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Abstract

Dengue viruses (DENVs) are emerging, mosquito-borne flaviviruses which cause dengue fever and dengue hemorrhagic
fever. The DENV complex consists of 4 serotypes designated DENV1-DENV4. Following natural infection with DENV,
individuals develop serotype specific, neutralizing antibody responses. Monoclonal antibodies (MAbs) have been used to
map neutralizing epitopes on dengue and other flaviviruses. Most serotype-specific, neutralizing MAbs bind to the lateral
ridge of domain III of E protein (EDIII). It has been widely assumed that the EDIII lateral ridge epitope is conserved within
each DENV serotype and a good target for vaccines. Using phylogenetic methods, we compared the amino acid sequence
of 175 E proteins representing the different genotypes of DENV3 and identified a panel of surface exposed amino acids,
including residues in EDIII, that are highly variant across the four DENV3 genotypes. The variable amino acids include six
residues at the lateral ridge of EDIII. We used a panel of DENV3 mouse MAbs to assess the functional significance of naturally
occurring amino acid variation. From the panel of antibodies, we identified three neutralizing MAbs that bound to EDIII of
DENV3. Recombinant proteins and naturally occurring variant viruses were used to map the binding sites of the three MAbs.
The three MAbs bound to overlapping but distinct epitopes on EDIII. Our empirical studies clearly demonstrate that the
antibody binding and neutralization capacity of two MAbs was strongly influenced by naturally occurring mutations in
DENV3. Our data demonstrate that the lateral ridge ‘‘type specific’’ epitope is not conserved between strains of DENV3. This
variability should be considered when designing and evaluating DENV vaccines, especially those targeting EDIII.
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Introduction

Dengue viruses (DENVs) are mosquito-borne flaviviruses and

the agents of dengue fever and dengue hemorrhagic fever (DHF).

According to the World Health Organization, over 2.5 billion

people are at risk of contracting dengue, 100 million people

develop symptomatic infections and up to 50,000 die from DHF

each year. The DENV complex consists of 4 serotypes (DENV1-

DENV4). DENVs have antibody epitopes that are unique to each

serotype and epitopes that are cross reactive between serotypes.

People who have recovered from primary DENV infections

develop long term, protective immune responses against the

homologous serotype only. In fact, individuals exposed to a second

infection with a different serotype face a greater risk of developing

DHF indicating that pre-existing immunity can exacerbate disease

under some conditions [1].

As previously infected individuals do not appear to be re-

infected with the same serotype, it is widely assumed that

neutralizing antibody epitopes are conserved among strains

belonging to the same serotype [2,3]. In fact, the current strategy

for developing dengue vaccines is based on the assumption that a

neutralizing immune response directed to a single strain will

protect against most if not all strains of DENV within the serotype.

However, there is considerable genetic diversity within each

serotype such that each has been subdivided into genotypes [4].

Despite this diversity, surprisingly few studies have explored how

naturally occurring strain variation within each serotype influences

DENV neutralization. Blaney and colleagues immunized monkeys

with candidate live attenuated dengue vaccines and characterized

the immune response in monkeys by using a panel of viruses

representing the 4 serotypes and genotypes within each serotype.

They observed large differences in neutralization titer when

comparing different genotypes of DENV3 [5]. In a study of

pediatric dengue cases in Thailand, investigators observed

significant differences in the ability of sera to neutralize reference

and clinical strains of DENV3 [6]. Guzman and colleagues

reported that amino acid sequence differences between DENV3

strains can have strong influences on virus neutralization by

murine and human immune sera [7]. Studies with other

flaviviruses have also demonstrated that neutralization is depen-

dent on the lineages and strains used in the assay [8,9]. Thus, the

current paradigm that neutralizing antibody epitopes are con-

served within each serotype may not accurately depict the

complexity of the antigenic relationships, especially in DENV3.
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Antibodies, in particular, have emerged as key effector

molecules responsible for protective and pathogenic immune

responses to DENV [1]. The DENV envelope (E) protein is the

major target of neutralizing antibody [10]. E protein mediates

attachment to host cells and low pH fusion of the viral and host

cell membranes. The crystal structures of E from several

flaviviruses (tick borne encephalitis, DENV2, DENV3 and West

Nile) have been solved [11–14]. Individual subunits of E protein

consist of three beta-barrel domains designated domains I (EDI), II

(EDII) and III (EDIII) and the native protein is a homodimer

[11,12,14]. Mouse monoclonal antibodies (MAbs) that bind to all

three domains of DENV E have been generated and characterized

[10,15–17]. The most potent neutralizing MAbs bind to an

epitope on the lateral ridge of EDIII of flaviviruses [10,18,19].

This epitope, which is not conserved between dengue serotypes,

has been the focus of much recent work because it might be the

target of the natural human immune response that leads to type

specific neutralization. Investigators are also testing EDIII as a

vaccine for inducing antibodies that neutralize a specific serotype,

without inducing serotype cross reactive antibodies with potential

for disease enhancement [20,21].

In the present study, we have examined the phylogenetic

relatedness of the E protein sequences from a large number of

viruses representing the different genotypes of DENV3. Many

surface exposed amino acids were variable between established

genotypes of DENV3. Especially noteworthy was the observation

that the EDIII lateral ridge, which is a known site targeted by

neutralizing MAbs in related flaviviruses, was variable between

DENV3 genotypes. We experimentally demonstrate that naturally

occurring amino acid differences in DENV3 EDIII lead to

differential binding and neutralization by MAbs.

Materials and Methods

Cells and viruses
Aedes albopictus C6/36 cells were maintained at 28C in MEM

(Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco),

penicillin (100 U/ml) and streptomycin (100 mg/ml) in the pre-

sence of 5% CO2. Human leukemic monocyte lymphoma cell line

U937 expressing DC-SIGN (U937 DC-SIGN) were maintained

at 37C in RPMI (Gibco) supplemented with 10% FBS, 50 mM

beta mercaptoethanol, penicillin (100 U/ml) and streptomycin

(100 mg/ml) in the presence of 5% CO2. All media were also

supplemented with 0.1 mM non-essential amino acids (Gibco) and

2 mM glutamine (Gibco).

Working virus stocks were obtained by inoculating C6/36

mosquito cells in MEM (Gibco) supplemented with 2% FBS

(Gibco), penicillin (100 U/ml) (Gibco) and streptomycin (100 mg/

ml) (Gibco) 0.1 mM non-essential amino acids (Gibco) and 2 mM

glutamine (Gibco) and growing the virus for eight days at 28C

under 5% CO2. Supernatants were harvested, clarified by

centrifugation and, supplemented with 15% FBS and stored in

aliquots at 280C. Viral titers were determined by plaque assay on

Vero-81 cells as previously described [22] and only stocks with a

titer above 105 PFU/ml were used in experiments. The reference

virus strains used in the study were strains West Pacific 74 (DENV

1), S16803 (DENV2), CH53489 (DENV3) and TVP-360

(DENV4) routinely used in the DENV neutralization test. These

viruses were obtained from Robert Putnak (Walter Reed Army

Institute of Research, MD) and they have been passaged .10

times in different mammalian (Vero, Diploid fetal rhesus lung and

Primary African Green monkey kidney cells) and insect (Aedes

albopictus C6/36 cells) cell lines. For studies on different genotypes

of DENV3, we also used UNC3043 (strain 059.AP-2 from

Philippines, 1984), UNC 3009 (D2863, Sri Lanka 1989), and

UNC3066 (strain 1342 from Puerto Rico 1977). These viruses

were obtained from Dr. Duane Gubler and Claire Wong at CDC,

Fort Collins, CO. These viruses had been passaged 3 times in Aedes

albopictus C6/36 cells prior to being used in these studies.

Monoclonal antibodies
MAbs 8A1 (IgG1) and 14A4 (IgG1) against DENV3 were

provided by Robert Putnak (Walter Reed Army Institute of

Research, MD). MAb1H9 (IgM) was provided by John Aaskov

(Queensland University of Technology, Australia) [23]. MAb 1A1-

D2 was provided by John Roehrig, (DVBID, CDC, Fort Collins,

CO). MAbs 8A5 (IgG1) and 12C1 (IgG1) were generated for this

study by immunizing mice with purified DENV3 strain CH53489.

Purification of DENV
Vero-81 cells were inoculated with UNC 3043 (DENV3 -

genotype I), CH53489 (DENV3 - genotype II), UNC 3009

(DENV3 - genotype III), or UNC3066 (DENV3 -genotype IV) at

an MOI of 0.1. The virus-containing media was harvested 5–7

days after infection and centrifuged to pellet cell debris. The

clarified media was laid on top of a 20% sucrose (wt/vol) cushion

and centrifuged (72,0006g for 5 h) to pellet the virus. The virus

pellet was allowed to dissolve overnight in PBS before layering

on a 10%–40% iodixanol gradient and being centrifuged at

163,7006g for 120 min. The virus-containing fractions were

harvested. PBS was added to the virus to dilute the iodixanol.

The diluted solution was centrifuged (72,0006g for 5 h) to pellet

the virus and remove the iodixanol. The virus pellet was

resuspended in PBS and virus protein content was estimated by

spectrophotometry. The virus was stored at 280uC.

Expression and purification of recombinant EDIII (rEDIII)
Recombinant EDIII constructs were created using cDNA from

the following virus strains to represent each serotype of DENV and

genotypes of DENV3: West Pacific 74 (DENV 1), S16803

(DENV2), UNC 3043 (DENV3 -genotype I), CH53489 (DENV3

- genotype II), UNC 3009 (DENV3 - genotype III), UNC3066

(DENV3 -genotype IV), and TVP-360 (DENV4). Envelope gene

Author Summary

Dengue viruses are mosquito-borne flaviviruses and the
agents of dengue fever and dengue hemorrhagic fever. It
has been widely assumed that antibodies that neutralize
dengue bind to regions on the viral envelope (E) protein
that are conserved within each serotype. However, few
studies have explored how natural variation influences
dengue-antibody interactions. Mouse antibodies that
strongly neutralize dengue bind to a region on domain
III of E protein. This region has been the focus of much
recent work because it might be the target of protective
human antibodies as well. We compared a large number of
E protein sequences and discovered that the region on E
protein domain III targeted by neutralizing antibodies was
highly variable between strains of dengue serotype 3.
Using a panel of antibodies, we experimentally demon-
strate that natural strain variation in dengue serotype 3
has a strong influence on antibody binding and neutral-
ization. Our results challenge the dogma that neutralizing
antibody binding regions are conserved within each
serotype. The results of this study are relevant to the
current global effort to develop and evaluate dengue
vaccines.

Antibody Neutralization of Dengue Virus
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fragments encoding EDIII from DENV1, DENV3, and DENV 4

(AA295–398) and DENV2 (AA297–399) were amplified using

Vent polymerase (NEB, Ipswich, MA). Reverse primers used in

the study were designed to introduce either Hind III (for DENV2–

4) or PstI (for DENV1) restriction site at the 39 ends of the PCR

products. PCR products were digested with HindIII or PstI and

cloned into pMAL c2X vector (NEB) to generate recombinant

EDIII that is fused to maltose binding protein (MBP-EDIII) at the

N terminus according to the manufacturer’s instructions. MBP-

EDIII were expressed in E.coli DH5a (Invitrogen) and purified

using amylose resin affinity chromatography (NEB) according to

the manufacturer’s instructions.

Site directed mutagenesis of rEDIII
Selected amino acids residues on rEDIII were mutated by site

directed mutagenesis using Quickchange multi kit (Stratagene, La

Jolla, CA). When selecting sites to mutate, we gave precedence to

positions on loops and (not beta sheets) because we did not want to

disrupt the overall folding of EDIII. Thus, of the 20 positions we

mutated, 16 (301–303- N-terminal linker loop; 323, 325–330- BC

loop; 357, 358, 361- DE loop; 380, 382, 383- FG loop) are located

on loops that form the lateral ridge neutralizing epitope recognized

by type specific neutralizing MAbs [15,17]. We also mutated

amino acids on the A strand (positions 304, 308, 310) because this

strand forms a dengue subcomplex epitope recognized by

neutralizing MAbs [15]. We mutated position 386 on the G

strand because Serafin and Aaskov reported that mutations at this

position lead to escape from 1H9 antibody used in the current

study [23]. PCR primers were designed using QuikChangeH
Primer Design Program (www.stratagene.com) and PCR was

conducted according to manufacturer’s instruction. Single strand-

ed pMal c2X plasmids (NEB, Ipswich, MA) encoding MBP-EDIII

fusion proteins with amino acid substitutions were cloned into

DH5a cells for expression and purification of mutant rEDIIIs.

Substitution of amino acids in all mutant constructs was confirmed

by sequencing. Expression and purification of mutant rEDIII

proteins were essentially same as mentioned in the earlier

section.

Binding ELISA with recombinant EDIII or purified DENV
antigens

ELISA plates were coated by adding 200 ng/well of purified

EDIII-MBP protein or 75 ng/well of purified DENV antigen in

Carbonate buffer (pH 9.0) and incubating the plates overnight at

4C. Rabbit anti MBP sera (New England Biolabs) was used to

quantify binding of MBP-EDIII to plates. The flavivirus cross

reactive MAb 4G2 was used to quantify binding of virus to plates.

Two hundred nanograms of EDIII-MBP saturated binding to the

ELISA plate and we did not observe appreciable differences in

binding between different EDIII proteins created for this study.

Similarly, 75 ng saturated virus binding to the plate and we did

not observe appreciable differences in binding between different

viruses used in the current study.

The plates were washed with Tris buffered saline with 0.2%

Tween 20 (TBST wash buffer) and blocked with 3% normal goat

serum (NGS) in Tris buffered saline with 0.05% Tween 20 (TBST

blocking buffer) for 1 hour at 37C. Serially diluted MAbs in TBST

blocking buffer were then added to each well and incubated for

one hour at 37C. After washing 3 times with TBST wash buffer,

the plates were incubated for one hour at 37C with alkaline

phosphatase conjugated goat anti-mouse antibody (Sigma). Plates

were washed 3 times with TBST wash buffer and developed by

adding p-nitrophenyl phosphate substrate (Sigma). Optical density

(OD) was measured at 405 nm using a spectrophotometer.

Neutralization assays
The flow cytometry based neutralization protocol as described

by Kraus, et. al., was used with modifications to determine 50%

neutralization values for each antibody [22]. Same amount of

virus (26107 genome equivalent copies) from each DENV3

genotype was used to infect cells in experiments comparing the

neutralization activity of MAbs among the DENV genotypes.

Figure 1. Informative sites in the envelope protein of dengue serotype 3. One hundred and seventy five DENV3 envelope protein
sequences were aligned and 32 informative/variable sites were identified. The figure displays the informative sites and the variability within and
between the different genotypes (I, II, III and IV) of DENV3 [26]. The envelope protein is divided into four domains indicated by the coloring on the
position numbers. Red, domain I; yellow, domain II; blue, domain III; and cyan, transmembrane domain (TM). Residues that are unique to a given
genotype are indicated by unique colors. Brown, genotype I; teal, genotype III; green, genotype IV; pink, unique polymorphisms; light yellow,
predominant residues shared among multiple genotypes; and gray, variation shared among multiple genotypes.
doi:10.1371/journal.ppat.1000821.g001

Antibody Neutralization of Dengue Virus
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Different concentrations of MAbs were mixed with each virus

strain in a 96 well tissue culture plate and incubated for one hour

at 37C in the presence of 5% CO2. U937DC-SIGN cells (56104

cells in 100 ml) were introduced to each well and incubated for an

additional 2 hours at 37C to allow virus to bind to cells. The cells

were then washed with media and 200 ml of fresh media was

added to each well and incubated for 24–72 hr at 37C with 5%

CO2. After washing 2 times with PBS, the cells were fixed and

permeabilized using CytoFix/Cytoperm kit (BD bioscience). The

cells were then stained with Alexa 488 conjugated anti dengue

MAb 2H2 and the percentage of infected cells was measured in a

flow cytometer. EC50 values were calculated using GraphPad

Prism version 4.00 for Windows (GraphPad Software, San Diego

California USA, www.graphpad.com) and non linear regression

analysis.

DENV3 sequence analysis
A total of 175 unique DENV3 full-length envelope protein

sequences were downloaded from GenBank and these were

aligned using ClustalX version 1.83 [24] using the PAM distance

matrix and default parameters. A variety of parameters and

substitution matrices for the alignment were evaluated using the

program TuneClustalv1.0 (http://www.homepage.mac.com/bar-

ryghall/Software.html) and the PAM series matrix was determined

to be the most appropriate, with default gap opening and

extension values. The alignment was used to identify 32

variable/informative sites that were defined as columns of

heterogeneity in the alignment where the same amino acid change

occurred in at least three independent sequences. To display the

32 informative sites (Figure 1), we selected a representative subset

of 28 sequences that contained at least 4 sequences from each

genotype of DENV3 depicted in Figure S1.

Results

Variable amino acids on DENV3 E protein
As individuals infected with DENV appear to develop a long

term, protective immune response to the homologous serotype, it

has been assumed that neutralizing antibody epitopes are

conserved within each serotype [10,25]. To further evaluate this

assumption, we used phylogenetic approaches to compare the full

length E protein sequence of 175 DENV3 strains. The sequences,

which were obtained from Genbank, had representatives of each

of the 4 recognized genotypes of DENV3 [26]. Amino acid

Figure 2. Location of MAb epitopes and informative sites on
DENV3 E protein. The figure is based on the structure of the
ectodomain of DENV3 E protein solved by Modis and colleagues. A. The
flavivirus E protein consist of three beta-barrel domains designated
domains I (red), II (yellow) and III (blue). The native protein is a
homodimer that lies flat on the surface of the virus. The top image
depicts the major antigenic sites on domains I and II (see Table 1 for
details). The bottom image displays the location of informative sites on
domains I and II (pink). B. An enlarged view of domain III displaying
antigenic sites and informative sites. The left image displays the lateral
ridge and A strand epitopes. The right image displays the domain III
informative sites (pink).
doi:10.1371/journal.ppat.1000821.g002

Table 1. Location of antigenic sites and informative sites on dengue type 3 E protein.

Domain of DENV3 E protein1 Antigenic region2
Flavivirus E protein mutations that
influence mouse Mab binding3

DENV3 E protein informative sites
within antigenic region4

EDI (AA 1–52,132–191,278–294) Lateral Ridge 166–169, 179, 291 160, 169, 171, 172

EDI-EDII interphase 49–52, 136, 184–187,268–277 132, 139, 270

EDII (AA 53–131, 192–278) Central Region 123–128, 210, 215, 232–233 62, 62, 120, 124,224, 226, 231

Lateral Ridge 67–72, 75–76, 81–83, 86, 112 68, 81

Fusion Loop 99–107

EDIII (AA 295–392) Lateral Ridge 301–303, 327–330, 381–382 301–303, 329, 355, 380, 383

A strand 305–308

1The amino acids that form each domain of DENV3 E protein are according to Modis et al [12].
2The antigenic regions are based on the assignments and nomenclature used by Pierson et al [19].
3Based on Roehrig and Pierson [10,19].The numbering is based on the DENV3 E protein sequence.
4DENV3 E protein informative sites were identified as described in Figure 1.
doi:10.1371/journal.ppat.1000821.t001

Antibody Neutralization of Dengue Virus
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positions that were variable in 3 or more independent sequences as

identified by alignment were defined as informative sites. Thirty

two of the 493 amino acids on DENV3 E protein were identified

to be informative sites (Figure 1). Individual subunits of E protein

consist of three beta-barrel domains designated domains I (EDI), II

(EDII) and III (EDIII) (Figure 2A). Informative sites were present

in all domains of the E protein (Figures 1 and 2). Many of the

informative sites had mutations that were conserved within but not

between DENV3 genotypes (Figure 1). Twenty eight of the thirty

two informative sites were located on the ectodomain (AA 1 to

392) of E protein. As the structure of the ectodomain of DENV3 E

protein has been solved, we were able to determine if the variant

sites were either surface exposed or buried [12]. Eighteen of 28

informative sites in the ectodomain were surface exposed,

while others were partially or completely buried in the molecule

(Figures 1 and 2).

Relationship of DENV3 E protein informative sites to
known antibody epitopes

We compared the locations of known antibody epitopes on the

flavivirus E protein and the positions of informative sites on

DENV3 E protein. Mouse monoclonal antibodies (MAbs) that

bind to E protein have been mapped to six regions (Figure 2A and

Table 1) [10,18]. Most of the informative sites on EDI and EDII

were within or adjacent to these antigenic regions (Figure 2A and

Table 1). However, the antigenic region at the fusion loop was

completely conserved between DENV3 strains (Table 1).

Many MAbs that strongly neutralize flaviviruses bind to EDIII.

DENV serotype specific (type specific), neutralizing MAbs bind to

epitopes on the lateral ridge of EDIII, which is formed by three

loops connecting the D–E, B–C, F–G beta sheets on EDIII and

the linker region connecting EDIII and EDI (Figure 2B and

Table 1) [10,18]. Investigators have also defined an epitope on

EDIII recognized by MAbs that neutralize more than one DENV

serotype [15,27,28]. This DENV sub complex epitope overlaps

with the lateral ridge epitope but is centered at positions 305–308

(DENV3 numbering) on the A strand of EDIII (Figure 2B and

Table 1). We compared the positions of known antibody epitopes

and DENV3 informative sites on EDIII. The dengue type specific,

lateral ridge epitope overlapped extensively with the informative

sites on EDIII (Figure 2B, Table 1). This analysis supports the

hypothesis that the EDIII lateral ridge epitope engaged by strongly

neutralizing MAbs is not conserved between DENV3 strains.

Mapping of DENV3, EDIII reactive antibodies
To directly address if natural amino acid variation in DENV3

EDIII results in altered antibody binding and neutralization, we

assembled and mapped a panel of DENV3 EDIII reactive mouse

MAbs. All the antibodies selected for this study (8A1, 1H9, 14A4,

8A5, and 12C1) bound to EDIII of DENV3 (Figure 3). MAbs 8A1

and 1H9 were type specific as they only bound to EDIII from

DENV3 (Figure 3) and only neutralized DENV3 (data not shown).

14A4 was a sub-complex specific antibody that bound strongly to

DENV3 and weakly to DENV1 (Figure 3). 14A4 strongly neutralized

DENV3 and weakly neutralized DENV1 (data not shown). 8A5 and

12C1 were non-neutralizing antibodies that cross reacted with EDIII

from all 4 serotypes (Figure 3 and data not shown).

To map the binding sites of the MAbs, we expressed and

purified 28 EDIII recombinant proteins with defined mutations.

The positions to mutate were selected based on antibody mapping

studies done with other flaviviruses [10,15,17,27,29,30]. The

binding of each antibody to wild type and mutant proteins was

compared by ELISA (Table 2). MAb 1H9 is a type specific,

neutralizing DENV3, EDIII reactive IgM antibody that has

previously been shown to select for escape mutation at position

386 [23]. We observed a greater than 80% loss of binding of 1H9

when amino acids at positions 302, 304, 308, 310, 323, 325–330,

357, 358, 361, 380, 382 and 386 were mutated on EDIII (Table 2).

Most of these mutations are on the lateral ridge of EDIII (Figure 4).

MAb 8A1 is a strongly neutralizing, type specific DENV3,

EDIII reactive IgG antibody. With this antibody, we observed a

greater than 80% loss of binding when amino acids at 301, 302,

304, 326–328, 330, 361, 380, 382 and 386 were mutated on EDIII

(Table 2). As in the case of 1H9, most of these positions overlap

with the EDIII lateral ridge epitope. However, 1H9 and 8A1 did

not bind to identical epitopes because some mutations that

influenced 1H9 had marginal to no effect on 8A1 (Table 2).

MAb 14A4 is a neutralizing EDIII reactive IgG antibody that

cross-reacts with DENV3 and DENV1 (Figure 3). This DENV sub

complex antibody bound poorly to recombinant proteins with

mutations at position 308 (A strand), and positions 326 and 328

(B–C loop) (Table 2). These mutations are located at a similar

Figure 3. Binding of mouse MAbs to recombinant EDIII from the 4 serotypes of DENV. MAb binding was detected by ELISA. MAbs 8A1 and
1H9 bound to EDIII from DENV3 only. MAb 14A4 bound to EDIII from DENV3 and to a lesser extent to EDIIII from DENV1. MAbs 8A5 and 12C1 bound
to EDIII from all 4 serotypes.
doi:10.1371/journal.ppat.1000821.g003

Antibody Neutralization of Dengue Virus
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position to a DENV EDIII sub complex epitope recently described

in the literature [15,27]. The sub complex epitope overlaps with

the lateral ridge but is centered on the A strand of EDIII.

The DENV complex cross reactive MAbs (8A5, 12C1) bound to

all the mutant proteins indicating these antibodies likely bind to a

cross reactive epitope outside the lateral ridge region (Table 2). In

Figure 4 we display the structure of DENV3 EDIII and the

location of mutations that reduced the binding (.80%) of each

MAb.

One concern with the above mapping studies was that some

mutations might disrupt the overall folding of EDIII and non-

specifically reduce antibody binding. To address this concern, we

performed binding studies with a well characterized DENV

subcomplex specific MAb 1A1D2, which binds to and neutralizes

DENV1, 2 and 3 but not 4 [15]. The crystal structure of DENV2-

EDIII-1A1-D2 Fab complex has been solved [31]. The 1A1-D2

MAb binds to a highly conformational epitope with a footprint

that consists of the A strand, B strand, DE loop and G strand of

EDIII [31]. When we compared the binding of 1A1-D2 to the

panel of DENV3 EDIII mutants created for this study, a greater

than 80% loss of binding was observed when DENV3 EDIII

positions 304, 308, 310, 326, 328 and 330 were mutated (Table

S1). DENV3 positions 304–310 are on the A strand and positions

326, 328 and 330 are on the BC loop which is adjacent to the B

strand. The EDIII mutations at a distance from the known

footprint of 1A1-D2 did not disrupt the highly conformational

1A1-D2 epitope indicating that the overall folding of EDIII was

preserved in our mutants (Table S1).

Binding of MAbs to different genotypes of DENV3
Several amino acid positions (301, 302, 329, 380 and 386) on

EDIII implicated in binding to MAbs 8A1 and 1H9 (Table 2) were

also identified as informative sites that were not conserved between

DENV3 genotypes (Figure 1). All these positions are located in

close proximity to one another on the EDIII lateral ridge. To

directly address if naturally occurring variation at these informa-

tive sites leads to altered antibody interactions, we compared the

binding of MAbs 1H9, 8A1 and 14A4 to representative EDIII

from each of the 4 genotypes of DENV3. MAbs 8A1 and 1H9

bound to genotypes I, II and III but not to EDIII from genotype

IV (Figure 5). The DENV sub complex specific 14A4 antibody

bound to EDIII from all 4 genotypes (Figure 5). Studies were also

performed to compare the binding of these MAbs to purified

viruses (Figure 6). As predicted from the recombinant EDIII

binding experiments, 1H9 bound to DENV3 genotype I, II and III

viruses but not to the genotype IV virus (Figure 6). Similarly, MAb

8A1 bound to genotypes I, II, and III but not to the genotype IV

(Figure 6). MAb 14A4 bound to all 4 genotypes. These results

indicate that naturally occurring amino acid variation on DENV3

EDIII influence the binding of type specific antibodies.

To verify that amino acid differences at the EDIII lateral ridge

were responsible for MAb binding differences, further studies were

conducted with MAb 8A1 and recombinant EDIII proteins. We

systematically changed amino acids in the EDIII genotype IV

construct to genotype II and defined the minimum number of

changes required to restore the 8A1 epitope. In Figure 7 we depict

the EDIII amino acid differences between the different genotypes.

Simply making single amino acids changes at positions 301 or 302

did not restore binding. Some binding was regained when both

301 and 302 were changed from SG (genotype IV) to LN

(genotype II) (Figure 7). Full binding was restored when positions

301, 302 and 380 were changed (Figure 7) indicating that these

were the critical changes that led to the loss of binding of MAb

8A1 to DENV3 genotype IV. Residues 301, 302 and 380 are

Table 2. Binding1 of mouse MAbs to mutant DENV3 EDIII
proteins.

Mutation Mouse MAb

1H9 8A1 14A4 8A5 12C1

I301A 97 132 100 100 99

I301G 52 3 97 100 100

N302A 9 4 95 100 99

N302G 223 12 100 98 99

T303A 107 77 100 100 100

T303G 43 42 100 100 98

F304A 15 5 30 90 100

K308A 16 37 5 100 96

V310A 16 54 83 97 100

E323G 17 69 99 100 95

K325A 57 74 38 99 98

K325G 12 25 80 90 100

G326A 10 5 18 96 97

E327A 13 4 72 98 100

D328A 10 4 5 93 100

A329G 11 28 74 100 96

P330A 11 6 29 95 100

T357A 35 76 100 97 98

T357G 13 47 100 99 97

K358G 17 50 100 95 100

E361G 6 10 100 98 100

I380A 18 5 97 98 96

I380G 4 4 88 96 98

D382G 5 15 90 98 95

K383A 106 92 100 100 99

K383G 101 97 99 99 100

K386A 4 35 97 96 98

K386G 4 15 96 98 100

1Binding to each mutant expressed as a percentage of binding to wild type
EDIII protein from genotype II.

2The values in bold indicate mutations that reduced MAb biding by .80%
compared to the wild type EDIII.

doi:10.1371/journal.ppat.1000821.t002

Figure 4. Mapping EDIII epitopes for MAbs 8A1, 1H9 and 14A4.
The Figure depicts the positions of mutations that reduced MAb
binding by .80%. Many mutations, mainly on the lateral ridge, reduced
binding of 8A1 and 1H9. In contrast only three mutations inhibited
binding of 14A4.
doi:10.1371/journal.ppat.1000821.g004
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surface-exposed neighbors on the lateral ridge of EDIII, with

residues 301 and 380 separated by approximately 4.7 angstroms.

Thus, these three residues are likely to be a part of a single epitope

bound by 8A1.

Neutralization of DENV3 genotypes by MAbs
Experiments were conducted to compare the ability of EDIII

MAbs to neutralize different genotypes of DENV3. MAbs 8A1

and 1H9 failed to neutralize DENV3 genotype IV (Table 3),

which was expected since these antibodies did not bind to this

virus (Figure 6). Surprisingly, even though we did not observe

differences in the binding of 8A1 and 1H9 to genotype I, II and III

viruses, we observed differences in the neutralization titers

(Table 3). For example the neutralization titers for 8A1 were 10

fold different between genotype I and III viruses (Table 3). 1H9

displayed a 60 fold difference in the neutralization titer between

genotype I and II viruses (Table 3). These results indicate that two

mechanisms influence the ability of MAbs to neutralize virus

infectivity. In the first, mutations which ablate binding also ablate

neutralization. In the second, genetic differences between DENV3

strains that have little effect on in vitro binding can have significant

biological effects on neutralization.

Figure 5. Binding of mouse MAbs to recombinant EDIII from the 4 genotypes of DENV3. MAb binding was detected by ELISA. MAbs 8A1
and 1H9 bound to EDIII from DENV3 genotypes I, II and III but not to IV. MAbs 14A4, 8A5 and 12C1 bound to all 4 genotypes.
doi:10.1371/journal.ppat.1000821.g005

Figure 6. Binding of mouse MAbs to DENV3 genotypes. DENV3 genotype I (DV3-I), genotype II (DV3-II), genotype III (DV3-III) and genotype IV
(DV3-IV) viruses were purified and used in binding assays with MAb 8A1, 14A4 and 1H9. MAb 14A4 bound to all 4 genotypes with similar apparent
affinity. MAbs 8A1 and 1H9 bound to DENV3, genotypes I, II and III with similar apparent affinity, while no binding was detected with genotype IV
virus.
doi:10.1371/journal.ppat.1000821.g006
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Discussion

A long-held paradigm in flavivirus research has been that

DENVs display little if any within intra-serotypic antigenic

variation and this has been the basis for the development of

current multivalent vaccines and immunotherapeutics [10,18].

The main goal of the current study was to characterize the extent

of envelope protein variation within the DENV3 serotype and to

determine if this variation influenced antibody binding and

neutralization. Sequence and structural analysis of the E protein

indicated that 7% of the amino acids were variable between the

four genotypes of DENV3, and most of the non-conserved

residues were surface exposed and located at or proximal to known

antibody binding sites. Particularly striking was the variation

observed on the lateral ridge of domain III, which has previously

been identified as the target of antibodies that strongly neutralize

flaviviruses [10,18]. Finally, we demonstrated that natural

variation on EDIII influences the ability of MAbs to bind and

neutralize DENV3. Our results reported here, together with the

other published studies [8,9] challenge the long held view that

neutralizing antibody epitopes are conserved across DENV strains

belonging to the same serotype.

Our results show that EDIII lateral ridge antibodies 8A1 and

1H9 bound to DENV3 genotypes I, II and III but not genotype IV

indicating that naturally occurring mutations in EDIII can lead to

a total loss of MAb binding. Even though MAbs 8A1 and 1H9

bound to DENV3 genotypes I, II and III with similar apparent

affinity, we observed striking differences in the ability of the MAbs

to neutralize these viruses. The neutralization titers were almost 10

fold different between viruses for 8A1 and 60 fold different for

1H9. Our results indicate that apparent affinity of antibody to

virus immobilized on ELISA wells is not always predictive of the

neutralization titer. There are amino acid differences on the EDIII

lateral ridge of genotype I, II and III viruses (Figure 7) and these

changes may lead to subtle changes in virus antibody interactions

that are not detected in our ELISA binding assay. The flavivirus

envelope proteins undergo low pH induced conformational

changes during viral entry [32]. Some antibodies neutralize

flaviviruses by binding to the virus in endosomes and blocking late

steps in viral entry [29]. It is possible that antibody binding to the

low pH conformation of the viral envelope might be a better

predictor of neutralization potency than binding to the neutral pH

conformation assessed here. Further studies with virions in

different conformations, and an infectious clone of DENV3 to

introduce targeted mutations are needed to dissect the mechanism

underpinning the ability of EDIII lateral ridge antibodies to

neutralize different genotypes of DENV3.

One potential problem with our studies is the possibility that

some of the recombinant EDIII proteins used in the current study

might be grossly misfolded and the binding differences might not

be due to direct interactions between antibody and the altered

amino acid. NMR and antibody binding assays have established

that wild type EDIII expressed as an MBP fusion protein is

properly folded [33–36]. When selecting sites to mutate, we

primarily targeted surface exposed amino acids on loops because

we did not want to disrupt the overall structure of EDIII.

Moreover, in most cases mutations that led to the loss of binding of

8A1 or 1H9 preserved the binding sites of 14A4, 8A5 and 12C1

indicating that the proteins were not grossly misfolded (Table 2).

Finally we probed the conformation of our EDIII mutants using a

DENV sub complex antibody 1A1-D2 which binds to a highly

conformational epitope on EDIII that has been mapped by X-ray

crystallography [31]. As depicted in Table S1, of the 28 mutant

proteins we created only 6 mutants failed to bind to this antibody

(.80% loss of binding). The 6 mutants that failed to bind had

mutations that were on or adjacent to the known footprint of 1A1-

D2. Based on these results we are confident that the recombinant

proteins used in the current study were not grossly misfolded.

Nevertheless, we cannot completely rule out indirect or distance

Figure 7. Identification of naturally occurring mutations that reduce binding of MAb 8A1. The table displays the EDIII amino acid
differences between the different genotypes of DENV3. MAb 8A1 bound to EDIII from DENV3 genotype II (DV3-II) but not genotype IV (DV3-IV).
Binding was partially restored when positions 301 and 302 were changed from the genotype IV to genotype II (DV3-IV SG301-2LN)). Complete
binding was restored when positions 301, 302 and 380 were changed (DV3-IV SG301-2LN, T380I).
doi:10.1371/journal.ppat.1000821.g007

Table 3. Neutralization of DENV3 genotypes by EDIII MAbs.

MAb 50% Neutralization titer1 (mg/ml 6 SEM)

DENV3 genotype

I II III IV

8A1 0.4360.15 1.360.32 4.460.67 NN2

1H9 0.0260.002 1.260.69 0.3760.02 NN

14A4 0.6460.34 1.860.54 2.260.18 0.2560.02

150% neutralization titer determined using U937+DC-SIGN expressing cells.
2Not neutralized.
doi:10.1371/journal.ppat.1000821.t003
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effects of some mutations on antibody binding and some of the

mutations that reduced binding might not be in direct contact with

antibody.

Several groups have focused on developing DENV vaccines

based on recombinant EDIII [21,37,38]. Our results indicate that

EDIII based vaccines need to be carefully evaluated. If people

immunized with these antigens mainly develop neutralizing

antibodies that bind to the lateral ridge epitope recognized by

MAbs such as 8A1 and 1H9, then natural strain variation is likely

to lead to vaccine failure. Alternatively, if EDIII vaccines stimulate

antibodies to a conserved, neutralizing epitope such as the A

strand epitope (recognized by 14A4), then the vaccine might be

broadly protective across DENV3 strains.

Recently we reported that people exposed to natural DENV

infections have low levels of EDIII reactive antibody several years

after recovery from infection [36]. Given the low levels of EDIII

reactive antibody in human immune sera, we were surprised by

the extent of amino acid variation between EDIII from different

DENV3 genotypes. It is plausible that interactions with cellular

receptors and not antibody are behind the observed variability in

EDIII. It is also plausible that EDIII reactive, neutralizing

antibodies are abundant during early stages after infection and

select for mutation in EDIII. Further studies are needed to better

characterize human receptors and antibodies that interact with E

protein and to assess how these interactions contribute to natural

variation in DENV3 E protein.

Supporting Information

Figure S1 Phylogenetic tree of 175 DENV3 E protein sequences

used to identify informative sites. A phylogenetic tree was generated

using Bayesian inference to analyze the evolutionary relationship of

175 unique DENV3 envelope protein amino acid sequences that

were available from Gen Bank at the time this study was initiated.

The four known genotypes of DENV3 are indicated. The numeric

values at the nodes represent Bayesian posterior probabilities and

the distance scale bar represents 0.01 changes per site.

Found at: doi:10.1371/journal.ppat.1000821.s001 (0.15 MB PDF)

Table S1 Binding of mouse MAbs 1A1-D2 to mutant DENV3

EDIII proteins

Found at: doi:10.1371/journal.ppat.1000821.s002 (0.01 MB PDF)
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