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Exosomes are membrane-bound vesicles of endocytic origin, secreted into the
extracellular milieu, in which various biological components such as proteins, nucleic
acids, and lipids reside. A variety of external stimuli can regulate the formation and
secretion of exosomes, including viruses. Viruses have evolved clever strategies to
establish effective infections by employing exosomes to cloak their viral genomes and
gain entry into uninfected cells. While most recent exosomal studies have focused on
clarifying the effect of these bioactive vesicles on viral infection, the mechanisms by which
the virus regulates exosomes are still unclear and deserve further attention. This article is
devoted to studying how viral components regulate exosomes biogenesis, composition,
and secretion.
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INTRODUCTION

Exosomes are a subset of extracellular vesicles (EVs) with endocytic origins (Kalluri, 2016; van Niel
et al., 2018), formed during the maturation of endosomes and upon the invagination and budding of
the limiting membrane of late endosomes to form intraluminal vesicles (ILVs), also known as
multivesicular bodies (MVBs). Exosomes are differentiated by their size (~40–160 nm) and the
presence of specific surface markers such as TSG101, Alix, Flotillin-1, CD9, and CD63, all of which
distinguish exosomes from other extracellular vesicles (Théry et al., 2018). They are secreted by
almost all living cells, under certain physical and pathological conditions, into various biological
fluids, such as urine (Zhou et al., 2008), blood (Chiara et al., 2013), breastmilk (Brinton et al., 2015;
Qin et al., 2016), and saliva (Joseph et al., 2012; Brinton et al., 2015). Exosomes carry a variety of
active components, such as lipids, proteins, mRNAs, and microRNAs, derived from their parental
cells. Surface receptors on exosomes allow them to be targeted to and captured by recipient cells. In
addition, exosomes can be selectively taken up by neighboring and distant cells, acting as important
factors involved in the regulation of intercellular signaling and biological function (Valadi et al.,
2007; Raposo and Stoorvogel, 2013; Yim et al., 2016).
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Exosomes are a product of the endocytic pathway, whereby
early endosomes are formed by the inward budding of the
plasma membrane, mature into early endosomes, and develop
into late endosomes, which are characterized by the formation of
ILVs within the late endosome, also known as MVBs. MVBs fuse
with the plasma membrane and release ILVs into the
extracellular milieu, as exosomes. Alternatively, MVBs move
towards lysosomes resulting in the degradation of the MVBs
and their encapsulated components. The initial function of
exosomes is to expel intracellular metabolic waste into the
extracellular milieu, which is analogous to a cellular waste
removal system (Johnstone et al., 1987; Johnstone et al., 1989).
With further research, it has been proved that exosomes
could modulate cell-cell communication by transferring
bioactive substances. The endosomal sorting complex required
for transport (ESCRT) is a conserved complex of proteins that
regulates the deformation and scission of lipid membranes,
induces the formation of ILVs and exosome secretion, and has
been shown to facilitate vesicle packaging by ubiquitination
(Slagsvold et al., 2005; Mayers et al., 2011; Agromayor et al.,
2012). There is also evidence of an ESCRT-independent
pathway-directed exosomes biogenesis, mediated by ceramide,
phospholipase D2 (PLD2), ADP ribosylation factor-6
(ARF6), and the tetraspanins CD63 and CD81 (Kosaka et al.,
2010; Ghossoub et al., 2014).

Besides exosomes, cells can also secrete other types of vesicles
including microvesicles, ectosomes, and apoptotic bodies. The
accurate isolation and purification of exosomes, to distinguish
them from potential vesicular contaminants, is an essential
aspect of exosomal research. Methods used in the isolation of
exosomes include ultracentrifugation, ultrafi ltration,
chromatography, polymer-based precipitation, affinity capture,
and so on. Ultracentrifugation, which comprises both differential
ultracentrifugation and density gradient centrifugation, is a well-
established, time-consuming method requiring costly
equipment. Ultracentrifugation can reach speeds up to 100,000
g and is most suitable for large-scale rather than small-scale
clinical sample preparations. Ultrafiltration involves the
extraction of exosomes on the basis of their size and molecular
weight (Mw), and is capable of isolating all molecules with an
Mw < 100 kDa cut-off. This method can be used to concentrate a
large sample volume for subsequent purification. Size-exclusion
chromatography (SEC), which separates particles according to
size, albeit by exploiting commercially available membranes, can
yield pure vesicles. However, exosomes fractions isolated by SEC
are still contaminated with protein aggregates. The polyethylene
glycol-based precipitation method causes exosomes to
precipitate out by changing their solubility and dispersibility,
thus extracting the exosomes from the sample simply and
quickly by nonspecific means. The affinity capture technique
relies on magnetic beads coated with specific antibodies and
enables the separation of exosomes expressing particular
antigens in a highly specific manner. While this method is
rapid, easy to perform, and can yield specific subsets of
exosomes, it remains expensive (Gurunathan et al., 2019;
Zhang et al., 2020). The fact that exosomes are similar in size,
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shape, and density to many viruses makes separating exosomes
from viruses a veritable challenge. Typically, exosomes are
purified from the virus infected culture medium using a
combination of ultracentrifugation and density gradient
centrifugation (Cantin et al., 2008; Mori et al., 2008; Liu et al.,
2014; Zhu et al., 2015; Jiang et al., 2020) or magnetic bead-
mediated immunoaffinity capture (Fu et al., 2017). Generally, a
combination of appropriate exosome separation methods is
recommended, whereby one method is used to concentrate,
and another method is used to purify the exosomes. As no
standard method for the isolation of exosomes exists to date, we
should recognize that the exosomes in early researches may be
contaminated by trace amounts of other type vesicles, and that
the different biological markers in exosomes may relate to
different subpopulations of exosomes with specific compositions.

Recent studies have recognized that exosomes secreted by
infected cells play a dual role by both enhancing and inhibiting
viral infection. For example, exosomes carrying viral infectious
nucleic acid facilitate viral transmission between cells. Exosomes
from the HCV-infected human hepatoma cell line Huh7.5.1,
containing the full-length viral RNA genome, were transferred to
uninfected Huh7.5.1 cells, establishing productive infection in a
virion-independent manner (Ramakrishnaiah et al., 2013). As a
result, exosomes can be viewed as an alternate form of the virus
and a source of infectious particles. In addition, virions cloaked
in membrane vesicles can evade the immune system efficiently.
This form of ‘membrane wrapping’ protects these viruses from
neutralizing antibodies while facilitating the spread of viruses
such as Coxsackie B virus (Sin et al., 2017) and enterovirus 71
(Mao et al., 2016). On the other hand, exosomes can also limit
the spread of virus through a variety of mechanisms. For
instance, exosomes from HCV-infected cells were able to
transfer viral RNA to plasmacytoid dendritic cells (pDCs) and
trigger the production of antiviral type 1 interferons (IFNs),
initiating the host innate immune response against the virus
(Dreux et al., 2012). In addition to the viral components,
exosomes contain various proteins derived from their parental
cell, including host proteins with antiviral activity and the ability
to resist infection (Li et al., 2013; Zhu et al., 2015). For instance,
the apolipoprotein B mRNA editing enzyme catalytic subunit 3G
(APOBEC3G), a cytidine deaminase and a critical component of
the anti-retroviral defense system, was transferred into adjacent
cells to inhibit HIV-1 replication via exosomes (Khatua et al.,
2009). Furthermore, exosomes secreted into the airways of mice
have been shown to incorporate host proteins with anti-
influenza activity as well as viral proteins which are able to
trigger host immune responses (Bedford et al., 2020).

There are a number of studies on the role of exosomes in the
context of viral infection, but few studies have focused on the
mechanisms by which the virus regulates the production of
exosomes and determines their contents. Cargoes sorted into
the exosomes are highly dependent on the physiological and
pathological state of the cell. When viruses infect cells, they
hijack the endosomal pathway and incorporate the viral
components into the exosomes. Mechanistically, the viral
component leads to changes in the formation and secretion
May 2021 | Volume 11 | Article 671625
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of exosomes. This review provides a comprehensive summary
of the viral components involved in regulating exosomes
biogenesis, composition, and secretion. To the best of our
knowledge, this review for the first time discusses the
mechanisms employed by viral components to regulate the
secretion and sorting of exosomes.
RNA VIRUSES

Human Immunodeficiency Virus
The human immunodeficiency virus (HIV), responsible for
acquired immunodeficiency syndrome (AIDS), is a lentivirus
belonging to the Retroviridae family. Nef is a nonenzymatic
accessory protein with multiple functions, used by HIV to
establish the infection of host cells.

HIV-1 infection has been shown to increase the production of
exosomes from infected macrophages (Kadiu et al., 2012), and
Nef expression appears to significantly increase the number of
late endosomes/MVBs (which account for exosomes biogenesis)
in various cell lines, including human T lymphocytes (Sanfridson
et al., 1997), HeLa, CIITA, and Mel JuSo cells (Stumptner-
Cuvelette et al., 2003). Considering that the increase in MVB
production may lead to a rise in the release of ILVs, these results
suggest that Nef may be involved in exosomes biogenesis. Indeed,
several studies have found that the Nef protein was able to
enhance exosome production in astrocytes (Pužar Dominkus ̌
et al., 2017), CD4+ T cells (Lenassi et al., 2010), and U937 cells
(Aqil et al., 2014). The specific amino acids sequence and domain
of Nef, which is responsible for the Nef-induced vesicle release
have been discovered (Ali et al., 2010). However, de Carvalho et
al. reported that Nef made no significant difference to exosome
secretion by CD4+ T cells (de Carvalho et al., 2014). Therefore,
the role of Nef in regulating exosome secretion requires
further elucidation.

HIV-1 infection also alters the exosomal proteome (Li et al.,
2012), and it has been observed that Nef plays a certain role in
changing the composition of exosomes. First and foremost, Nef
is incorporated into the exosomes from HIV-infected cells
(Muratori et al., 2009) and Nef-transformed T cells (Campbell
et al., 2008; Lenassi et al., 2010). Nef stimulates itself to be
released from cells via the exosomal pathway (Lenassi et al.,
2010). Functionally, exosomal Nef can induce activation-induced
cell death of bystander CD4+ T lymphocytes, which is a key
factor involved in progression to AIDS (Lenassi et al., 2010), and
trigger inflammation through impairing cholesterol metabolism
and enhancing the abundance of lipid rafts in bystander cells
(Mukhamedova et al., 2019). Besides, Nef promotes HIV-1
infection through the sequestration of CD4 and MHC class 1
molecules into MVBs to degradation, because the presence of
CD4 molecules on the exosomal surface can inhibit viral
transmission through adhesion to the viral envelope (de
Carvalho et al., 2014). Proteomic analysis has indicated that
exosomes secreted by HIV-infected T lymphocytes upregulated
ADP-ribosyl cyclase 1 (CD38) and downregulated Annexin A5
(ANXA5) and L-lactate dehydrogenase B chain (LDHB). CD38,
ANXA5, and LDHB have been shown to interact with the HIV
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
viral proteins Tat and p24, and are thought to be relevant to
apoptotic and proliferative cellular processes (Li et al., 2012).
Despite these reports, the exosomal sorting mechanism and the
specific roles of these proteins during viral infection are
still unknown.

Nef cannot only affect the sorting of protein molecules into
exosomes, but is also implicated in the sorting of microRNAs
(miRNAs) into exosomes. Analysis of the miRNome suggests
that the expression of Nef protein in human monocytic U937
cells contributes to the redistribution of miRNA between cells
and exosomes. Compared to the exosomes secreted by the
control group, miRNAs incorporated into exosomes secreted
by Nef-expressing cells were upregulated. Besides, the expression
of Nef caused 2 miRNAs to remain within the cell, while 47
miRNAs were sorted into Nef exosomes. Interestingly, miRwalk
software analysis revealed that the miRNAs that were
upregulated in the exosomes (such as miR-146a, miR-146b-3p,
miR-125b, and miR-181a), targeted innate immune responses,
rendering parent U937 cells more permissive to viral replication
and persistence. However, the mechanism by which Nef
selectively regulates miRNA sorting into exosomes is still
unclear, and how the Nef-mediated exosomal miRNAs affect
the recipient cells are still important questions to be explored in
future research (Aqil et al., 2014).

Ebola Virus
The Ebola virus (EBOV) is an enveloped, single-stranded RNA
virus from the family Filoviridae, known to cause severe
hemorrhagic fever with up to 80–90% mortality rates observed
in both humans and non-human primates. The EBOV matrix
protein VP40, composed of 326 amino acids (35 kDa), is the
most abundant matrix protein contained in mature EBOV
virions. VP40 is not only packaged into exosomes that
negatively impact on recipient immunocytes (Pleet et al., 2016;
Pleet et al., 2017), but also affects exosomes biogenesis and
release. Transfection of EBOV VP40 was shown to increase
intracellular levels of the exosomal marker CD63 and the
production of exosomes, while the treatment of VP40-resistant
cells with the FDA-approved drug oxytetracycline diminished
exosomes release. In-depth research showed that VP40
upregulated intracellular levels of specific ESCRT machinery
components (the ESCRT-I protein TSG101, and the ESCRT-II
proteins EAP20 and EAP45) and CD63, which was accompanied
by the upregulation of glycosylated CD63 and Alix protein levels
within the exosomes. Considering that exosomes biogenesis
depends to a large extent on the ESCRT pathway, the ESCRT
machinery components upregulated by VP40 may be responsible
for the increase in exosome production. Besides this, the
presence of VP40 was shown to cause a reduction in some
miRNA machinery components including Dicer, Drosha, Ago1,
and DGCR8 in donor cells. Consequently, VP40-containing
exosomes lowered the protein levels of Dicer, Drosha, and Ago
1 in the recipient lymphocytes, resulting in cellular dysfunction
and viral persistence (Pleet et al., 2016). Subsequently, the in-
depth study of the relationship between VP40 and exosomes
biogenesis by this team suggests that VP40 is able to alter
exosomes biogenesis through the induction of cell cycle
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dysregulation. They found that EVs isolated from VP40-
expressing cells were enlarged but less numerous. Chromatin
Immunoprecipitation and PCR analyses of Cyclin D1 Promoter
DNA showed that VP40 upregulated cyclin D1 by binding to the
cyclin D1 promoter, resulting in accelerated cell cycling and in
turn impacting on exosomes biogenesis. Employing specific
inhibitors of cyclin D1 kinase activity led to a significant
increase in the number of exosomes produced by VP40-
expressing cells. It is suggested that VP40 affects exosomes
biogenesis and secretion in a cell cycle-dependent manner.
VP40 markedly altered the expression patterns of ESCRT
proteins (increased levels of TSG101, CHMP6, and EAP20),
exosomal markers in EVs (increased level of Alix and CD63),
and the amount and morphology of EVs at G0 phase in
particular. However, these changes were not as evident in
VP40-expressing 293T cells during the G1/S or G2/M phases.
In summary, EBOV VP40 modulates EV biogenesis including
the quantity, morphology, and content of EVs via cell cycle
acceleration in donor cells (Pleet et al., 2018). As for the effect of
VP40 on exosomes biogenesis, the somewhat contrasting nature
of the above two results, indicates that this area of research would
benefit from further exploration.

Hepatitis A Virus
Recently, it has been reported that the supernatant of cells
infected with the hepatitis A virus (HAV) contained two
populations of virus particles: ‘naked’ virus particles and
membrane-wrapped HAV particles (~50 to 110 nm). These
membranous vesicles containing viral RNA and protein
resemble exosomes and are called as quasi-enveloped HAV
(eHAV). It was reported that the eHAV form is present in the
culture medium of HAV-infected cell lines, including Huh-7.5
human hepatoma cells (Feng et al., 2013) and human colonic
adenocarcinoma-derived (Caco-2) cells (Hirai-Yuki et al., 2016).
While eHAV particles have a density of ~1.05–1.10 g/cm3 and
range from ~50 to 110 nm in diameter, which is reminiscent of
exosomal dimensions, nonenveloped HAV particles have a
density of ~1.27 g/cm3 and are ~27 nm in diameter (Feng
et al., 2013). In addition, only eHAV (and not nonenveloped
HAV) can be detected in serum samples from patients with early
stage acute hepatitis A infection. The membrane envelope
protects the viral protein core from the human immune
response, rendering eHAV resistant to neutralizing antibodies,
circulating in the host, and then facilitating its dissemination in
the liver (Feng et al., 2013). Proteomic analysis of this
unconventional secretion of eHAV revealed that eHAV
particles possess HAV capsid proteins but lack nonstructural
proteins. These infectious eHAV vesicles are also enriched in
endolysomal components including the exosome-specific marker
CD9 and the dipeptidyl peptidase 4 (DPP4), but lack markers of
autophagy. In addition, RNAi-mediated knockdown of ESCRT-
III associated proteins including Alix, VPS4B, and CHMP2A
could effectively ablate eHAV release. These results indicate that
HAV particles were selectively packaged as cargoes into
membranes via an exosome-like sorting mechanism, forming
eHAVs (McKnight et al., 2017).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
The structural protein pX is an unusual carboxy-terminal 71
amino acid (8.3 kDa) extension on VP1 that among
picornaviruses is unique to HAV. The HAV P1-2A capsid
protein precursor is cleaved by 3Cpro to generate VP0, VP3,
and VP1-pX. VP1-pX is then cleaved by an as yet
unidentified cellular protease to remove the pX protein and
release the mature capsid protein VP1. Interestingly, pX was
found to be present only in eHAV particles but not in
nonenveloped virions (Feng et al., 2013). Subsequently,
researchers found that pX was involved in cargo sorting into
membranous vesicles and direct foreign protein into MVBs.
When the human hepatocellular carcinoma cell line Huh7 was
transfected with the plasmid encoding the recombinant eGFP-
pX protein, eGFP-pX was located within the exosomes, while
cells expressing only eGFP could not secrete exosomes
containing eGFP. This implies that pX, when fused to eGFP
was directly responsible for guiding eGFP secretion into the
exosomes. In addition, 3D live cell imaging clearly showed that
the cellular eGFP-pX puncta signal was colocalized with Alix and
CD63, and that the diameter of colocalization puncta
corresponded to MVBs (~400 nm), suggesting that eGFP-pX
was contained within MVBs from which the exosomes then
originated. Furthermore, researchers found that the C-terminal
domain (amino acids 31–71) of pX could interact with Alix to
promote the loading of eGFP into exosome-like vesicles.
Analogously, when an infectious HAV clone in which the 36
C-terminal amino acids (32–67) of pX had been deleted, was
used to infect Huh7 cells, it was found that eHAV production
decreased dramatically, indicating that this C-terminal section of
pX could regulate eHAV secretion by affecting the interaction
between HAV and Alix (Jiang et al., 2020). Collectively these data
point towards the strong possibility that pX is a critical factor in
promoting the selective sorting of HAV particles into exosomes.
DNA VIRUSES

Herpesvirus
Herpesviruses are large, enveloped, double-stranded DNA
(dsDNA) viruses that are organized into three families (alpha,
beta, and gamma), according to their biological properties. Of
these, eight herpesviruses infect humans including three
alphaherpesviruses (herpes simplex virus 1, herpes simplex
virus 2, and Varicella-Zoster virus), three betaherpesviruses
(human cytomegalovirus, human herpesvirus-6, and human
herpesvirus-7), and two gammaherpesviruses (Epstein-Barr
virus and Kaposi ’s sarcoma–associated herpesvirus).
Herpesviruses consist of a toroid-shaped DNA genome
wrapped in an icosahedral capsid with 162 capsomers,
surrounded by a proteinaceous tegument and an outer lipid
bilayer envelope containing different glycoprotein spikes. The
characteristic of this group of viruses is that they can establish
life-long latency after primary infection. The viral genome is
maintained and distributed to progeny cells that are not infected
with the virus. And the expression of viral genes is restricted.
May 2021 | Volume 11 | Article 671625
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Human Herpesvirus 1
Human herpesvirus 1(HHV-1), also called Herpes simplex virus
(HSV-1), is a member of the subfamily Alphaherpesvirinae. The
virus infects mucoepithelial cells in the early stage and establishes
a latent viral pool in the neurons of sensory ganglia, which
mostly occurs in infancy and is usually asymptomatic.
Researchers found that HSV-1-infected cells were able to
secrete CD63-positive EVs/exosomes containing viral and host
factors that negatively impacted on HSV-1 infection (Kalamvoki
et al., 2014; Deschamps and Kalamvoki, 2018). HSV-1 infection
promotes the release of CD63-positive EVs accompanied by a
decrease in intracellular CD63 expression levels. These CD63-
positive EVs can restrict viral dissemination to help HSV-1
persistence within the host (Dogrammatzis et al., 2019).
Although the concrete mechanism underlying the production
of these CD63-positive EVs is not yet clear, the HSV-1 g134.5
neurovirulence gene could affect the release of the exosomes.
Heikkilä et al. showed that exosome marker proteins were
abundant in the wildtype HSV-1 fractions separated by
ultracentrifugation and density gradient centrifugation,
whereas they were undetectable in the HSV-1 fractions
harboring a g134.5 deletion, indicating that deletion of the viral
g134.5 gene markedly attenuated HSV-induced exosomes
secretion (Heikkilä et al., 2016). The deletion of the HSV-1-
specific g134.5 gene thus renders the virus non-neurovirulent
(Mattila et al., 2015) and has been employed in cancer therapy
(Hu et al., 2006). It is recommended that the purity of g134.5
depleted HSV-1 stocks is however verified to avoid the presence
of contaminating exosomes before its use in gene therapy.

Glycoprotein B (gB) is one of the most highly conserved
envelope glycoproteins among members of the Herpesviridae
family and plays an important role in alphaherpesvirus infection.
Immunofluorescence analysis has shown that gB localizes with
MVB membranes in HSV-1-infected and gB-expressing 293T
cells (Calistri et al., 2007). Glycoprotein B can be detected in the
exosomes from gB-expressing cells, meaning that it is
transported to MVBs and subsequently released by exosomes
(Temme et al., 2010). The MVB pathway is essential not only for
viral assembly and virion budding but also for the biogenesis of
exosomes, suggesting that gB is likely to be directly involved in
the formation and secretion of exosomes.

Recent studies have reported that gB actually participates in
exosome cargo sorting. In antigen-presenting cells (APCs), the
human leukocyte antigen DR (HLA-DR) molecule, a molecular
component of the MHC class II pathway, binds to antigen in
MHCII-loading compartments. Then, these MHCII
heterodimers are loaded onto the cell surface for antigen
presentation through the back-fusion between MVB and the
cell membrane, resulting in immunity against HSV-1 infection.
Previous studies have shown that gB was co-isolated with HLA-
DR in HSV-1-infected cells, indicating that gB may play a role in
antigen presentation (Neumann et al., 2003). However, Temme
et al. found that gB-DR complexes could not be detected on the
cell surface in gB-transfected cells. In cells expressing gB, gB is
able to bind to DR and inhibit the binding of antigenic peptide to
the DR portion of the complex. Glycoprotein B, DR, and CD63
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
colocalize in the endosome-derived large intracellular vesicles,
which may affect the biogenesis and trafficking of MVBs.
Moreover, the gB-DR complexes can be detected in exosomes
and the significant ubiquitination of gB but not the DR subunits
was detected. These results suggest that the ubiquitination of gB
is likely to participate in sequestering DR into the exosomes
instead of targeting to the cell surface. Thus, the viral protein gB
binds to DR and the ubiquitinated gB transfers DR into the
exosomes, hindering the presentation of viral antigens via the
classical MHC class II processing pathway, which may represent
a novel immune escape mechanism employed by viruses
(Temme et al., 2010).

Human Herpesvirus 4
Human herpesvirus 4, also known as Epstein–Barr virus (EBV),
was the first human tumor-associated virus to be identified, due
to the close link between EBV infection and nasopharyngeal
carcinoma (NPC). EBV-infected cells have been shown to secrete
exosomes. EBV infection (type III latently infected cells in
particular) was shown to upregulate the biogenesis of
exosomes and promote specific miRNA sorting into exosomes
(Nanbo et al., 2018). Latent membrane protein 1 (LMP1), an
EBV-encoded oncoprotein, is a transmembrane glycoprotein
composed of 386 amino acids (41 kDa) that has been shown to
be sorted into exosomes in a CD63-dependent manner (Hurwitz
et al., 2017). Besides, component of the ubiquitin system plays a
role in the transport of LMP1 into the exosomes (Kobayashi
et al., 2018). Functionally, exosomal LMP1 can trigger the
proliferation and invasion of tumor cells in vitro and enhance
tumor progression in vivo (Liao et al., 2020).

LMP1 was proven to be involved in the regulation of
exosomal secretion. Increasing evidence indicates that the
expression of LMP1 can promote the secretion of extracellular
vesicles, especially exosomes (Verweij et al., 2011; Hurwitz et al.,
2017). To this end, researchers have studied the regulatory
mechanism employed by LMP1 in exosomes biogenesis. They
found that LMP1 can activate the transcription nuclear factor
(NF)-kappa B signaling pathway, and the activated NF-kappa B
caused increased expression levels of two downstream target
genes, syndecan2 (SDC2) and synaptotagmin-like-4 (SYTL4)
directly in NPC cells. Inhibiting the expression of SDC2 in
LMP1 was shown to reduce the formation of MVBs and thus
impair the secretion of exosomes. According to previous
research, the interaction of SDC2 and syntenin is crucial for
the syndecan-syntenin-Alix exosomes biogenesis pathway,
which has been proven to promote exosomes biogenesis and
exosomal cargo sorting (Baietti et al., 2012; Roucourt et al.,
2015). Liao et al. found that the interaction between SDC2 and
syntenin was enhanced by the expression of LMP1. Meanwhile,
inhibition of STYL4 in LMP1 expression may be due to the
inhibition of the fusion of MVBs to the plasma membrane,
resulting in a large amount of MVB accumulation in the cell and
diminished exosomal secretion. Combined with the above, SDC2
and STYL4 are the key components that lead to the increase of
exosome secretion mediated by LMP1. Thus LMP1 can increase
the amount of EV which would enhance the proliferation and
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invasion of recipient NPC cells to aggravate NPC progression
(Liao et al., 2020).

Human Herpesvirus 6
Human herpesvirus 6 (HHV-6) is a betaherpesvirus and is divided
into two species: HHV-6A and -6B. HHV-6 infection can cause
encephalitis in immunocompromised hosts and as well as other
disorders of the central nervous system, such as Alzheimer’s
disease (Greninger et al., 2018). Electron microscopy analyses of
HHV-6-infected cells have revealed the presence of larger
numbers of newly formed MVBs (including small vesicles in the
cytoplasm) compared to uninfected cells. The HHV-6 envelope gB
and CD63 proteins colocalize in MVBs, implying that gB might be
involved in MVB formation and affect exosomes biogenesis in the
context of HHV-6 infection (Mori et al., 2008).

Hepatitis B Virus
Hepatitis B virus (HBV) is a hepatotropic DNA virus of the
Hepadnaviridae family of enveloped pararetroviruses, which
causes liver diseases such as chronic hepatitis and
hepatocellular carcinoma (HCC). HBV X (HBx), a small non-
structural X protein composed of 154 amino acid residues (16
kDa), is encoded by the smallest open reading frame (X) of the
HBV genome. Numerous studies show that HBx is responsible
for multiple roles in the development of HBV-related liver
cancer, and is involved in regulating multiple hepatocyte
signaling processes such as apoptosis (Miao et al., 2006;
Clippinger et al., 2009; Elizalde et al., 2017), the dysregulation
host miRNA expression (Zhang et al., 2013), and the inhibition
of nucleotide excision repair of damaged cellular DNA (Martin-
Lluesma et al., 2008). Collectively, the disruption of normal
cellular processes orchestrated by HBx provides favorable
conditions for virus replication.

HBx is confirmed to regulate exosomes biogenesis. Kapoor et
al. found that there was a significant increase in the number of
exosomes secreted by HBx-expressing Huh-7 cells compared to
control cells (Kapoor et al., 2017). To investigate this mechanism,
they showed that HBx markedly (> 2 fold) increased the activity
of neutral sphingomyelinase 2 (nSMase2). In addition, co-
immunoprecipitation results showed that various exosomal
markers including CD9, CD81, and nSMnase2 proteins can
interact with HBx. And immunofluorescence provided
evidence for the co-localization of HBx with CD81 and CD63,
respectively. Since nSMase2 is a key enzyme involved in exosome
production and secretion (Dreyer and Baur, 2016), and
tetraspanin CD63, CD9, and CD81 are major components of
exosomes biogenesis (Chairoungdua et al., 2010; van Niel et al.,
2011), HBx is likely to increase exosomes secretion by promoting
nSMase2 activity and interacting with CD9, CD81, and nSMase2.
Indeed, exosomes containing biologically active HBx mRNA and
protein have been shown to induce the proliferation of hepatic
stellate cells (HSCs) (Kapoor et al., 2017). However, the
mechanism by which HBx is sorted into exosomes remains
unknown, and in-depth studies are required to further
elucidate the underlying details.

Recent studies suggest that the expression of HBx in Huh-7
cells decreases the intracellular levels of the classical host
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
antiviral factor APOBEC3G (A3G). The A3G protein is widely
known as a restrictor factor of HBV replication because A3G can
block HBV infection by inhibiting the accumulation of cellular
viral longer minus-strand DNA (Nguyen et al., 2007).
Researchers found that HBx-expressing cells displayed
significantly lower levels of cellular A3G independently of
proteasome and lysosomal degradation processes. Furthermore,
increased intracellular A3G levels were observed following the
inhibition of the exosomal pathway, meaning that intracellular
A3G can be exported via the production and secretion of
exosomes. A further study showing that HBx-expressing cells
are associated with heightened A3G protein levels within the
exosomes implies that HBx manipulates A3G protein levels
through the transportion of A3G into exosomes and its
secretion into the extracellular environment. Therefore, HBx-
induced exosomal A3G export is likely responsible for the
decreased intracellular A3G protein levels observed during
HBV infection (Chen et al., 2017). The mechanism of HBx-
mediated A3G sorting into exosomes is worth pursuing.

Prions
A prion is a self-replicating and infectious factor composed
of prion protein (PRNP) in the absence of nucleic acid.
PRNP is a glycoprotein abundantly expressed in neuronal
cells but can also occur in non-neuronal cells. Prion diseases
arise following conformational changes that convert the PRNP
PrPC to its pathological isoform PrPSc. The accumulation
of PrPSc in nervous tissue causes several severe fatal
neurodegenerative diseases in humans and animals. Further,
prions can act as infectious agents that cause transmissible
spongiform encephalopathies.

While we know that prions can be packaged into endosome-
derived exosomes to infect neighboring cells (Vella et al., 2007;
Coleman et al., 2012), the molecular and cellular mechanisms are
not fully understood. Dias and colleagues found that, compared
with wildtype mice, astrocytes and fibroblasts collected from
PRNP-null mice experienced an activated autophagy event
(aggregate of autophagosomes and phagophore), a lack of
MVBs in the cytoplasm, and impaired exosome secretion.
Considering that a close relationship exists between autophagy
and exosomes biogenesis (Fader et al., 2008), they explored the
mechanism by which PRNP could regulate exosomes biogenesis
through the autophagy pathway. The results showed that the
inhibition of autophagy activation by knocking down the BECN1
gene increased exosomal secretion significantly in PRNP-
deficient astrocytes, whereas recovery of PRNP expression at
the cell membrane could restore exosome secretion. This
indicates that the high correlation between abnormal
autophagy events and subsequent exosome secretion is
regulated by PRNP. Furthermore, the octapeptide repeat
domain of PRNP was found to be responsible for attenuating
autophagic flux and increasing exosome secretion. Next, the
research group found tha t PRNP cou ld promote
the translocation of CAV1 into the cytoplasm, causing the
breakdown of the ATG5-ATG12 interaction in the cytoplasm,
inhibiting autophagy (Chen et al., 2014) and ultimately
promoting exosome secretion. As such, it was concluded that
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PRNP facilitates the trafficking of MVBs containing ILVs
towards the plasma membrane to release exosomes rather than
direct them towards lysosomes for degradation (Dias et al.,
2016). Recently, another group confirmed that PRNP could be
trapped in the exosomes of prion-infected neuronal cells, and
that autophagy was shown to modulate the secretion of these
PRNP+ exosomes in two different neuronal cells (CNS-derived
ScCAD5 cells and peripheral nervous system neuronal cells
ScN2a) (Abdulrahman et al., 2018). However, the difference in
the extent of exosomal secretion observed in the ScCAD5 and
ScN2a cells does not appear to be related to PRNP level, and
therefore would merit from further study.
CONCLUSION

The consensus among scientists is that viral infections can
regulate the biogenesis of exosomes, which plays a role in viral
transmission and pathogenesis. For example, infection with the
respiratory syncytial virus (RSV) induces cells to secrete more
exosomes and change exosomal components. These exosomes,
containing the RSV nucleocapsid protein N, attachment protein
G, fusion protein F, and viral RNA, were shown to induce
cytokine and chemokine secretion by human monocytes and
airway epithelial cells instead of transmitting RSV infection
(Chahar et al., 2018). Protein composition changes have also
been observed in airway exosomes during influenza virus
infection. Increasing levels of host proteins targeting the
influenza virus and four influenza virus proteins (HA, NS1,
NP, and M1), were detected in the airway exosomes isolated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
from influenza virus-infected mice. However, how these host
proteins with antiviral activity are sorted into exosomes and
whether they are associated with the viral proteins inside the
exosomes, needs to be further explained (Bedford et al., 2020).
Zika virus (ZIKV) infection causes increased exosomal
production, with the incorporation of ZIKV RNA and ZIKV E
protein into the exosomes (Zhou et al., 2019). Besides these, the
exosomes secreted by HCV-, enterovirus 71 (EV71)-, and foot-
and-mouth disease virus (FMDV)-infected cells were shown to
encapsulate the corresponding viral nucleic acid, and mediate
viral transmission to recipient cells (Dreux et al., 2012; Mao et al.,
2016; Zhang et al., 2019). Exosomes from human T cell
lymphotropic virus (HTLV)-infected cells were also found to
contain the HTLV Tax protein and HTLV-1 mRNA transcripts
(encoding env, tax, and hbz), which protect the recipient cells
from apoptosis (Jaworski et al., 2014). However, the specific
mechanisms implicated in the sorting of these viral exosomal
components are not clear and require further research.

Viruses hijack the endosomal pathway or the endosomal
machinery for their own benefit: not only for the production of
new virions, but also for immune evasion or to facilitate viral
spread. Many studies have suggested that the virus can hijack the
exosomal pathway to facilitate virus budding, aggregation, or
release, and that the hijacked exosomes assist the virus in
escaping immune recognition and promote its dissemination.
Importantly, there are many research reports that document
that virus infected cells release more exosomes and are
able to alter the exosomal content. Furthermore, individual
virus components can affect the cargo loaded into exosomes
independently of the intact viral particles themselves, which is
TABLE 1 | The viral proteins known to regulate exosomes biogenesis.

Virus
type

Virus name Viral com-
ponents

Effector Function and mechanism Reference

RNA
VIRUS

HIV-1 (+ssRNA) Accessory
protein Nef

— Nef expression reduces the sorting of CD4 and MHC class 1 molecules
into exosomes

(de Carvalho et al., 2014)

Nef expression in monocytes alters miRNA distribution within exosomes
and cells

(Aqil et al., 2014)

EBOV (-ssRNA) Matrix protein
VP40

— VP40 may increase the production of exosomes by upregulating some
ESCRT machinery components.

(Pleet et al., 2016)

cyclin D1 VP40 reduces the number of while increasing the size of secreted EVs,
especially at G0 phase, though its modulation of the cell cycle via
upregulation cycling D1 expression.

(Pleet et al., 2018)

HAV (+ssRNA) Structural
protein pX

Alix PX transports foreign protein and virus particles into MVBs prior to their
release via exosomes by interacting with Alix directly.

(Feng et al., 2013; Jiang
et al., 2020)

DNA
VIRUS

HHV-1 (dsDNA) gB DR molecules Glycoprotein B binds to DR, and ubiquitinated gB transfers DR-gB
complexes into the exosomes.

(Temme et al., 2010)

Accessory
protein
g134.5

— The deletion of viral g134.5 gene markedly attenuates HSV-induced
exosome secretion.

(Heikkilä et al., 2016)

HHV-4 (dsDNA) LMP1 SDC2 and
SYTL4

LMP1 increases exosome secretion by upregulating SDC2 and SYTL4 in
cells and the interaction between SDC2 and syntenin.

(Liao et al., 2020)

HBV (dsDNA) HBx nSMASE2 and
CD9, CD81,
and CD63

HBx increases exosome secretion by upregulating the activity and mRNA
level of nSMase2 and interacting with the exosomal biomarkers CD9,
CD81, and nSMase2.

(Kapoor et al., 2017);

A3G HBx enhances the transportation of A3G protein into the exosomes. (Chen et al., 2017)
PRIONS protein-based

infectious agent
PRNP Caveolin-1 PRNP increases exosome secretion by inhibiting the caveolin-1-activated

autophage pathway.
(Dias et al., 2016)
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sufficient to change the physiological environment of recipient
cells. Here, we emphasize the role of and the cellular mechanisms
employed by various viral components in the biogenesis and
secretion of exosomes (summarizes in Table 1). However, the
impact of viral infections on exosomes has not been fully
explained. Clarifying how the viral component affects
exosomes biogenesis and what impact these exosomes have on
the recipient cells will contribute to the development of novel
therapeutic targets for viral infections.

In summary, exosomes are the smallest group of nanovesicles,
serving as an important method for intracellular communication.
There is some overlap between the processes of exosomes
biogenesis, virion assembly, and egress strategies used by host
cells. For example, by treating cells with the inhibitors of MVB
formation (U18666A and GW4869) or exosome secretion, the
release of viruses from the host cell membrane can be
significantly reduced (Ramakrishnaiah et al., 2013; Nagashima
et al., 2014). In turn, there have been many studies reporting
that virus infection causes changes to exosome secretion
(Fu et al., 2017). However, the regulatory mechanisms involved
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
in virion-mediated exosomes biogenesis are different and need
further clarification.
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