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Abstract

Tens of thousands of RNA-sequencing experiments comprising hundreds of thousands of indi-
vidual samples have now been performed. These data represent a broad range of experimental
conditions, sequencing technologies, and hypotheses under study. The Recount project has
aggregated and uniformly processed hundreds of thousands of publicly available RNA-seq
samples. Most of these samples only include RNA expression measurements; genotype data
for these same samples would enable a wide range of analyses including variant prioritization,
eQTL analysis, and studies of allele specific expression. Here, we developed a statistical model
based on the existing reference and alternative read counts from the RNA-seq experiments
available through Recount3 to predict genotypes at autosomal biallelic loci in coding regions.
We demonstrate the accuracy of our model using large-scale studies that measured both gene
expression and genotype genome-wide. We show that our predictive model is highly accurate
with 99.5% overall accuracy, 99.6% major allele accuracy, and 90.4% minor allele accuracy. Our
model is robust to tissue and study effects, provided the coverage is high enough. We applied
this model to genotype all the samples in Recount3 and provide the largest ready-to-use ex-
pression repository containing genotype information. We illustrate that the predicted genotype
from RNA-seq data is sufficient to unravel the underlying population structure of samples in
Recount3 using Principal Component Analysis.

Background

RNA sequencing technologies are now commonplace for collecting transcriptome data (Mortazavi
et al., 2008). As technologies have improved and costs have dropped, high-throughput expression
data has accumulated quickly in public archives (Langmead, Nellore, 2018). Initiatives on pro-
viding public access to available expression data has promoted reproducibility and re-usability of
the existing data (Kaminuma et al., 2010; Benson et al., 2012; Leinonen et al., 2011; Mailman et al.,
2007). However, there are challenges in using these population scale genomic data. To address
this, we previously developed the Recount3 repository, which provides public access to uniformly
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processed expression summaries aggregated from raw RNA sequencing data available as part of
the unrestricted access data from SRA, and dbGAP protected data from Genotype Tissue Expres-
sion (GTEx version 8), and The Cancer Genome Atlas (TCGA) (Wilks et al., 2021; Collado-Torres
et al., 2017). By doing so, Recount3 reduces the inevitable computational costs involved with pre-
processing and analyzing large-scale public gene expression data and makes them more accessible
to researchers. We have also developed machine learning approaches to predict metadata - includ-
ing tissue type, sex, and other technological variables - to improve the value of this large collection
of integrated transcriptomic data sets (Ellis et al., 2018).

While these gene expression data are valuable on their own, many questions in functional genomics
can only be answered if both gene expression and genotype data are available on the same samples.
Unfortunately, for most gene expression samples in Recount3 we do not have corresponding
information on genetic variants. Important exceptions are GTEx, TCGA and the Geuvadis project
(TG Consortium et al., 2013).

Here, we aim to extend Recount3 repository by predicting sample genotype directly from the RNA
sequencing summaries calculated by the Recount3 project. De-novo variant calling from RNA-
seq data has gained popularity in non-human studies due to lower costs and lack of an accurate
reference genome (Adetunji et al., 2019; Jehl et al., 2021; Bakhtiarizadeh, Alamouti, 2020). Genotype
calling based on the reference genome has been widely used for human samples using the Genome
Analysis Toolkit (GATK) (DePristo et al., 2011; Long et al., 2022; Tang et al., 2014; Deelen et al.,
2015; Vigorito et al., 2023). However, the GATK tool introduces two problems for genotyping in
Recount3; 1) To overcome the storage burden, Recount3 does not provide access to raw FASTQ
files which is needed as an input for GATK pipeline. 2) GATK read alignment and quality control
steps are redundant in Recount3 genotyping since the samples are already uniformly processed.
Instead, we sought to use the compressed gene expression summaries made available as part of
Recount3 to reduce computational complexity, storage costs, and algorithmic costs for genotype
prediction.

Here, we develop a machine learning model to genotype samples from RNA-seq counts in Re-
count3 human samples. Our approach uses the reference and alternate allele counts for biallelic
SNPs in the coding regions that are produced by Recount3. For each genotype, we model the
relationship between transformed alternate allele count and transformed reference coverage. Our
approach allows single-sample processing. We estimate out-of-sample, within-study accuracy
using a held out GTEx test set and out-of-study accuracy using data from the Geuvadis project.
To show that our predicted genotypes contains biological signal of population structure, we de-
veloped a method to assign 1000 genomes super-population groups to both bulk and single cell
RNA-seq samples; the largest analysis of inferred genetic ancestry to public expression data. In
bulk RNA-seq data, we have 35.9% European samples and 38% Admixed Americans. This paral-
lels results from genetic sequencing data which has been shown to be biased toward Europeans
(Popejoy, Fullerton, 2016; Sirugo et al., 2019).

We applied our genotyping model to predict genotypes for 336,463 human samples in Recount3.
We have developed the RecountGenotyper R package that can be used to genotype future samples.
The resulting genotypes enable studies of the relationship between gene expression and genetic
variation at an unprecedented scale.
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Results

We developed a model to genotype RNA-seq samples using gene expression summaries available
through the Recount3 project. Recount3 uses a customized workflow to process a large amount of
data and as a consequence, BAM files containing read alignments are discarded during processing.
This prohibits the application of standard workflows for genotyping RNA-seq samples. Instead,
the available data on genotypes are in the form of so-called alternative counts files. For each base
in the genome, these files record the coverage of each of the alternative nucleotides compared to
the reference genome (GRCh38) (Figure 1). We generated alternative counts files as part of the
Recount3 processing, but these files are not publicly available to avoid sample re-identification.

While Recount3 contains samples from both human and mouse, our focus here is on human
samples. Using the methods described below, we successfully genotyped 316,639 human samples
originating from unrestricted access SRA data, 19,081 samples from GTEx, and 743 non-cancer
samples from TCGA. The remaining 10,630 cancer samples from TCGA were excluded due to
potential chromosomal abnormalities that might affect allele read counts. We will refer to each
subset of Recount3 data as SRA, GTEx, and TCGA throughout the paper unless stated otherwise.

To reduce our genotyping error rate, we only genotype samples on a pre-specified set of locations
of known single nucleotide polymorphisms (SNPs). First, this set of SNPs only include autosomal
biallelic SNPs in human exons. Second, because we used the GTEx data for model training, we
furthermore restricted the set of SNPs to variants which are polymorphic across the 838 individuals
with whole-genome DNA sequencing data in GTEx version 8. This resulted in an initial list of
20,980,266 SNP locations (Methods).

Genotyping model and prediction

The input data to our model is the coverage of the reference and the alternative alleles for each of
the candidate SNPs (Methods). The reference allele is defined as the allele present in the reference
genome used for alignment (GRCh38). We next transformed the coverage of the reference and
alternative allele into M and S values (Supplemetary Figure S1), for SNP i from a sample.

Mi “ log2prefi ` 1q ´ log2palti ` 1q

Si “
log2prefi ` 1q ` log2palti ` 1q

2

We then removed candidate SNPs with an average coverage across the training set of less than 3.
A scatterplot of M vs. S reveals 3 distinct clusters representing 3 genotypes (Figure 2a).

We used this representation to build our model, which we name RecountGenotyper. Genotype
was modeled as a latent discrete variable with 3 genotype states (AA, AB, BB), with ”A” always
referring to the reference allele and associated with positive values of M. Based on Figure 2, we
assume a linear relationship between M and S conditional on genotype, with a flexible specification
of the variance of M conditional on S (Methods). We use the maximum a posteriori probability
(MAP) estimator to predict genotypes as a function of M and S; this results in the prediction
boundaries depicted in Figures 1B, 2C. Our model represents a relationship between M and S
learned jointly across all training SNPs.
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Figure 1. Genotyping workflow for genotype calling from Recount3 RNA-seq data. (A)
Recount3 includes processed RNA-seq data from about 350,000 human samples aggregated
from SRA, GTEx, and TCGA. Gene expression summaries are in the form of total read counts
and alternative read counts. We subtract total read counts from alternative read counts to get
reference counts. (B) Given a SNP from a sample to be genotyped, we transform reference and
alternative read counts to M and S values. Based on M and S values, we predict our genotype
using the MAP estimate. The decision boundaries for the MAP estimate are colored in red,
green, and blue for reference homozygous genotype (AA), heterozygous (AB), and alternative
homozygous (BB), respectively.

For prediction on a single sample, we first select the subset of candidate SNP locations which has
a sample-specific coverage greater than 4. We then use sample-specific M and S values to predict
genotypes for these specific SNPs. Sensitivity analysis on the prior distributions of genotypes
suggests that the choice of prior has negligible impact on the prediction results (Supplementary
Figure S2). In practice, we use the genotype distribution in GTEx as the prior. After the model has
been trained, this approach allows for single-sample processing.

For model training we use RNA-seq samples from the GTEx consortium version 8. We used
samples from individuals which have been genotyped using whole-genome DNA sequencing and
we use these genotype calls as gold-standard for model training. We created a training set by
selecting samples from 638 individuals and 33 tissues. Each tissue type is balanced in the training
set to account for variability of tissue expression. The remaining 200 individuals were used as the
test set which consists of 3901 samples across 54 tissues (Methods). There was no overlap in the
individuals in the training and test set.

Evaluating model performance

The mean overall allelic accuracy for the GTEx test set of 16,185,565 unique SNPs is 99.5% (Fig-
ure 3A). We genotyped 3,901 samples from 200 individuals in our GTEx test set and computed
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Figure 2. Model development on GTEx training samples. 200 samples were randomly
selected from the GTEx training set to illustrate the model building process. Each plot is
faceted based on AA (homozygous reference) genotype, AB (heterozygous), and BB
(homozgyous alternative). (A) Each point represents a SNP’s mean M and mean S values
across training samples, with a linear fit describing the relationship. (B) Each point represent a
SNP’s standard deviation of M and mean S values across training samples, with a GAM fit
describing the relationship. (C) Each point represent a SNP’s M and S values from a single
sample. The decision boundary of the fitted model on the training set is colored in lilac.
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the SNP accuracy for all samples using whole-genome DNA sequencing genotypes as the gold-
standard. The SNP accuracy can be reported at either the genotype or the allelic level, and we
used allelic accuracy to evaluate model performance. The advantage of allelic accuracy is that
a prediction of AB is considered better than a prediction of BB when the true genotype is AA.
Because we are predicting biallelic SNPs, in each sample each SNP will have an accuracy of either
0{2 “ 0, 1{2 “ 0.5, or 2{2 “ 1.

We reasoned that the overall accuracy would be strongly affected by the major allele frequency
distribution in the test set, where the mean major allele frequency is 96.6% (Supplementary Figure
S3). To illustrate this, we evaluated overall accuracy for a model which always predicts the major
allele across the 838 GTEx individuals, termed the “major allele model”. This model achieves a
high overall accuracy of 95.7% (Figure 3B). To parse out the dominating effect of the major allele
on the overall accuracy when the mean major allele frequency is high, we additionally report our
accuracy conditional on the major and minor allele (Methods, Table 1). We define major and minor
allele based on 838 individuals in GTEx version 8. On the GTEx test set, our model achieves a
mean major allele accuracy of 99.6%, and a mean minor allele accuracy of 90.4% (Figure 3A). For
comparison, the major allele model achieves a mean major allele accuracy of 100% and mean minor
allele accuracy of 0% (Figure 3B).

To ensure that our model was not overfitted to the GTEx study, we used the Geuvadis project as an
out-of-study test set (TG Consortium et al., 2013). We computed the accuracy of 1,373,457 expressed
SNPs from 462 Lymphoblastiod Cell Lines (LCL) in Geuvadis, using genotypes imputed from SNP
arrays as the gold-standard. We attained a mean overall allelic accuracy of 99.2%, mean major allelic
accuracy of 99.4%, and mean minor allelic accuracy of 91.4%, which is on par with the GTEx test
set performance (Figure 3A). Note that the major allele is defined using GTEx individuals, despite
the performance measure being computed on Geuvadis samples; this may explain the higher
minor allelic accuracy for Geuvadis compared to the GTEx test set. We additionally compared the
Geuvadis result to GTEx lymphoblastoid cell line test samples, and observe very similar results
(Supplementary Figure S4).

Our model performance is robust to variations in tissue expression patterns. Previous studies
of tissue specific gene expression have shown that samples from the same tissue type tend to
express a common set of genes unique to the tissue (Lonsdale et al., 2013). Since our model only
predicts SNP genotype at expressed genes, we expect to genotype a similar set of SNPs for samples
from the same tissue type. In contrast, we expect to see variation in the set of SNPs genotyped
when looking across tissues. Thus, we investigated the model performance for each tissue type.
Accuracy for each tissue in the GTEx test set was evaluated on an average of 4,097,750 expressed
SNPs (min: 982,965 SNPs, max: 7,478,944 SNPs) and an average of 72 samples (min: 1 sample, max:
182 samples). We see near-uniform mean overall accuracy across tissues with the lowest of 99.4%
and highest of 99.6%, near-uniform mean major accuracy with the lowest of 99.5% and highest of
99.7%, and very uniform performance of mean minor allele accuracy with the lowest of 89.0% and
highest of 91.7% (Figure 3C).

Modelling genotyping accuracy

To help user interpretation of our predicted genotypes, we sought to develop a model for genotyp-
ing accuracy when the gold-standard genotype is unknown. This makes it possible to further select
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Figure 3. Evaluating model performance using overall and conditional allelic accuracy.
(Conditional) allelic accuracy for GTEx (3,091 samples from 200 individuals) and Geuvadis
test sets (462 individuals). (A) Model performance on GTEx and Geuvadis test sets. (B) The
performance of the major allele model, always predicting the major allele. (C) Model
performance across 54 tissues in GTEx.

predicted genotypes based on their expected accuracy. We shift our focus from allelic accuracy to
genotyping accuracy as we believe the latter to be more important to the end user.

To develop our model, we observe that genotyping accuracy is highly dependent on sequencing
coverage and major allele frequency. Using 1,056,408 SNPs from 638 samples in the GTEx training
set, we computed mean genotyping accuracy of SNPs that have the same coverage and similar
range of major allele frequency. We observe that mean genotyping accuracy increases as a function
of sequencing coverage; the rate of change is dependent on the major allele frequency (Supple-
mentary Figure S5). Therefore, we model genotyping accuracy using a logistic regression model
where we use a smooth function of coverage interacting with 6 discrete major allele frequency bins
(Methods).

To evaluate model performance, we use the GTEx test set and the Geuvadis out-of-study test test,
and observe excellent performance (Figure 4). For the GTEx test set, the mean absolute error
between predicted and observed mean genotyping accuracy is 0.5% (min: 0% , max: 5.1%) for
sequencing coverage ď 30. For the Geuvadis out-of-study set, the mean absolute error is also 0.5%.
Two tissues – whole blood and LCLs from GTEx – perform less well: the model over-predicts the
true genotyping accuracy (Supplementary Figure S6). However, the mean absolute error remains
small, with 1.3% for GTEx whole blood and 1.5% for GTEx LCLs.
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Figure 4. Accuracy prediction model on GTEx test set and Geuvadis out-of-study. Observed
genotyping accuracy at the SNP level is grouped by discrete coverage values and major allele
frequency bin to get a continuous averaged accuracy value (blue-green points). The model
prediction is shown in red lines. Each facet along the x-axis denotes a major allele frequency
bin. Each facet along the y-axis is the test set name.

Genotyping SRA samples

After our promising genotype and accuracy model performance, we applied our model to the
entire 315,443 SRA human samples available in Recount3. A substantial amount of these samples
are single-cell (Wilks et al., 2021). We successfully genotyped an average of 932,460 SNPs per bulk
and 90,863 per single-cell RNA-seq samples. On average, 1% SNPs in a bulk-RNA seq sample from
SRA have coverage ą“ 15 to be genotyped with predicted near-perfect accuracy. For single-cell
RNA-seq samples, 0.2% SNPs have coverage ą“ 15.

Population structure analysis of predicted genotypes

The representation of diverse populations in public genetics data is of importance to precision
medicine (Popejoy, Fullerton, 2016; Petrovski, Goldstein, 2016). Most (91%) genome-wide associa-
tion studies on complex traits have been performed on European ancestry populations (Fitipaldi,
Franks, 2023). This raises the question of the population composition of publicly available RNA-seq
data (Barral-Arca et al., 2019; Harismendy et al., 2019). Existing approaches to inferring population
structure from RNA-seq data consists of performing principal component analysis of genotypes
from a select panel of SNPs; such an unsupervised analysis requires identifying which principal
component represents which populations (Fachrul et al., 2023).

To unravel the population structure of samples in Recount3, we projected our predicted genotypes
from RNA-seq data onto a reference subspace that describes the population diversity of the 1000
Genomes Project, which consists of a diverse set of 2,504 individuals from 26 populations grouped
into 5 super-populations. We generated the reference population subspace by performing principal
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Figure 5. Projection of predicted genotypes onto a reference population space. (A) PCA was
computed from whole-genome DNA sequencing from the 1000 Genome phase III study and
individuals are colored based on the 5 different super-population (East Asian=EAS, South
Asian=SAS, African=AFR, European=EUR, American=AMR). (B) RNA-seq predicted genotypes
from Geuvadis project are projected onto this subspace, and each individual is colored based on 5
annotated populations (British, Finnish, Tuscan, Utah, Yoruba). Grey points are 1000 genomes
data.

component analysis (PCA) on whole-genome DNA sequencing data from these 2,504 individuals.
As expected, the first two principal components separate the 5 super-populations (Figure 5A). We
scaled the axes based on the variance explained by each PC as recommended by best practices for
dimensional reduction analysis (Nguyen, Holmes, 2019).

One of the challenges of analyzing genotypes based on RNA-seq data is the substantial amount
of missing genotypes. This is because the expression of many genes is tissue-specific and we can
only genotype SNPs in expressed genes. To find SNPs expressed across a wide variety of tissues to
use in PCA, we selected 30,875 SNPs which are expressed in a majority of GTEx tissues (Methods).
Using these selected SNPs, we first performed PCA on the 1000 genomes data and then projected
our predicted genotypes onto this space.

To ensure that our PCA projection is reliable, we projected predicted genotypes from the Geuvadis
project onto this reference population subspace. We then compared the location of the Geuvadis
samples – based on genotypes from RNA sequencing data – to the location of the 1000 genomes
samples – based on the genotypes from DNA sequencing data, and found excellent agreement,
validating our approach (Figure 5B).

These promising results encouraged us to extend this analysis to all of SRA. We first restricted our
analysis to the 65,844 out of 314,596 (21%) samples from Recount3 SRA samples with equal or less
than 10% missing genotype information (Figure 6A). All these samples are placed near known
super-populations.
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However, despite selecting SNPs which are broadly expressed across GTEx, we still found that a
majority of samples had more than 10% missing genotypes. We encode present genotypes as 1,2,3
with a missing genotype being encode as -1. To examine the impact of this encoding, we randomly
removed genotypes from our reference 1000 genomes populations (Figure 6B). Depending on the
amount of missing genotypes, the position of the projected points is shifted to the lower left of the
display (as expected based on our choice of encoding).

SRA contains a roughly equal proportion of bulk and single-cell RNA-sequencing runs. When
we separate sequencing runs by bulk and single-cell, we observe that the single-cell data has a
substantial degree of missing genotypes as expected; 71% of the scRNA-seq data had more than
70% missing genotypes. Furthermore, the projected points are shifted as expected (Figure 6B).

Based on this, we developed a method to predict super-population. We used K-means clustering
on PCA projections combined with the 1000 Genome reference data as a training set (Methods). We
grouped samples within 1% increments of missing genotype to perform prediction (Supplementary
Figure S7 and Figure S8). We trained our model by randomly removing genotypes from our
training data, followed by projection. We used a threshold of greater than 70% estimated prediction
accuracy to indicate a successful prediction. With this definition, we were able to successfully
predict the super-population of a majority (121,698 sample, 86%) of bulk RNA-seq and (113,844
samples, 78%) scRNA-seq samples (Figure 6C).

Amongst the bulk RNA-seq studies, Admixed American and European super-populations were
both highly represented with 38% and 35.9% of the samples respectively. The next largest super-
populations were Africans with 12.6% of SRA samples and East Asians with 11.7%. In contrast, for
single-cell RNA-seq studies, we observe a more even spread amongst these four super-populations
(23.8%, 24.8%, 22.4%, and 19.8%) and a strong relative increase in the proportion of South Asians
(1.7% to 9.2%). The proportions from single-cell RNA-seq studies reflects cells rather than individ-
uals. Nevertheless, this suggests a remaining lack of diversity in genomic data despite the recent
efforts.
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Figure 6. Projection of SRA samples onto 1000 Genomes Project first two principal components.
Color dots represent individuals in 1000 Genome study with their corresponding ancestry origin.
(A) Gray points represent SRA individuals with unknown ancestry information with less than 10%
missing predicted genotypes. (B) Impact of missingness; First column shows the 1000 Genome
super-populations with different proportions of genotypes removed at random. Columns 2 (bulk
RNA-sequencing) and 3 (single-cell RNA-sequencing) depict SRA data with different ranges of
proportions of missing genotypes. (C) Ancestry prediction of SRA bulk and single cell RNA-seq
samples. Only samples with an estimated prediction accuracy higher than 70% are depicted.

Razi, Lo et al. | 2023 | bioRχiv | Page 11

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2023.10.21.562237doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.21.562237
http://creativecommons.org/licenses/by-nd/4.0/


Discussion

We have expanded the Recount3 expression repository by providing genotype information on
336,463 samples from SRA and GTEx. We have successfully created a single-sample pipeline that
predicts the genotype at biallelic SNPs in expressed regions. This information enables future large-
scale genomic analyses, including eQTLs, allele-specific expression, and variant prioritization.
Our accurate and efficient genotyper for RNA-seq data provides an opportunity to follow up
existing transcriptomic studies with genetic data without additional sequencing. This would
not replace gold standard SNP calling technologies such as whole-genome sequencing or array-
based genotyping but as an alternative with no additional cost, when RNA-sequencing is already
available.

A limitation of our data processing is that we only provide predicted genotypes for SNPs that are
present in individuals in the GTEx study. This limitation arises because we need a gold standard
set of genotypes to estimate prediction accuracy. It would be easy to deploy and test our model if
gold standard data were available on different SNPs. Because of the structure and trainign of our
model, we expect a similar performance on a new set of SNPs as we here report on the variants in
GTEx. Furthermore, we only predict genotypes for SNPs in coding regions. To expand the number
of genotyped SNPs, one could perform whole genome imputation using our predicted genotypes
(Das et al., 2016). This would expand our predictions to include non-coding regions.

Our analysis of the composition of the Short Read Archive at the super-population level, shows
that Admixed Americans and Europeans are the two largest super-populations. This reinforces
the need to further diversify genomic data.

Razi, Lo et al. | 2023 | bioRχiv | Page 12

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2023.10.21.562237doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.21.562237
http://creativecommons.org/licenses/by-nd/4.0/


Methods

Data

Recount3

Recount3 consists of 347,093 human samples aggregated from the unrestricted access part of the
Sequence Read Archive (SRA), Genotype-Tissue Expression (GTEx version 8) and The Cancer
Genome Atlas (TCGA). All RNA-seq samples have been uniformly processed with the Recount3
Monorail pipeline (Wilks et al., 2021).

Processed RNA-seq samples from Recount3 are stored in the form of total base read count (bigWig
files) and alternative read counts (zst files). The total base read count records the total number of
reads aligned to the reference genome (GRCh38) at the nucleotide level, and the alternative read
counts record the coverage of each alternative nucleotides compared to the reference genome. Read
alignment information, such as in the form of BAM files, are not kept in the Recount3 pipeline. The
total base read count files are accessible from the Recount3 R package, however, the alternative
read count files are not publicly available due to privacy concerns.

We use two datasets within Recount3 for training and evaluating our genotyping and accuracy
models:

• The Genotype-Tissue Expression project (GTEx version 8) is used for model training and
evaluation. The project consists of 19,081 samples from 972 individuals and 54 tissues. 838
individuals have whole genome DNA sequencing (WGS) performed which serve as geno-
typing ground truth. We used these 838 individuals for our model training and evaluation.

• The Geuvadis project is used as an out-of-study evaluation set. The project has imputed SNP
arrays on lymphoblastoid cell lines for 462 HapMap individuals from 4 European populations
and 1 African population.

1k genomes DNA sequencing

The 1000 Genome Phase III study includes 2,504 individuals from 26 different sub-populations
and 5 different super-populations, and their Whole Genome Sequence VCF files were downloaded
from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502 (T1GP Con-
sortium et al., 2015). The VCF files were lifted over from hg19 to hg38 by using Picard LiftoverVcf
and the UCSC reference genome (DePristo et al., 2011).

Selection of SNPs for training and genotyping

We only genotype samples at known SNPs in the GTEx population. Using the WGS Variant Call
Format (VCF) of 838 individuals, we first selected biallelic SNPs using bcftools version 1.2 (Danecek
et al., 2021). We further filtered our SNPs to protein coding regions using Ensembl version 85 for
GRCh 38 reference genome. Finally, we remove SNPs belonging to sex chromosomes as we assume
that both alleles are expressed unless in the extreme case of imprinting. This gives us 20,980,266
SNP locations.
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Data transformations

Computing coverage of reference and alternative allele

The coverage of the alternative allele at the nucleotide level is computed by summing all possible
alternative alleles’ read counts via the alternative read count file. For instance, if the reference
allele is ”A”, then the coverage of the alternative allele is the sum of coverage for ”T”, ”C”, and ”G”
alleles. Then, the coverage of the reference allele at the nucleotide level is computed by subtracting
the alternative allele coverage from the total base coverage via the total base read count file.

M and S transformation

Let refi,j be the reference counts for SNP i from sample j, and alti,j be the alternative counts for
SNP i from sample j. For model training, multiple samples j “ 1, ..., J of the same tissue type are
analyzed together. For genotyping, only one sample j “ 1 is analyzed at once so the j index is
dropped. We transform refi,j and alti,j into Mi,j and Si,j values with a pseudocount of 1, based on
(Carvalho et al., 2010):

Mi,j “ log2prefi,j ` 1q ´ log2palti,j ` 1q

Si,j “
log2prefi,j ` 1q ` log2palti,j ` 1q

2

Genotyping Model

We developed a model to genotype RNA-seq samples using reference and alternative read counts
available through the Recount3 project, using M and S values (Data transformations).

Model overview

Let Zi,j P{AA, AB, BBu be the 3 possible genotypes for SNP i “ 1, ..., I from sample j “ 1, ..., J rep-
resenting reference homozygous, heterozygous, and alternative homozygous alleles, respectively.
The genotype is treated as a discrete latent variable. As prior we use a multinomial distribution:

Zi,j „ Multinomialpπq

with
π “ pπAA, πAB, πBBq, πAA ` πAB ` πBB “ 1

Then, conditional on genotype Zi,j “ g with g P{AA, AB, BBu, we assume that the relationship
between Mi,j and Si,j can be described by a mean function fgpsq and variance function h2

gpsq:

Mi,j | pSi,j, gq „ Np fgpSi,jq, h2
gpSi,jqq (1)

We assume a linear relationship between Mi,j and Si,j to parameterize fgpSi,jq, and a smooth func-
tion between variance of Mi,j and Si,j to parameterize h2

gpSi,jq.
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Given a sample to be genotyped with values of Mi, Si (index j is dropped due to J “ 1), we use
model parameter estimates of f̂gpSiq and ĝgpSiq, and prior π to compute the posterior probability
for each possible genotype Zi “ g P{AA, AB, BBu:

PpZi “ g|Mi, Siq “
PpMi|Zi “ g, SiqPpZi “ gq

PpMi|Siq
“

ϕMi|Si ,g ¨ πg
ř

xPtAA,AB,BBu ϕMi|Si ,x ¨ πx
(2)

where ϕMi|Si ,g is the normal likelihood evaluated at Mi with mean and variance described in Equa-
tion 1:

ϕMi|Si ,g “
1

?
2πĥgpSiq

exp
"

´pMi ´ f̂gpSiqq2

2ĥ2
gpSiq

*

(3)

We use the maximum a posteriori probability (MAP) estimate of the posterior to predict the geno-
type.

Construction of GTEx training and testing set

To build our training set, we wanted to select a wide variety of tissues from GTEx so that the
genotyping and accuracy models will be robust to a wide range of tissues. We first selected 33
tissues such that each tissue has at least 200 individuals profiled for RNA-seq and WGS. The union
of individuals in the 33 tissues encompassed all 838 individuals in GTEx with RNA-seq and WGS.
We then randomly sampled 638 individuals for the training set, and for each individual in the
training set, we sampled one tissue sample for the training set. Thus, we have 638 samples from
638 individuals for the training set, with equal contribution from every individual.

The remaining 200 individuals with RNA-seq and WGS in GTEx are then designated for the test
set. Here, each individual may have multiple samples from multiple tissues. We get a total of 3,901
samples from 200 individuals in the test set.

Model training

We used our GTEx training set of 638 samples from 638 individuals for model training. Starting
with our candidate set of SNPs, we removed SNPs with an average coverage across samples less
than 3. Then, we transformed our reference and alternative counts into Mi,j and Si,j values.

Averaging M and S values: We noticed that within a genotype, the correlation between averaged
M value for a SNP across samples with averaged S value for a SNP across samples is higher
than the correlation between M and S. We therefore use the mean of M, the mean of S,
and the standard deviation of M across samples with a given genotype in the training set
as a more robust way to describe relationship between M and S. This yields meanpMqi,g,
meanpSqi,g and sdpMqi,g with i “ 1, . . . , I, g P tAA, AB, BBu. As a short-hand, below we use
ĎMi,g “ meanpMqi,g and sSi,g “ meanpSqi,g

Parameter estimates of f̂gp.q, ĝgp.q, and π: For each genotype g, we fit a mean model with mean(M)
as the response variable and mean(S) as the predictor and a variance model with sd(M) as
the response and mean(S) as the predictor, giving us a total of 6 models.
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The mean model for genotype g is described as:

ĎMi,g “ fgpsSi,gq ` ϵi,g

where fgpsSi,gq “ β0 ` β1S̄i,g and ϵi,g is a mean-zero normal variable.

The variance model for genotype g is

sdpMqi,g “ hgpsSi,gq ` τi,g

where fgpsSi,gq is a generalized additive model (GAM) where sdpMqi,g is the outcome and sSi,g
is the predictor, and τi,g is a mean-zero normal variable.

Lastly, the prior π “ pπAA, πAB, πBBq is estimated as the proportion of SNPs from all samples
that have the genotype in the GTEx training set across all tissues.

Genotype prediction

Given a new sample from Recount3, we select the subset of candidate SNP locations that have a
coverage greater than 4. For each SNP, we compute the Mi and Si transformation. Then we com-
pute the normal likelihood, ϕMi|Si ,g, evaluated at Mi for each genotype g as described in Equation
3. Finally, we calculate the posterior probabilities for Zi “ g P tAA, AB, BBu based on ϕMi|Si ,g and
prior π via Equation 2. We use the MAP estimate as our genotype prediction.

We show our genotype prediction boundaries in Figures 1b and 2C. We noticed that in our decision
boundary there is a potential region for misclassification around S “ 8 and M “ 4: this region is
predicted to be ”BB” alternative homozygous, when clearly it should be ”AA” reference homozy-
gous or ”AB” heterozygous. This is due to the likelihood function for ”BB” slightly dominating the
likelihood function of ”AA” and ”AB”. We checked our evaluation data to see how many SNPs is
misclassified in this region. In the GTEx test set and Geuvadis out-of-study set, the probability of
this misclassification is on the order of 10´6, so this is not a concern.

Model evaluation

We evaluated our genotype model on the GTEx test set consisting of 3901 samples from 200 indi-
viduals and the Geuvadis out of study set consisting of 462 samples and individuals. We report
our genotyping model accuracy for each SNP from all samples, using genotypes from WGS or
array-based technologies as the gold-standard. The accuracy is calculated at the allelic level, which
implies that each biallelic SNP can have an accuracy of 0{2 “ 0, 1{2 “ 0.5, or 2{2 “ 1. We have
three definitions of allelic accuracy: ”Overall Accuracy” considers the allelic accuracy of both al-
leles, ”Major Accuracy” considers the allelic accuracy of the major allele, and ”Minor Accuracy”
considers the allelic accuracy of the minor allele. The major allele for a SNP is defined as the most
prevalent allele for the SNP across the 838 GTEx individuals computed using gold-standard WGS,
and the minor allele is the least prevalent allele. We use the following rule to compute our three
definitions of allelic accuracy, assuming ”A” as major allele and ”B” as the minor allele in Table 1.

We report the tissue’s or study’s accuracy as the average of each SNP’s accuracy, after removing
all NA values.
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Table 1. Rule for computing genotyping accuracy at the allele level. The major allele is denoted
as ”A”, and the minor allele is denoted as ”B”. Given the true genotypes, the major, minor, and
overall accuracy can be calculted for each SNP.

True Genotype Predicted Genotype Major Accuracy Minor Accuracy Overall Accuracy
AA AA 1 NA 1
AA AB 1{2 NA 1{2
AA BB 0 NA 0
AB AA 1 0 1{2
AB AB 1 1 1
AB BB 0 1 1{2
BB AA NA 0 0
BB AB NA 1{2 1{2
BB BB NA 1 1

Accuracy Model

We developed an accuracy model to predict the accuracy of our genotyping model when the gold-
standard genotype is unknown. For this model, we compute genotyping accuracy at the genotype
level so that each SNP from a sample have an accuracy of 0 or 1.

Model overview

Denote Acci,j P t0, 1u to be the genotype accuracy for SNP i “ 1, ..., I from sample j “ 1, ..., J. For
model training, multiple samples j “ 1, ..., J of multiple tissue types are analyzed together. For
predicting the accuracy, only one sample j “ 1 is analyzed at once so the j index is dropped. Also,
denote coverage of SNP i from sample j as Covi,j. Lastly, the major allele frequency for a SNP
is defined as the number of most prevalent allele for the SNP across the 838 GTEx individuals
divided by the number of total alleles for the SNP across individuals. This is computed using the
gold-standard WGS. We create categorical variable MAFbin

i,j based on which bin the major allele
frequency belongs to: r0.5, 0.632q, p0.632, 0.749s, p0.749, 0.84s, p0.84, 0.908s, p0.908, 0.95s, and r0.95, 1s.
The bins between 0.5 and 0.95 are determined from equal sized quantiles of major allele frequencies
from the GTEx training set.

We observed that the majority of SNPs have a major allele frequency belonging to the r0.95, 1s

bin (Supplementary Figure S3) and the relationship between Acci,j and Covi,j is different than
other bins (Supplementary Figure S5). Therefore, we separate our training SNPs into two groups
based on whether their major allele frequency bin is r0.95, 1s or not. Each SNP group is modeled
separately but with the same parameterization as described below.

We modeled the genotype accuracy as a function of coverage and major allele frequency bin via a
logistic regression model (written using model formulas):

logitpAcci,jq „ rcspCovi,jq ˚ MAFbin
i,j (4)

where rcsp¨q is a restricted cubic spline function with knots at coverage values of 4, 6, 10, 16, and
40.
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Model training

We used our GTEx training set of 638 samples from 638 individuals for model training. Starting
with our candidate set of SNPs, we removed SNPs with an average coverage across samples
less than 4. We separate our training SNPs into two groups based on whether their major allele
frequency bin is r0.95, 1s or not and we fit two accuracy models with the same parameterization as
described in Equation 4.

Model prediction and evaluation

We evaluated our accuracy model on the GTEx test set consisting of 4901 samples from 200 individ-
uals and the Geuvadis out of study set consisting of 462 samples and individuals. For each sample
and our candidate set of SNPs, we kept SNPs with coverage greater than 4.

Once we predict the genotyping accuracy for SNPs from the test set samples, we group SNPs
together that have the same coverage and major allele frequency bin to compute the predicted
mean genotype accuracy, which is a continuous value between 0 and 1. Similarly, we compute the
ground truth mean genotype accuracy. We examine the model fit by comparing the mean predic-
tion accuracy and ground truth mean genotype accuracy graphically (Figure 4, Supplementary
Figure S6), and quantitatively compute the absolute value difference between these two values.

Population structure analysis

We obtained a VCF file for the 1k genome data (See the Data section). Genotype values were
mapped to values of 1, 2, and 3 for reference homozygous, heterozygous, and alternative homozy-
gous respectively before PCA was performed. To select the SNP locations for PCA analysis, we
choose 30,875 SNPs where we had genotype prediction for all the samples in our GTEx evaluation
tissues with more than 80 samples.

To project our predicted genotypes onto the subspace, we first selected the same SNP locations.
Missing genotype information (due to insufficient coverage) were given the value of -1, and geno-
typing values were mapped to values of 1, 2, and 3 as before. New samples from Recount3 were
projected onto 1000 Genome PCA by using the rotation matrix estimated from PCA of the 1k
genome data and the predicted genotypes where standardized using scale and center values cal-
culated using the 1k genome data as well. Calculations were performed using prcomp() and
predict() function from the stats R package.

SRA population structure prediction

To predict the unknown population structure of SRA samples, we trained a model using K-means
clustering method from caret R package. To deal with different amounts of missing genotypes
in our samples, we grouped samples based on their missing genotype in 1% increments. For each
group, we simulated 1000 Genome by assigning random SNPs a value on -1 (missing genotype).
We then trained the model with this simulated data by using k=6. Using PC1 and PC2 values as
predictors in predict() function, we obtained the super-population category for each sample.
We also obtained the posterior probability by using the argument type = "prob". We only
selected bulk RNA-seq and samples with prediction probability of more than 70% for downstream
analysis.
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Data and code availability

We are currently communicating with NIH to finalize the details on data access procedures.
Until that is finalized, the genotyping calls are not publicly available. The code used to pro-
duce the manuscript is available at https://github.com/hansenlab/recount_genotype_
paper. The R package for single sample genotype calling is available at https://github.com/
hansenlab/RecountGenotyper.git
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Supplementary Figure S1. Transformation of SNP coverage values. We depict 200 random GTEx
samples in the training set. (A) Raw reference and alternative read counts where each point
represents a SNP of a sample. Each plot is faceted based on genotype (A being reference and B
being alternative). (B) The same samples and SNPs are plotted again using S vs. M
transformation.
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Supplementary Figure S2. Sensitivity analysis for the choice of prior distribution. Each facet
depicts the decision boundaries of the three genotypes based on a prior genotyping distribution.
The prior genotyping distribution are specified in each facet’s title. The reference allele is ”A” and
the alternative allele is ”B”.
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Supplementary Figure S3. Distribution of major allele frequency of GTEx test set. The major
allele frequency for a SNP is the number of most prevalent allele for the SNP across the 200 GTEx
test set individuals divided by the number of total alleles for the SNP across the individuals.
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Supplementary Figure S4. Model performance for lymphoblastoid cell lines. (A) Model
performance for 35 GTEx LCL samples in the GTEx test set. (B) Model performance for 462
Geuvadis samples as an out-of-study set.
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Supplementary Figure S5. Genotyping accuracy as a function of sequencing coverage and
major allele frequency. Genotyping accuracy at the SNP level is grouped by discrete coverage
values and major allele frequency bin to get a continuous averaged accuracy value. Each facet
denotes a major allele frequency bin, and each line represents a tissue type from GTEx training set.
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Supplementary Figure S6. Genotyping accuracy as a function of sequencing coverage and
major allele frequency for several tissues. Genotyping accuracy at the SNP level is grouped by
discrete coverage values and major allele frequency bin to get a continuous averaged accuracy
value (blue-green points). The model prediction is shown in red lines. Each facet along the x-axis
denotes a major allele frequency bin. Each facet along the y-axis denotes a different tissue type.
We contrast a well fitted tissue type (GTEx Thyroid) against less well fitted tissue types (GTEx
Whole Blood, GTEx LCL). We also contrast model predictions of LCL tissues between two studies
(GTEx LCL vs. Geuvadis LCL).
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Supplementary Figure S7. SRA Bulk RNA-seq samples ancestry prediction. Bulk RNA-seq
samples from SRA are separated based on their percent missing genotype in 10% increments.
Each color corresponds to the predicted super-population based on 1000 Genome reference.
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Supplementary Figure S8. SRA single-cell RNA-seq samples ancestry prediction. Single-cell
samples from SRA are separated based on their percent missing genotype in 10% increments.
Each color corresponds to the predicted super-population based on 1000 Genome reference.
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