxz and γyz are set to
zero at the plane. Finally, the displacement field induced by
the stress field is computed which yields a simulated fresh cut
with nodges as shown in Fig. 6.

Using the method, it is possible to compare the true his-
togram ϕ of the sphere radii with that one estimated by Eq. (4)
from the simulated imprints. As Fig. 7 shows, the estimated
and true ϕ are approximately the same. The root-mean-square
deviation between the ϕk (true) and the ϕk (est) is 0.5%. The
small shift of ϕ to lower values is mainly a consequence of the
discretization of the integral equation (1). A smaller spacing �

would reduce this systematic error, but in case of a low num-

ber of observed nodges, a small � will increase the statistical
error of the estimated ϕ.

Tomography

From the rubber R1, an additional sample was studied in order
to investigate the filler dispersion by µCT. Fig. 8 shows a vol-
ume rendering of the 3D sub-image, where the filler appears
opaque, and the rubber matrix is transparent. The effective size
of the correspondingµCT image was 715×650×845µm3. Be-
cause of the high contrast between filler and rubber matrix,
the particles can be segmented by simple binarization (using a
constant threshold level) followed by a labelling of connected
components with respect to the 26-adjacency of the pixels. The
total number of filler particles in the image was about 46 900.
From each of the particles, the size (i.e. the mean width over 13
space directions) and the volume v were determined, where
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Fig. 7. Histograms ϑ and ϕ of volume-weighted distributions of nodge height respectively, filler particle size, bin width of 0.5 µm: The true ϕ known
from the generation of the sphere system is compared with the estimated ϕ obtained by Eq. (4) from the histogram ϑ of the volume-weighted height
distribution of simulated imprints.

the half mean width is used as the radius of the adapted sphere.
For details on 3D image processing and analysis (in particu-
lar on the choice of pixel adjacency); see Ohser & Schladitz
(2009). The volume fraction of particles with size larger than
2 µm was 0.06%. That means that the degree of dispersion is
about 100%.

In Fig. 5A, the histogram of the volume-weighted parti-
cle size distribution estimated from the sub-volume shown
in Fig. 8 is compared with that one stereologically estimated
from the histogram of the volume-weighted height distribu-
tion of the nodges. The estimated relative frequencies of both
histograms differ only slightly. The root-mean-square devia-
tion between the ϕk (µCT) and the ϕk (est) is 0.4%. It turns out
that image acquisition of fresh cuts of rubber specimens using
the radiometric stereo microscope nSPEC 3D combined with
a stereological estimation of the size distribution of the filler
particles is an appropriate method for evaluation of macro-
dispersion.

To justify the sphere assumption for the globular filler
particles made in Section Stereological Equation, the shape
factor

f1 = 6
√

π
V√
S3

of a particle was determined from the 3D data, where V and
S are the volume and the surface area of the particle, re-
spectively; see Ohser & Schladitz (2009). This shape factor is
normalized in such a way that f1 = 1, if the particle is of

Fig. 8. Tomographic image showing carbon black filler particles in rubber:
volume rendering of a sub-volume of 1100×1000×1300 pixels out of the
complete 3D data set with 2560×2 560×2160 pixels of size 0.65 µm.
Filler particles (or particle agglomerates) of a volume larger than 100 µm3

are highlighted in red.
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spherical shape. In cases of a non-spherical particles, one ob-
tains values for f1 between 0 and 1 describing various aspects
of the deviation from sphere shape. The mean and standard
deviation of this shape factor over all particles in the tomo-
graphic image shown in Fig. 8 are 0.986 and 0.041, respec-
tively, i.e. the deviations from spherical shape are relatively
small.

Discussion and conclusion

RSM presents a practical method of accurately estimating
the volume-weighted size distribution of the filler particles
(nodges) in rubber samples (fresh cuts) by allowing for the
direct determination of the surface topology. The uneven
contours of this 3D surface are a representation of the size
and distribution of the nodges. The height of each bump,
relative to the median surface, corresponds to the radii of
the spherical nodges. A spherical model is assumed for all
nodges due to the expected geometry of carbon black and
the utilization of established stereological principles to ac-
curately predict the total distribution of filler in the entire
formulation.

We remark that the volume of the nodges considerably dif-
fers from that of the sphere caps. On the other hand, the nodges
are only slightly higher than the ball caps. The reason for that
is that a thin layer of the rubber matrix encloses the top of
the caps. The unknown difference �h between the heights of
nodges and caps is the layer thickness. This difference implies a
small shift of the estimated histograms of the particle size distri-
bution to the right (i. e. to higher values). In our approach, the
difference between the heights of nodges and caps was ignored
(set to zero). On the other hand, the difference �s between the
size s1 of white spots (observed by DFM) and the true size s2

of the section profiles of the particles is much larger than �h.
Thus, the shift of the histogram of the estimated area-weighted
size distribution of the white spots can be considerable. Even
more dramatic are the effects on the estimation of the volume
fraction VV of the filler particles and, thus, on the degree of
dispersion: While the area fraction AA of the section profiles
is equivalent to the volume fraction VV of the particles, the
area fraction of the white spots can be dramatically larger
than VV . This generally leads to a significant overestimation
of the volume fraction URF of the unresolved filler from DFM
images.

Basically, one could fit a model to the nodges, where a suit-
able model is, e.g. the Gaussian function

gσ (x) = he− ‖x‖2

2σ2 , x ∈ R
2

with σ = √
r h/2. This Gaussian is centred at the orthogo-

nal projection of the particle centre on the section plane,
and the principal curvatures of gσ (x) at x = 0 are the same
as that of the ball cap. Then the volume v of the nodges is

v(r, h) = πr h2. This is very close to the approach used in Sec-
tion Stereological Equation and would lead to similar results
of the stereological estimation of the volume weighted particle
size distribution.

In this work, we have shown by a simulation study that the
particle size distribution stereologically estimated from sim-
ulated fresh cuts is largely consistent with the true particle
size distribution used as input of this study. Furthermore, we
did supplementary investigations by µCT using synchrotron
radiation. The particle size distribution estimated from the to-
mographic data is nearly the same as the size distribution
stereologically estimated from the data obtained by RSM.

The new microscopic method combined with the stereo-
logical estimation of size distribution presented in Section
Estimation of Particle Size Distribution can be extended also
on systems of non-spherically shaped polymeric particles (see
Champion et al., 2007), and other hydrocarbon polymers,
which can be made of known irregular shape and dispersed
in various media. Organic applications can include: histology
(e.g. cell counting), hematology (e.g. analysis of biconcave red
blood cells) and biomaterial (e.g. coating applications for tissue
growth or adhesion).

The presented work is gauged against ASTM D7723–18
(2018) and ISO standards that provide guidelines on various
classes of methods of quantifying filler percentage in rubber
samples (electrical, mechanical, optical and miscellaneous)
but stop short of describing a singular gold standard. This lack
of a clear method presents an opportunity for new methods
to overcome the limitation of current techniques and those
previously adapted. Optical methods offer several advantages
over other techniques, namely speed of measurement, system
cost, automation, sample size, measurement accuracy and
preserving the sample. Compared to µCT with synchrotron
radiation, optical methods can be applied in parallel to active
mixing processes, with minimal sample preparation, relatively
low-cost and outside of specialized synchrotron light source
facilities.

One of the most popular optical methods implemented in
the dark field microscope is DisperGRADER, which utilizes a
calibration reference standard of reflections to indirectly de-
termine the filler amount in the dispersion. The presented work
overcomes the need for a reference standard and the distortion
(special and stereological) that arise from the use of reflections
for a direct measure. Laser-based methods (laser profilometry
and laser scanning) overcome some of these challenges but
are not ideal for environments of rapid changes in topology
(steep gradients) and noisy surfaces such as those of roughly
cut rubber samples.

In contrast to shape from focus, radiometric stereo does not
succumb to the problem of spatial oversampling in the z-axis.
RSM also offers speed advantages (acquisition and computa-
tion) and a robustness of operation that makes it practical
for deployment on an active production line. The system also
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utilizes the same footprint as a conventional microscope (and
common inspection systems), it does not require additional
camera equipment, exotic external lighting or full encapsula-
tion of the sample (e.g. cover of the sample from light), allowing
for the use of minimal profile quick-attach sample holders. In
contrast to other surface measures, radiometric stereo does
not prevent the serial acquisition of reflected microscopy data,
which is advantageous in case where the nodges exhibit fluo-
rescent or other light properties that can aid in the stereological
reconstruction of the surface volume. Radiometric stereo can
also be used in conjunction with principles of structure from
motion to provide additional information as a function of ap-
plied special changes in the sample. This is valuable in cases
where a punch is used to obtain samples from the rubber or
where the sample is quite large and cannot fit on a traditional
holder. RSM is ideally suited for in situ applications as the sys-
tem is mobile and can be placed on a moving track above the
sample for rapid spatial scanning.

In conclusion, RSM offers a low-cost and practical method
of acquisition images from fresh cuts surfaces of rubber spec-
imens and stereological size distribution estimation of glob-
ular filler particles in a rubber matrix. In future work, we
will further improve the quality of stereological estimation by
replacing the numerical solution of Eq. (1) using the simple
rectangular quadrature rule applied to Eq. (2) by the quasi-
likelihood approach by Baaske et al. (2018), which allows the
use of a parametric models for the particle size distribution.
Furthermore, the assumption of a modified non-Lambertian
reflectance, e.g. based on the solution of an explicit partial
differential equation using Lax-Friedrich’s sweeping method
(see Ahmed & Farag, 2006) could improve the quality of im-
age acquisition; see also Vogel et al. (2008) for an alternative
approach related to Phong’s reflection model. Finally, neu-
ronal networks offer the advantage of training a model ver-
sus a known standard obtained by other techniques, such as
atomic force microscopy. This training could increase the sen-
sitivity for small nodges (small exposed height) and artefacts
introduced by fresh cuts of rubber samples.

The new RSM allows a very accurate determination of the
macro-dispersion of filler in rubber that meets the increasing
requirements of industrial quality control. The measurement
accuracy is superior to that of the DFM, since the particle size
distribution can be determined directly with the RSM, while
based on the DFM measurements only indirectly can be con-
cluded on macro-dispersion, and even this indirect method
can cause large errors. The cost of RSM and the measurement
times are significantly higher than those of DFM. Neverthe-
less, they are on a scale appropriate for use in industrial lab-
oratories. Finally, we remark that quality control with µCT
has been established for a long time. However, high contrast
imaging of carbon black in a rubber matrix requires (par-
tially) coherent illumination combined with phase-retrieval,
but until now this is only limited available for laboratory
µCT.
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