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Immune checkpoint blockade (ICB) has been explored as a therapeutic strategy to recover the antitumor immune activities against
endometrial cancer (EC) escaping from immune surveillance. Increasing evidence has indicated that microsatellite instability
(MSI) is a promising biomarker to stratify patients for the ICB therapy. However, even in patients with MSI-High (MSI-H)
endometrial cancers, PD-L1 inhibitors, avelumab, and durvalumab have shown only 27% of response rates. Therefore, there is an
urgent need to discover new biomarkers for a predictive response to ICB therapy. In this study, we demonstrated that the immune
cytolytic activity (CYT) index was significantly correlated with the development and response to immunotherapy in EC. The data
showed that higher CYT was significantly associated with better clinical outcome, more antitumor infiltrating immune cells, fewer
somatic copy number alterations, but a higher TMB (Tumor mutational burden) status. Furthermore, CYT-high EC was notably
relevant to the high expression of various immune checkpoint molecules and showed more effective responses to ICB treatment.
Taken together, this study provided new insights into the connection between diverse genetic events and the immune mi-
croenvironment in EC and indicated that the CYT status might be a promising biomarker to stratify patients with EC for
ICB therapy.

1. Introduction

Endometrial cancer is a malignant gynecological tumor and
the main treatment regimens included surgery, radiother-
apy, chemotherapy, and endocrine therapy [1]. Patients with
early-stage endometrial cancer usually benefit from surgery
with the most favorable outcome, while advanced-stage
patients who have metastasized or recurred lesions com-
monly tend to be refractory and have poor prognosis. In
recent years, significant breakthroughs made on cancer
immunotherapy, particularly great success in using immune

checkpoint inhibitors alone or in combination with other
therapeutic regimens, have been introduced in the clinical
guidelines for treatment and management of various cancers
including endometrial cancer [2].

In 2013, The Cancer Genome Atlas of America
(TCGA) conducted a genomic, transcriptomic, and
proteomic study of 373 endometrial cancer samples and
proposed to distinguish four molecular subtypes of en-
dometrial cancer [3]: POLE ultramutated (POLE),
microsatellite instability (MSI) hypermutated, copy-
number low (CN-Low), and copy-number high (CN
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High). Of these, tumors with POLE mutants and MSI
phenotypes produce a large number of tumor-specific
neoantigens and tumor-infiltrating lymphocytes (TILs)
involved in the active immune microenvironment,
resulting in the overexpression of PD-1 and PD-L1 [4].
This suggests that a more active immune response exists
in the local tumor microenvironment of cancers with
MSI+ and POLE hypermutant phenotypes, blocking PD-
1/PD-L1; therefore, inducing an effective antitumor
immune response, and that patients with MSI and POLE
hypermutant phenotypes, may be a beneficial population
for PD-1/PD-L1 inhibitors.

Despite this, immunotherapy appears to be limited in
gynecological oncology, as some tumors exhibit relatively
poor efficacy and low response ratio [5]. Therefore, one
strategy to improve the prognosis of EC patients is to shift
from a traditional bifurcation-based treatment model to a
molecular-based precision therapy, using biomarkers to
differentiate sensitive patients and predict treatment re-
sponse. In other tumors (e.g., colorectal cancer), there is
sufficient evidence to support the use of PD-L1 or PD-1
expression, TMB, defective mismatch repair (AIMMR), or
microsatellite instability (MSI+) as predictive biomarkers to
guide clinical ICB therapy decisions.

The immune cytolytic activity (CYT) score is a new
index of cancer immunity which implied the cytolytic
T-cell activity [6]. We found CYT was significantly as-
sociated with MSI+ and TMB and may be an appealing,
widely applicable indicator for the prediction of treat-
ment response and clinical decision-making. An in-
creased number of cytotoxic T lymphocytes (CTLs) at the
invasive border has been demonstrated to be a reliable
independent predictor of survival in patients with en-
dometrial cancer [7].

However, less is known on the clinical and genomic
features associated with CYTand its interplay with cancer
cells in immune microenvironment (TME) of endome-
trial cancer patients. Filling this information gap will
improve our understanding of molecular mechanisms
that modulate immune surveillance and aid in the de-
velopment of new therapeutic strategies for endometrial
cancer patients.

2. Materials and Methods

2.1. Tumor Datasets. Clinical information was collected
from the TCGA’s public access pan-cancer project, which is
strongly recommended for clinical elements and survival
outcome analysis first. “Level 3” gene expression data,
mutational annotation format (MAF) files, and copy number
variation (CNV) files were all retrieved from TCGA
database.

2.2. Determination of the Immune Cytolytic Activity. We
obtained fragments per kilobase million (FPKM) values of
endometrial samples from the TCGA-UCEC dataset. The
FPKM values were transformed into transcript per million
(TPM) values with following formula:
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FPKM,

TPM = of———
Yie1 FPKM;

(1)

We calculated each patient’s immune CYT level,
according to the expression of GZMA and PRF1 in TPM
after adding a 0.01 offset to remove the zero from the
equation.

The cutoff, median CYT value, was used to divide cancer
patients into two immunological cytolytic groupings (CYT-
high and CYT-low categories).

2.3. Prognosis of CYT-High and CYT-Low Subsets. The
Kaplan-Meier method with log-rank test and/or univariable
Cox regression analysis were used to compare prognosis
between two groups and amongst tumor subtypes in overall
survival (OS), disease-free survival (DDS), progression free
interval (PFI), and disease-free interval (DFI) through
survival and survminer (R package version 3.2-13 and 0.4.9)
after filtering the indicating period shorter than 30 days. A p
value less than 0.05 was considered as statistically significant.

2.4. Predication of Tumor Infiltrating Immunity. The
CIBERSORT [8] was used to quantify the immune infil-
tration abundance of 22 types of immune cells in EC tumor
samples. ESTIMSTE [9] was used to predict the ESTIMSTE
score (purity), immune score, and stromal score in TME. We
collected data from TCIA [10] for prediction of response to
CTLA-4 and anti-PD-1 antibodies. The TIS score was cal-
culated as an average value of log2-scale normalized ex-
pression of the 18 signature genes [11, 12].

2.5. Determination of Tumor Mutations, Clonal, and
Neoantigens. The TCGA database was used to obtain EC’s
somatic mutation data. Somatic mutation information is
available for 484 patients. TMB, which is defined as the
number of somatic mutations per mega base of probed
genomic sequence, differs amongst cancers. The total
number of somatic nonsynonymous point mutations within
each sample and TMB was calculated using the maftools [13]
(R package version 2.10.0). TCIA provided us with infor-
mation on the cellular composition of cancer neoantigens
per Mb in each UCEC’s two cytolytic subgroups [10]. The
information including quantity of neoantigens, quantity of
clonal/sub-clonal neoantigens were retrieved from TCIA
[10] for patients with UCEC. The information included SNV
neoantigens, Indel neoantigens, TCR/BRC richness, TCR/
BRC Shannon, intratumor heterogeneity, and nonsilent/
silent mutation rate were retrieved from TCGA Pan-Cancer
Atlas for patients with UCEC.

2.6. Gene Enrichment Analysis. GSEA was performed with
the ordered gene list which sorted by the Spearman’s cor-
relation coefficient between CYT score and other genes. The
Molecular Signatures Database contains a collection of
annotated gene sets for use with GSEA software (MSigDB
[13]). The result of the GSEA shows the GO (biological
process) enrichment and the normalized enrichment score
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(NES), which measures how overrepresented a gene set is at
the top or bottom of a list of genes, and usually, absolute NES
>1 and false discovery rate (FDR) less than 25% are held as
significantly enriched in the Gene Set. GO (biological
process) enrichment in SMGs of each CYT group was
performed using clusterProfiler [14] and visualized with GO
plot [15] (R package 1.10.2).

2.7. SMGs and CNV Analyses in UCEC. GISTIC2 [16] was
used to analyze each dataset’s tumors and compare copy
number variations between the two cytolytic subtypes.
Maftools was used to visualized the results for BubblePlot
and ChromPlot, with a default FDR cutoff 0.1.

MutSig [17] was used to discovery the most significant
genes of each CYT subgroup with FDR <0.1. Co-mutation
plot was plotted with maftools. The correlation between
SMGs and CYT in each CYT subgroup was calculated with
Spearman’s rank correlation.

2.8. Tumor Heterogeneity within Cytolytic Subsets. By clus-
tering the variant allele frequencies as indicated by the width
of their distribution, we were able to infer intratumoral
genomic heterogeneity. With default options, efficient
analysis, visualization, and summarizing of (MAF) files from
large-scale cohort-based cancer studies, maftools assigned a
mutant-allele tumor heterogeneity (MATH) score to each
tumor sample.

2.9. Statistical Analyses. All statistical analyses were carried
out in R (https://www.r-project.org/, version 4.12), with the
Mann-Whitney U test to analyze the differences between
two groups for continuous variables. The Spearman’s rank
correlation test was used to examine the correlation between
variables. A two-sided p <0.05 was considered statistically
significant in all analyses.

3. Results

3.1. High CYT in EC Was Significantly Associated with Better
Prognosis. 'The level of cytolytic activity was relatively lower
in endometrial cancer versus normal endometrium
(Figures 1(a) and 1(b), p = 0.041, p = 0.035). GZMA was
shown to be lowly expressed in only 1/12 endometrial
malignant samples and undetectable in 11/12 of those,
according to HPA-derived protein expression data. Simi-
larly, the negative expression of PRF1 was detected in 11
endometrial carcinoma samples (Figure 1(c)). Correlation
analyses were conducted between CYT score and T cell
receptors as well as ligands in UCEC patients, which was
shown that the CYT score had a considerably positive
correlation with immunomodulation-related ligands
(p<0.0001, Figure S1A) and receptors (p<0.0001,
Figure S1B).

We further stratified EC data based on the CYT value, as
“CYT-high” and “CYT-low” group, and utilized the log-rank
test to determine the prognosis of EC. It indicated that
patients with higher CYT score showed a prolonged OS

(p = 0.0034), DSS (p = 0.0009), DFI (p = 0.0021), and PFI
(p =0.0002) (Figure 1(d), Figure S2A). To further explore
the effect of CYT on endometrial cancer prognosis, we
plotted a scatter plot of gene expression and the corre-
sponding survival time in different samples (Figure 1(e)).
High expression levels of both PRF1 and GZMA or alone
were favorable to patients’ OS. Inversely, cooccurring low-
expressed PRF1 and GZMA resulted in the worst clinical
outcome, implying the synergetic effect of both two genes on
patients’ survival in EC (Figures 1(f)-1(i)).

To explore the links between cytolytic T-cell activity
and molecular subtypes in EC, we determined the variation
of CYT values among four molecular subgroups of EC.
POLE subtype accounts for approximately 7% in EC [18]
and had the highest CYT value and best clinical outcomes
amongst the four molecular subtypes. MSI and CN-low
subtypes accounts for around 28% and 39% in EC, re-
spectively, with a moderate CYT levels and prognosis
amongst the four molecular subtype EC, and CN High
subtype, accounting for almost 26% in EC, owning the
lowest CYT level (p =0.0003) and worst prognosis
(Figures 1(j) and 1(k) and Figure S2C).

In TCGA-UCEC dataset, EC was classified into three
histological subtypes, endometrioid endometrial adenocar-
cinoma (EEC), serous endometrial adenocarcinoma (ESC),
and mixed serous and endometrioid (mixed). To investigate
the connection between endometrial cancer histological
subtypes and CYT levels, we displayed the dissimilarity of
CYT value and prognosis between EEC and ESC histological
ECs. ESC had the lower CYT values compared with normal
endometrium and worse prognosis, and there was no ob-
vious difference between EEC and normal endometrium
(Figures 1(I) and 1(m) and Figure S2D).

Taken together, the high CYT level, which delegated
aggressive the cytolytic T-cell activity, predicated the better
clinical outcomes in endometrial carcinoma.

3.2. CYT Was Related to a Distinct Mutation Status in EC.
Subsequently, we managed to determine whether CYT levels
were correlated with distinct EC mutational signatures. In
microsatellite instability (MSI+) ECs, the mutation load rose
dramatically (p<0.0001, Figure 2(a)). Consistent with
previous findings in other cancers [19], also, the cytolytic
activity was expected to be increased substantially in
MSI + tumors (p <0.0001, Figure 2(b)). Besides the muta-
tion load increasing considerably in CYT-high tumors
(Figures 2(a), 2(c), 2(d)), MSI+EC was associated with
better clinical outcomes (Figure S2B).

Further analysis showed that most mutations across the
dataset were related to A>Tand T> A as well as G> C and
C> G transversions, which were of higher percentage in
CYT-low tumors, and other specific fragments did not differ
between CYT-high and -low tumors (Figure 2(d)).

Next, we identified significant mutation genes (SMGs
FDR <0.1) by MutSig, CYT-low primary tumors were sig-
nificantly associated with mutations in PIK3CA, FOXA2
(Figure 2(e)), whereas, CYT-high primary tumors with a totally
different group of genes, including PTEN, PIK3CA,
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FIGURE 1: Association of the CYT with clinical features in EC. (a) CYT levels were lower in the UCEC datasets in contrast with the normal
endometrium (tumor n =551, normal n = 35); (b) paired samples between EC and normal tissue (n = 23); (c) both GZMA and PRF1 protein
level were weakly expressed or not expressed in IHC protein expression data from the human protein atlas (HPA); (d) Kaplan-Meier
method with log-rank test and univariable cox regression analysis were utilized to compare survival curves between two CYT groups in OS,
HR (hazard ratio); (e) the curve of risk score, survival status of the patients, and heat map of CYT level were shown; (f-i) Kaplan-Meier
curve evaluation of GZMA and PRF1 indicated that high level of both GZMA and PRF1 in EC synergistically affected the patients’ overall
survival; (j) CYT expression tended to be lower in CN high and CN-low UCEC subtypes but higher in POLE subtype when compared with
normal tissue; (k) KM survival curves of each molecular subtype EC; and (I-m) CYT levels were significantly lower in ESC histologic subtype

which possessed a shorter survival time probability.

ARHGAP35, KANSL1, ACVR2A, SUDS3, and B2M
(Figure 2(f)). The SMGs in each CYT subset enriched mainly in

cell proliferation and T cell differentiation (Figures 2(g) and
2(h)).

3.3. Correlation of SCNA with the Cytolytic Activity in EC.
Escalated genomic instability with broad somatic copy
number alterations (SCNA) is the characteristic in EC pa-
tients [20]. We then conducted the GISTIC2 [16] analysis to
evaluate the correlation of copy number variations (CNV)
with cytolytic activity in different CYT subtypes. First, we
compared the copy number alteration between CYT-low
and -high tumors. As shown in Figure 3, amplification of
8q24.21 (MYC, CASCI1), 19912 (CCNEI), 4p16.3 (FGFR3),
3929 (ILIRAP), 1q21.3 (PIP5K1A, ZNF687), etc. and dele-
tion of 10q23.31 (PTEN), 1p36.32 (TP73), 1p36.13 (GNAI11),
and 19p13.3 (DDOST, HTR6) were more frequently detected
in CYT-low tumors (Figure 3(a)). While amplification of
8q24.21 (MYC, CASCII), 3q26.32 (PIK3CA), 17ql1.2
(FLOT2, MIR144), 19p13.2 (SMARCA4), and deletion of
4q34.3 (LINC00290), 19p13.3 (EEF2, PIAS4) were more
frequent shown in CYT-high EC (Figure 3(b)). Although
some SCNA events coincided in both CYT-high and -low
tumors, CYT-high EC displayed even lower G-scores in
corresponding loci, such as 3q26.2 and 1q21.3. Altogether,
CYT-high tumors harbored significantly fewer SCNA events
than cytolytic-low tumors (p <0.0001, Figure 3(e)).

3.4. Association between CYT and Enrichment of Tumor
Neoepitope. Neoepitopes are derived from peptides encoded
by tumor somatic mutations and are hence not subject to
central tolerance in the thymus. It has been shown to be
preferentially recognized by immune system and induce
antitumor T-cell activation [21, 22]. Therefore, we further
analyzed whether the mutational/neoantigen load was dis-
tinctive in EC patients with regard to CYT status. As shown
in Figure 2(c), a substantially increased TMB was detected in
CYT-high EC (p <0.0001, Figure 2(c)). Accordingly, both
the silent mutation and nonsilent mutation rate were shown
to be higher in CYT-high ECs (p <0.0001, Figure 4(a) and
4(b)).

To investigate the linkage between CYT and the clonal/
sub-clonal neoantigen burden, the predicted neoantigens
and the clonal/sub-clonal categorization for each neoantigen
were derived from the TCIA database [10]. Consistent with
the TMB pattern, significant increase of neoantigens/sub-
neoantigens (p = 0.0017, p = 0.0013, Figures 4(c) and 4(d))
and Indel/SNV neoantigens (p<0.0001, p =0.0013,
Figures 4(e) and 4(f)) were exhibited in CYT-high EC.
However, the MATH score did not correlate (absolute
R<0.3) with the number of neoantigens/sub-neoantigens
and Indel/SNV neoantigens in EC (Figures 4(g)-4(j)), which
suggested that CYT-high tumor had more neoantigens not
owing to tumor heterogeneity. Taken together, these data
suggested that cytolytic activity in EC might be driven by
elevated mutation and/or neoepitope load.
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h) GO BP enrichment chord plot for the SMGs.

3.5. CYT-High EC Correlated to Essentially Higher Levels of
Apolipoprotein B. We speculated that gene expressions of
APOBEC3 (apolipoprotein B mRNA editing catalyzed
polypeptide 3) members were enhanced in CYT-high EC,
resulting in an increased mutation load in the TME (Tumor
microenvironment), as the cytolytic activity was positively
correlated with a neoantigen load and the mutation load in
EC. Based on this notion, we investigated the relationship of
APOBEC3 mutation status with CYT status in EC. As
displayed in Figure 5, CYT-high EC was linked to a vastly
higher APOBEC3 family member expression (Figure 5(a)).
The geometric average expression of the following genes [23]
was used to calculate the APOBEC3 score: APOBEC3A,
APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F,
APOBEC3G, and APOBEC3H. This score, which reflects the
overall amount of apolipoprotein B family activity, was
similarly higher in CYT-high tumors (p <0.0001) and was
strongly associated with the CYT score (R=0.517,
p <0.0001) (Figures 5(h) and 5(i)).

3.6. ECs with High and Low Cytolytic Activity Had Varied
Cytokine Expression Patterns of ICM. Balli [24] and Zar-
avinos et al. [19] recently reported increased expression of
pro- and anti-inflammatory cytokines and immune

checkpoint molecules in CYT-rich tumors. Also, it has been
reported that for patients with high PD-L1 expression in
tumor cells, PD-1/PD-L1 blockade is more effective than in
those with a low expression of PD-L1 [25-27], which may be
due to the sensitivity to immune checkpoint with anti-PD-1
treatment. Therefore, we speculated that the expression of
cytokines and chemokines was expected to be significantly
increased in endometrial tumors with high CYT (Figure
5(b)). We found that several ICM (immune checkpoint
molecules) were highly expressed in endometrial carcinomas
with high MSI and CYT (Figures 5(b)). In particular, PD-1,
CD274 (PD-L1), PD-L2, CTLA4, indolamine 1
(IDO1), lymphocyte activation gene 3 (LAG3), VSIR,
ADORA2A, HAVCR?2, and T immunoreceptors with Ig and
ITIM domains (TIGIT) showed marked overexpression in
tumors with elevated CYT, whereas the varied IDO2 ex-
pression was negligible between high and low CYT tumors
(Figure 5(d)). Moreover, we also calculated the expression of
twelve known immune checkpoint molecules in MSI+ and
MSS tumors and found significantly higher expression of
many genes (except for ADORA2A, IDO1/2 and VSIR) in
MSI ECs (Figure 5(e)).

In addition, we determined that in ECs, both individual
and high levels of CTLA-4 and PD-L1 synergistically had a
positive impact on the patients’ OS (Figures 5(j)-5(1)).
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events score estimated for each EC patient were considerably higher.

Conversely, the low expression of CTLA-4 and PD-LI to-
gether contributed to the opposite outcome (Figure 5(m)).
These results provided evidence that high expression of both
immune checkpoints affected synergistically the survival of
endometrial cancer patients.

Furthermore, we also found higher level of
cytokines and chemokines in CYT-high ECs, and a
solid relationship between CYT and the ICM index uti-
lizing six gene expressions model (Figures 5(f) and 5(g)),
which suggested that CYT could reflect ICM expression.
Treg markers, such as FOXP3, CCR4, CCR5, and IL2RA,

were at a high level expression in CYT-high EC
(Figure 5(c)).

In summary, in endometrial cancer with MSI and high
CYT, immune escapement might be regulated by the
overexpression of diverse immune checkpoint genes, ex-
pediting tumor cells with selective stress to elude a cytotoxic
T cell immune response.

3.7. High CYT EC Remarkably Enriched a Favorable Im-
mune-Related Gene Set. It was expected that EC with a
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high CYT would have a favorable TME as it was related to
better survival. Therefore, the GO biological process (BP)
GSEA was performed in tumors with disparate CYT

levels. As displayed in Figure 6, high CYT EC essentially
enriched numerous immune-promoting GO gene terms,
such as activated T cell proliferation, T cell mediated
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cytotoxicity, cell and B cell activation

(Figure 6(a)).

killing,

3.8. Composition of Immune Activating and Suppressing Cells
in CYT-High EC. As the high CYT UCEC immune-related
gene clusters enriched, it was necessary to identify the
composition of immune cells in the malignancies. Through
CIBERSORT result, anticancer immune cells, such as acti-
vated CD8"T and CD4" memory T cells, M1 Macrophages
were identified to be markedly infiltrated in the high CYT-
high EC and were substantially positively correlated with
CYT (p <0.001 and R >0.3). While activated dendritic cells
(p <0.001) and M0 macrophages (p < 0.05) were abounded
in CYT-low group and negatively connected with the CYT
score (R<—0.3) (Figure 6(c) and 6(d)).

However, there was an abundance of immune inhibitory
cells, such as Treg cells (Figures 6(c) and 6(d)) in CYT-high
EC. Furthermore, the ESTIMATE algorithm was also ap-
plied to determine the tumor purity and immunity in TME.
As the ESTIMATE score was negatively correlated with
tumor purity, tumor purity was lower in CYT-high group
while immune and stromal scores were higher (Figure 6(b)).
Importantly, HLA-A and HLA-B, two vital molecules of the
major histocompatibility complex (MHC), had a signifi-
cantly higher expression in CYT-high EC (p<0.0001,
Figures 7(a) and 7(b)).

As antigen-specific TCR and BCR were also an im-
portant feature of the immune system for recognizing
pathogens and cancer cells. From the analysis, we further
found that significantly increased TCR/BCR richness
(Figures 7(c), 7(e)) and TCR/BCR Shannon (Figures 7(d),
7(£)-7(h)), which represented the diversity of TCR and BCR

and possibly their improved anticancer efficacy was asso-
ciated with CYT-high EC.

These results indicated that, compared with tumors with
low CYT, tumors with high CYT were associated with an
enhanced immune response and favorable anticancer im-
mune cells.

3.9. The CYT-High Tumors Responded Effectively to ICB
Therapy. CYT-high ECs were characterized by an escalated
expression of the human leukocyte antigen class IT (HLA-II)
complex and genes involved in the antigen presentation
pathway. Also, the high levels of the therapeutic targets PD-
L1 and CTLA4 in CYT-high EC patients implied that they
could be treated with immune checkpoint inhibitors. Sup-
porting this hypothesis, all samples belonging to high CYT
score in the tumor inflammation signature (TIS) score were
reported to be correlated with a response to anti PD-L1
checkpoint  inhibitor =~ pembrolizumab  (p <0.0001,
Figure 8(a)). We also noticed that the CYT score had a
correlation with TIS score (R=0.8095 p<0.0001,
Figure 8(b)). According to the previous report,
MSI + tumors might have high possibility to response to ICB
therapy, but the TIS score was higher only in MSI-H EC
when compared with MSS EC (p = 0.0004, Figure 8(c)).
Immunophenoscore (IPS) could be a learning-based
scoring machine model that might help to in bulk se-
quencing data make predictions of patients’ response to ICB.
Two subtypes of IPS values could function as the indicators
of response to anti-PD-1/PD-L1 and anti-CTLA-4 therapy.
In this way, CYT-high patients were more likely to respond
to ICB therapy (Figure 8(d)). While diversified MSI status
EC group presented no significant variation of IPS
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(Figure 8(e)). These data indicated that inferring patients
with high CYT might be suitable candidates for ICB therapy.
And high CYT score, might worked as an indicator of ICB
therapy, facilitating favorable immunophenotype.

4, Discussion

The discoveries and successful clinical implications of im-
mune checkpoint inhibitors (ICI) have revolutionized
treatment regiments for cancer patients, particularly in

advanced-stage patients with various solid cancer, and ex-
tremely improved the clinical outcome. Currently, limited
biomarkers can be used to stratify patients for ICI immu-
notherapies, including expression levels of PD-L1, tumor
mutation burden (TMB), and status of microsatellite in-
stability (MSI). However, defined biomarkers to guide ef-
fective stratification of cancer patients for using immune
checkpoint inhibitors are controversial and remain to be
determined. Increasing evidence has indicated that explo-
ration of publicly genomic database by bioinformatic tools
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would discover comprehensive biomarkers for more accu-
rate stratification of cancer patients for ICIs. Thus, in this
study, we sought to conduct an extended comprehensive
analysis of the EC transcriptional and genetic landscape to
identify and confirm the value of cytolytic immune activity
for clinical application of ICI in EC patients. Through
stratifying EC patients with a cytolytic gene expression
signature, we distinguished a subset of them with striking
T-cell reactivity. First, we elucidated the clinical properties
associated with CYT levels in EC and we found that the CYT
value was lower in endometrial cancer than that in normal
endometrium. Among four molecular subtypes of EC, the
POLE subtype harbored the highest CYT levels with the best
prognosis, while the CN high molecular subtype had the
lowest CYT levels and the worst prognosis. Similarly, ESC
had a lower CYT value and worse prognosis compared to
EEC in terms of histological subtypes. These results implied
that the CYT value was closely associated with clinical
outcomes and would be a predictor for ICI and prognosis in
EC.

To further determine the correlation of neoepitope load
with cytolytic activity and mutation burden in EC, we
performed a comprehensive analysis of the initial charac-
terization of neoepitope load in cancers through mining
large-scale TCGA dataset. We found that high cytolytic
activity was closely related to mutation load and predictive
neoepitopes for EC. This finding was also in accordance with
the correlation between cytolytic index and mutational
burden in other certain tumors such as lung and stomach
adenocarcinoma [6], where anti-PD-1 antibodies displayed
significant clinical tumor regression. Indeed, several studies
have shed light on the powerful potentialities of tumor
neoepitopes in T-cell recognition of tumor cells, raising the
attention in patient-specific immunotherapeutic strategies
on cancer treatment such as personalized vaccines [28, 29].
As a result, the tight association of neoepitope load with the
cytolytic activity index in EC could reflect the antitumor
activities which was analogous to that present in other ICI-
sensitive tumors, indicating that neoepitope load may also be
the promising predictor to determine ICI sensitivity in EC
[22, 30].

In addition to strong correlation of cytolytic activity with
transcriptional and genetic subtypes of the cancer, further
analysis showed that EC with low CYT tended to be harbored
accelerated genomic structural variations, particularly MYC,
CCNE1, and FGFR3 amplifications and/or deletions of PTEN
and TP73 tumor suppressor genes. Similarly, data from
mouse tumor models with hepatocellular carcinoma and
melanoma have revealed that MYC amplification was cor-
related with low CYT and few T-cell infiltration. These
findings suggested that, in addition to neoepitopes and ge-
nomic structural variations, especially CNVs or other com-
plex structural variations such as chromothripsis and/or
chromoplexy may promote the generation of immunosup-
pressive microenvironment as well [31, 32]. Consequently, the
co-evolution of genomic alterations in tumor cells with the
stromal components in EC not only accelerated tumor
progression but also reinforced the resistance to drug treat-
ment including immunotherapy with ICIs.

Journal of Oncology

Importantly, our data showed that CYT-high endome-
trial tumors had a considerably higher TIL density, which
was linked to better overall survival. These findings were also
in accordance with several recent studies that increased
immunity, and cytolytic activity of T cells and M1 macro-
phages were thought to be related with prolonged survival in
EC. Furthermore, we found that higher CYT levels were
associated with the overexpression of multiple immune-
checkpoint molecules, such as PD-1, PD-L1, CTLA4, LAG3,
TIGIT, and VSIR, supporting that in addition to PD-1, PD-
L1, and CTLA4, more immune checkpoint molecules could
be as promising targets for immunotherapy. Finally,
MSI + EC patients with elevated cytolytic levels were likely to
have generated a strong immune response in response to the
neoepitope. However, some MSI+ CYT-high EC patients
showed ineffective responses to ICIs due to increased levels
of various immunosuppressive checkpoint molecules with
complex genome alterations. The heterogeneity of immune
reactions in EC also suggested that comprehensive genomic
profiling (CGP) with a deep analysis of data would be
powerful tools for precision treatment decision, and tar-
geting multiple immune checkpoint pathways simulta-
neously or in combination with other therapeutic strategies
such as the targeting therapy would be advantageous for
patients with endometrial carcinoma.

5. Conclusion

In summary, our data supported the notion and possibility that
integrated and comprehensive analysis of genomic and
immunophenotypic data would be helpful to understand
immunostimulant and reactions in EC, and CYT value was
likely to be a promising predictor for response to immuno-
therapy with ICIs and prognosis of EC patients. It was also
worth considering that comprehensive genomic profiling
(CGP) with CYT evaluation may exert the additional value for
guiding effective immunotherapy or in combination with other
therapeutic regiments in EC, particularly refractory EC patients.
Finally, it was reasonable to believe that the notion of CYT
evaluation through genomic analysis would move beyond the
standard stratification of EC in currently clinical practice and
provide new evidence to predict T-cell immunity in EC similar
to that in melanoma, colon, and lung cancer [19, 33-34], which
will be more beneficial for patient management.
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Supplementary Figure 1: Association of CYT with CD8"
T cell ligand in EC. (A-B) The CYT score and CD8" T cell
ligands and receptors had a substantial connection including
ligands (A) CD80, CD86, PD-L1, PD-L2, LGALS9, and
TNFSF14; receptors (B) CTLA4, PD-1, TIM3, LAG3, BTLA,
TIGIT. Supplementary Figure 2: Prognosis of differential
CYT expression, MSI status, histological and molecular EC
subtypes. (A) Survival curves between CYT-high and CYT-
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