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ABSTRACT: warpDOCK is an open-source pipeline for virtual
small-molecule drug discovery using cloud infrastructure. warp-
DOCK is designed from the ground up for the Oracle Cloud
Infrastructure (OCI), enabling harmonious parallelism of docking
calculations over thousands to hundreds of thousands of cores. This
enables cost-effective sampling of ultra-large chemical libraries,
potentially reducing the time to identify lead drug candidates by
orders of magnitude. By utilizing established docking software and
automating each step of the process, warpDOCK makes large-scale
virtual screening accessible to a broad user group. The warpDOCK
code can be found at the BruningLab GitHub repository (https://
github.com/BruningLab/warpDOCK).

■ INTRODUCTION
Recent advances in virtual screening programs and approaches
have enabled the discovery of promising new drug
candidates.1−4 Traditionally, modest virtual screening experi-
ments (up to 3−5 million compounds) have been performed
using onsite high-performance computing clusters, typically
requiring days to weeks of computation time.5,6 Recently, an
increasing number of published studies have performed large-
scale virtual screens using chemical libraries of more than 100
million,3,4,7 or even a billion ligands.1 However, to perform
such screens, access to considerable computational resources,
experience in managing HPC clusters, and scripting knowledge
are essential�a limiting factor for most prospective users. The
benefit of upscaling CPU cores is clear when considering that
the overall computation time (T) of a virtual screen is
proportional to the number of ligands (N), processing time per
ligand (P), and the number of cores (C) available
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For example, on a modern desktop PC with 8 cores, it would
take approximately 4 years to screen 100 million ligands,
assuming a typical processing time of 10 s per ligand, which is
not practical. Compared to onsite HPCs, cloud computing is
advantageous as the user has access to virtual and bare-metal
machines, enormous core scalability, and data storage. Cloud
infrastructure is also globally accessible and does not require
prior HPC experience. Therefore, incorporating cloud infra-
structures with large-scale virtual screening is beneficial for the
broader scientific community, enabling increased access and
usability for this powerful drug discovery approach.

Here, we introduce warpDOCK, an open-source pipeline for
virtual screening using cloud network infrastructure (Figure 1).
To provide a smooth user experience and best performance,
we designed warpDOCK for the Oracle Cloud Infrastructure
(OCI) and automated tasks that would otherwise be complex
and time-consuming with subsidiary programs (Figure 2; Table
1). Because of the design architecture of the queue-engine,
warpDOCK offers practically limitless scaling capabilities
whilst maintaining the maximum efficiency of docking
calculations on all CPU cores across all compute instances,
and is compatible with multiple different docking algorithms.
As an exercise to demonstrate the capabilities and cost-
effectiveness of the pipeline and to compute behavioral
characteristics, we performed a virtual screen against AmpC
β-lactamase (PDB: 1L2S) from Escherichia coli using 1.28
million ligands and a large-scale ensemble virtual screen with
over 100 million docking calculations against Staphylococcus
aureus D-alanine−D-alanine ligase (SaDdl; PDB: 7U9K).
Collectively, these exercises demonstrate that the warpDOCK
platform is accessible, cost-effective, and simple to use.

■ RESULTS AND DISCUSSION
In cloud environments, a computer (“shape” according to OCI
terminology) is launched as an object called an “instance”,
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having varied core allocations and memory. Depending on the
task, the number of instances could vary significantly, but this
creates complexity as jobs must be managed harmoniously
between cores and simultaneously between instances. Because
the docking calculation time per ligand is not consistent, core
utilization can drop if the next ligand is not pre-loaded. Rather

than using BASH shell scripting to load ligands,1 which is
computationally expensive (thus affecting process loading
time), we developed the warpDOCK queue-engine in python
(https://www.python.org/) to circumvent this issue. Here, the
queue-engine actively monitors the number of docking
calculations allocated to each core, and if the values drop

Figure 1. Overview of the warpDOCK pipeline. Chemical libraries are curated from the ZINC database in the PDBQT format (3D) and imported
into cloud storage devices. The chemical library is partitioned into sub-folders proportional to the number of compute instances. Docking
calculations are performed on compute instances and are managed by the queue engine. Results are funneled through the NFS server to buffer I/O
operations and into block storage.

Figure 2. Schematic architecture of warpDOCK on the Oracle Cloud Infrastructure (OCI). The framework is hosted within the user’s private-
subnet of the VCN. To access the private-subnet, the user first uses SSH to access the Bastion login node in the public-subnet from a local machine
with the private key file. The Bastion login node is used as a lily pad into the private-subnet using SSH and the private key file. In the private-subnet,
all operations are managed from the Control node. In the private-subnet, compute instances are launched together as an instance pool. Each
instance is installed with a custom image and has the same shape configuration. The custom image is cloned from a base canonical Ubuntu OS
installed with warpDOCK, Qvina2, and dependencies. The custom image is permanently mounted to block storage devices via the NFS server.
Thus, all operations can be managed harmoniously.
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below a threshold, a new ligand is loaded to the queue from a
pre-partitioned chemical library sub-folder. The number of
compounds in the sub-folder is determined by partitioning the
chemical library by the number of compute instances. The
processing threshold (L) is determined by the number of cores
multiplied by the scaling factor (S)

= ·L C S (2)

Therefore, if C = 128 and S = 3, a new ligand will be added
to the queue if the number of processes drops below 384.
Multiple parallel instances are controlled via SSH from a secure
control node in the user’s private-subnet. When the
warpDOCK queue-engine is operating with over 250 physical
CPUs (500 virtual CPU cores), many input and output
requests can occur between the computing instances and the
data storage device. This may push some processes onto the
blocked queue on the operating system, resulting in idling of
instances. To reduce this risk, data from the virtual screen is
funneled through a customized networked file system server

(NFS) with multi-path enabled uber-high performance block
storage devices (Figure 2).

For the best possible trade-off between speed and accuracy,
warpDOCK is intended to use Qvina28 but is also compatible
with AutoDock Vina and other Vina-based docking algorithms.
Chemical library handling and management of large results
datasets are likely to be major hurdles for many prospective
users. Hence, we have developed a series of programs to
automate these tasks increasing usability (Table 1).

To test compatibility with different docking algorithms
(Qvina2, Qvina-W, AutoDock Vina, Smina vinardo, and Vina-
Carb), we performed virtual screens against two targets, AmpC
β-lactamase and SaDdl, using a drug-like library of 1.28 million
compounds and a modest allocation of 1024 AMD E4.Flex
virtual CPUs (2048 virtual CPU cores) and 64 GB RAM/
instance (Figure 3a). Each program was compatible with the
warpDOCK pipeline. Qvina2 and Qvina-W were fastest and
performed at similar speed for both proteins, each recording
wall-clock times of approximately 80 min (which includes
boot-up of instances and shutdown of queue)8,9 However, in
practice, Qvina-W is recommended only for docking very large
search areas. In contrast to Qvina2 and Qvina-W, completion
times for each of the other docking algorithms varied between
protein. These differences are likely a product of the different
search algorithms and scoring functions; e.g., Vina docked all
compounds to SaDdl in ∼113 min versus ∼156 min for AmpC
β-lactamase. Nonetheless, the warpDOCK pipeline efficiently
handled all docking algorithms tested.

Table 1. warpDOCK Programs

ZincDownloader chemical library import
Splitter .PDBQT file preparation
FileDivider chemical library partitioning
FetchResults retrieval of docking scores
ReDocking binding pose retrieval, chemical library handling
WarpDrive queue-engine
Conductor network navigation

Figure 3. Performance characteristics of the queue-engine. (A) Recorded wall-clock time (minutes) for different dock algorithms to virtually screen
1.28 million drug-like ligands against the receptor targets SaDdl and AmpC β-lactamase. Each virtual screen was performed using 1024 VM.E4.Flex
CPUs with 64 GB RAM/instance and L = 3. (B) Recorded wall-clock time (minutes) for 160 individual screening experiments against SaDdl (L =
3) in combinations of VM.E4.Flex CPUs (256, 512, 1024, and 2048 virtual CPUs) with 64 GB RAM/instance, search grid volume (1, 2, 43, 83, and
16 nm3), and the number of drug-like ligands exponentially increasing from 10,000 to 1.28 million. Times are averaged over search grid volume;
error bars represent the standard deviation for search grid volume. Slope fit using multiple non-linear regression (root mean square error (RMSE) =
11.69, R2 = 0.98). (C) Comparison of recorded wall-clock times of 1.28 million drug-like ligands and an equally sized prototypical drug control
library (Ampicillin) virtually screened against SaDdl for scaling factors L = 1 to 4 and search grid volumes of 1 nm3 (left) and 4 nm3 (right).
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To test the scaling behavior of the pipeline on OCI, we
performed virtual screens in combinations of exponentially
increasing library sizes (Figure S2), cores (ergo instances), and
search-grid volume using Qvina2 and recorded wall-clock
times. This data fit well to a non-linear regression model
(RMSE = 11.69, r2 = 0.98), with computation time
exponentially increasing and decreasing with the number of
ligands and number of cores, respectively. For smaller libraries,
a gain of diminishing returns was evident when comparing core
speed-up, e.g., 1024 vs 2048 virtual CPUs (Figure 3b)�a trait
of multicore processing (see Amdahl’s law).10 Additionally,
varying the search grid volume does not majorly affect the
overall computation time. For example, using 2048 virtual
CPUs and L = 1, a library of 1280K randomly sampled ligands
could be screened in 69.2 and 72.2 min for search-grid volumes
of 13 and 4 nm3, a four-fold increase in volume (Figure 3c). In
comparisons between the randomly sampled library and an
equally sized prototypical drug “control” library (Ampicillin),
the queue-engine scaled similarly for the sample library over
the control library (Figure 3d). Collectively, these data
demonstrate the adaptability of the queue-engine and pipeline
to respond efficiently to varied experimental parameters and
provide predictable performance for each virtual screen on
OCI.
Because computation times scale linearly with the number of

CPUs, it is possible to estimate time and, therefore, compute
costs. For example, using 1024 AMD VM.E4.Flex CPUs (2048
virtual CPUs) with 64 GB RAM and L = 3 and a search-grid of
4 nm3 the cost to screen 640K ligands versus 1280K ligands
against SaDdl was approximately $USD 18.94 and $USD 32.68
including boot-volumes, respectively. By fitting a slope to these
data (for all points; R2 = 0.99), the estimated costs to screen
10M ligands, 100M ligands, and 1B ligands using 1024 AMD
VM.E4.Flex CPUs (2048 virtual CPUs) with 64 GB RAM are
$USD 258.5, $USD 2580.88, and $USD 25,804.6. In practice,
however, the number of CPUs used to screen 100M or 1B
ligands would much greater and thus require less time, which
may vary cost estimations due to Amdahl’s law. It is important
to also note that the costs discussed above are for compute
hardware only, i.e., CPUs and memory, and instance boot
volumes. Storage costs vary depending on capacity and are
billed monthly. All costs were estimated at the time of
manuscript preparation.
We also sought to benchmark and compare the performance

of warpDOCK against the closest docking pipeline, Virtual-
Flow, which uses BASH job scheduling.1 To compare
performance, the 1.28 million benchmarking libraries were
screened against AmpC β-lactamase with Qvina2 (exhaustive-
ness = 1) using both VirtualFlow and warpDOCK (L = 1).
Docking calculations were performed using 1024 AMD
VM.E4.Flex CPUs (2048 virtual CPU cores) and 64 GB
RAM/ instance. warpDOCK completed all docking calcu-
lations in 80 min, compared to 295 min for VirtualFlow, a 3.7-
fold increase in completion time. The compute costs for each
pipeline for the two virtual screens also differed: the virtual
screen compute costs for warpDOCK were $USD 35.45 versus
$USD 131 for VirtualFlow. Thus, the warpDOCK queue-
engine demonstrates the benefits of ground-up design for
increasing the efficiency of docking calculations and reducing
compute costs.
As a practical example to demonstrate capabilities and cost-

effectiveness for users, we used the warpDOCK pipeline to
perform two virtual screening exercises. First, we docked the

1.28 million benchmarking library against AmpC β-lactamase
with Qvina2 using 1024 AMD VM.E4.Flex CPUs with 64 GB
of RAM. A coarse- to fine-grain approach was used: in the first
pass, all ligands were docked with an exhaustiveness of 1; then
the top 1% were extracted and redocked with an exhaustive-
ness of 25. To help validate the screening approach and
Qvina2 scoring function, a library of active inhibitors was also
docked to the receptor (Figure S3). Comparative analysis of
the docked co-crystallized ligand (binding affinity = −7.4 kcal/
mol) to that of the crystal structure revealed strong
conservation of binding orientation and molecular interactions.
We also found that the top 0.25% of ligands from the virtual
screen (n = 3200) were significantly enriched over the active
inhibitors (n = 62) by Welch’s unequal variances t-test (p <
0.0005). The compute costs for the AmpC β-lactamase virtual
screen cost were approximately $USD 63, demonstrating
efficiency and affordability.

Next, for the second virtual screening exercise, we performed
a larger and more exhaustive ensemble virtual screen targeting
the ATP and di-peptide binding sites of SaDdl, an antibiotic
drug target essential for cell wall biosynthesis, using a library of
4.75 million “drug-like” ligands (Figure S4). The Ω-loop,
which forms a peripheral shell surrounding the ATP and di-
peptide binding sites, is dynamic in the absence of substrates
and does not appear in the electron density of crystal
structures.11 As such, we performed three independent 250
ns all-atom molecular dynamics simulations with substrate-free
SaDdl and used RMSD-based clustering to identify represen-
tative conformations (or centroids). Next, 21 of the top
representative conformations of the protein (including the
crystal structure) were screened, totaling ∼101 million docking
calculations using a coarse-/fine-grain approach. There are
currently no available inhibitors that target both the ATP and
dipeptide binding sites of D-alanine−D-alanine ligase enzymes;
therefore, it is challenging to generate decoys. Appropriate
validation of docking calculations and interpretation of the
results are important to mitigate the risk of false positives. As
an alternative, we tested in silico whether a subset of the top
clustered hits from the ensemble screen could stably bind to
SaDdl over the duration of a 100 ns molecular dynamics (MD)
simulation. We found that, using the poses docked to the
crystal structure as starting coordinates, 2 of the 31 ligands
dissociated after an initial equilibration period (Figure S3d,e).
These data highlight that even when predicted binding
affinities are calculated using exhaustive ensemble-based
approaches, false positives may still be enriched. Therefore,
users should be aware of and have controls in place to reduce
risks. The virtual screen was performed using 1920 AMD
VM.E4.Flex CPUs (3840 virtual CPU cores) with an
approximate wall-clock time of 3.5 h per receptor con-
formation. At the time of manuscript preparation, the entire
ensemble virtual screen compute costs were approximately
$USD 3675.

■ CONCLUSIONS
Here, we show that the warpDOCK pipeline provides a
powerful framework for virtual screening using cloud infra-
structure which is both accessible and simple to use. Given the
ever-expanding depth of ultra-large chemical libraries and
protein structures and the recent successes of RoseTTAFold
and Alphafold2,12−16 large-scale virtual screening is more
relevant than ever. Importantly, because of the nature of cloud
computing, users can perform virtual screening experiments
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using as little or as many resources available. As the
warpDOCK code is written in Python, we encourage the
scientific community to contribute toward future development.
All code, usage examples, and documentation can be found
free and open source (GNU General Public License v3.0) at our
GitHub repository (https://github.com/BruningLab/
warpDOCK).

■ EXPERIMENTAL METHODS
warpDOCK Programs. Here, we provide a description of

the warpDOCK modules and their functions. For instructions
on how to set up a virtual cloud network (VCN) on OCI,
install warpDOCK, and implement all programs, we have
provided a detailed step-by-step tutorial, which can be found in
the GitHub repository (https://github.com/BruningLab/
warpDOCK).
ZincDownloader. Following curation of the desired

chemical library in ZINC, the program ZincDownloader
receives as input a text file containing raw URLs that link to
compressed tranches which host all the multi-PDBQT ligand
files. The contents of each URL are downloaded and
decompressed in a two-step process directly onto the cloud
storage devices. This process saves double handling and
bypasses the need to download/upload from the user’s local
machine.
Splitter. Each multi-PDBQT file contains hundreds to

thousands of individual ligand files. To extract each ligand file,
Splitter reads each multi-PDBQT file in the directory and
writes a new file for each ligand to a new directory.
FileDivider. In order to manage concurrency and queueing,

the chemical library is partitioned into batches proportional to
the number of instances.
FetchResults. FetchResults is used to read the log file of

each ligand and write the calculated affinity (kcal/mol) to a
CSV file.
ReDocking. To dock selected ligands with higher

exhaustiveness, ReDocking is evoked. This module uses the
CSV from FetchResults to select the top n ligands specified by
the user and copies them to a new directory. Additionally,
ReDocking can be used to retrieve top binding poses en masse.
WarpDrive. The queue-engine at the heart of the

warpDOCK pipeline. To manage the concurrency of processes
across multiple cores and instances,WarpDrive monitors active
docking processes and loads a new ligand to the queue if the
number of active processes drops below the processing
threshold (as described in the main text) until the queue is
complete.
Conductor. Designed to orchestrate the whole pipeline. To

begin and manage docking calculations, arguments are parsed
by the Conductor, a program which uses SSH connections to
enter each instance within the private-subnet of the VCN. The
parsed arguments are then used to evoke the WarpDrive
queue-engine.
Docking Algorithm Compatibility, Scaling Behavior,

and Benchmarking. To test the compatibility of the
warpDOCK pipeline with other docking algorithms, we
assembled a 1.28 million “drug-like” ligand library from
ZINC (https://zinc.docking.org/) and virtually screened all
ligands against two receptor targets: AmpC -lactamase and
SaDdl. The docking algorithms used were AutoDock Vina
(https://vina.scripps.edu/downloads/), Qvina2 and Qvina-W
(https://qvina.github.io/), Smina vinardo (https://
sourceforge.net/projects/smina/), and Vina-Carb (https://

glycam.org/). Each virtual screen was performed using an
exhaustiveness of 1 and L = 3; flexible side chain docking was
not enabled.

To test the performance of the queue-engine on OCI, we
assembled random libraries increasing exponentially from
10,000 to 1.28 million in size from the benchmarking library.
First, we performed a series of virtual screens using the SaDdl
active-site as the target (exhaustiveness = 1, scaling factor = 3)
and changed parameters until all possible combinations were
screened, e.g., 640K ligands, 512 cores, and a search-grid
volume of 8 nm3. The number of AMD VM.E4.Flex CPUs
used was either 256, 512, 1024, or 2048, each with 64 GB of
RAM per instance. The search-grid volume was either 1, 2, 4,
8, and 16 nm3. For each screen, we recorded wall-clock times,
which include, for instance, boot-up time, embarrassingly
parallel operations, shutting down of the queue, and parallel
processes. To derive a slope, we implemented multiple
polynomial regressions using the Sklearn library in Python

= + + + + + + +

+ + ···+

y a b c a ab b bc

c c
0 1 2 3 4

2
5 6

2
7

8
2

19
3

(3)

where y is the dependent variable (time in minutes), β0 is the y
intercept, βn are the coefficients, and a, b, and c are the
dependent variables of ligands, cores, and search-grid volume,
respectively. The polynomial is of the 3rd degree. For a
complete list of the polynomial features, coefficients, and
intercepts at different degrees, please refer to the accompany-
ing Supporting Information. Root-mean-squared-error and R2

were calculated with the Sklearn.metrics library.
Second, to test characteristics of the scaling factor L, we

compared the 1.28 million benchmarking library (“sample”) to
an equally sized “control” library, which was the ligand
Ampicillin (SMILES: CC1(C(N2C(S1)C(C2�O)NC(�
O)C(C3�CC�CC�C3)N)C(�O)O)C). We compared
wall-clock times for L = 1 to 4 for search-grid volumes of 1
and 4 nm.3

To benchmark the performance of warpDOCK against
VirtualFlow, a pipeline which uses BASH job scheduling, we
installed VirtualFlow in the private subnet and set up the
pipeline using SLURM as the job scheduler.1 The 1.28 million
ligand benchmarking library was virtually screened against
AmpC with Qvina2 using both warpDOCK and VirtualFlow
on 1024 AMD VM.E4.Flex CPUs (2048 virtual CPU cores)
with 64 GB RAM per instance. Wall-clock times were recorded
as above.
Virtual Screening Exercise 1 (Mid-scale): AmpC β-

Lactamase. The crystal structure of AmpC (PDB: 1L2S) was
stripped of all small-molecules and water, and a search-grid was
drawn around the substrate binding site. AmpC was virtually
screened using a coarse-to-fine grain approach. First, the
substrate binding site was screened using the 1.28 million
benchmarking libraries with an exhaustiveness of 1 using
Qvina2. Next, the top 1% scoring ligands (kcal/mol) were re-
docked with an exhaustiveness of 25. To help validate the
virtual screening method, a subset of active-lactamase
inhibitors was also screened against the substrate binding
site. Statistical analysis was performed using Welch’s unequal
variance t-test.
Virtual Screening Exercise 2 (Large Scale): SaDdl.

Atomistic Simulations. Molecular dynamics simulations and
RMSD-based clustering of wild-type SaDdl were performed
using GROMACS (2020.4) with the Charmm-27 all-atom
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forcefield. The ATP and dipeptide-bound co-crystal structure
of SaDdl (2 Å resolution, PDB: 7U9K, intact Ω-loop) was
stripped of all waters, metals, and small molecules. Missing
residues of other loops were modeled using the ICM-Pro
Molsoft software suite (3.9-1b) and subsequently refined.
Refined SaDdl was placed in a dodecahedral box at least 1.0
nm from the periodic edge boundary and solvated with the
TIP3P water model. Na+ and Cl− were added until the net
neutral charge of the system was achieved. The system was
then energy minimized using the steepest-descent method
until Fmax < 1000 kJ/mol. We performed sequential 250 ps
restrained NVT and NPT simulations to appropriately
equilibrate the system with Particle Mesh Ewald electrostatics
and Berendsen thermostat coupling, prior to three 250 ns
unrestrained production simulations. All equilibration and
simulation steps were performed at 300 K.
RMSD-Based Clustering. To generate an ensemble of

probable structural conformations for ensemble docking
calculations, we performed RMSD-based clustering of a single
unrestrained trajectory using the GROMOS algorithm.17

Coordinates were extracted per 10 ps across the trajectory,
producing 25,001 simulated structures aligned by α-C atoms to
remove translational and rotational variance. Representative
structures were then clustered by pairwise RMSD calculations
across all protein heavy atoms with a 0.15 nm cut-off, resulting
in 122 clusters, with the top 20 representing ∼77% of the
conformational ensemble. We defined a representative
structure, or “centroid,” from each cluster as the lowest (or
middle) RMSD relative to all other structures in the cluster.
Ensemble Virtual Ligand Screening and Refinement

with MD. Docking calculations were performed using a library
of ∼4.75 million commercially available drug-like compounds
curated from ZINC (https://zinc.docking.org/), of which all
could be successfully docked. The library was designed such
that compounds had a molecular weight of up to 450 Da and a
Log P score of 5.0 or less. A search grid was created around the
ATP and dipeptide binding sites, large enough to encompass
conformational variance for both the crystal structure and
ensemble structures. For both the crystal and ensemble VLS,
we utilized a coarse-to-fine grain approach. Initially, ligands
were screened against each structure with low exhaustiveness,
equating to ∼101 million unique docking calculations in the
first pass. For the ensemble VLS, binding affinities (in kcal/
mol) were weighted per the contribution (%) of each cluster to
the sampled conformational ensemble. Weighted binding
affinities were then summed to provide a final binding affinity
for each ligand. Results from the ensemble and crystal virtual
screens were aligned by ligand ID and ranked according to the
ensemble-weighted score. Next, using the top 0.01% of
compounds from the ensemble screen, we repeated docking
calculations with higher exhaustiveness (E = 25). To further
the reduce dimensionality of the data, we introduced a binding
affinity threshold of −10 kcal/mol along the X and Y axes,
resulting in four quadrants. From these, we further analyzed
ligands belonging to the 2nd quadrant (Q2), thus including
ligands that have the best binding affinities for both the
ensemble and the crystal structure. We then clustered each
ligand according to pairwise Tanimoto coefficient distance (Tc
= 0.3) using the Butina algorithm, an unsupervised statistical
approach optimized for clustering based on chemical
similarities.18 Following this, the top-scoring ligands were
extracted from each cluster and subsequently ranked. For in
silico validation using molecular dynamics, we cherry-picked

compounds based on binding affinity, the number of molecules
belonging to each cluster, and favorable receptor interactions,
resulting in an initial 31 compounds. The starting coordinates
for each of the 31 ligands were those of the ligand docked to
the crystal structure. The system was equilibrated as described
above, and a single 100 ns unrestrained production simulation
was performed for each ligand. To calculate relative solvation,
we averaged ligand heavy-atom RMSDs across the trajectory
per 10 ps and calculated RMSDs relative to the starting
coordinates post-energy minimization.

Docking calculations were performed with Qvina2. Chem-
ical similarity clustering of compounds was conducted using
the RDkit Python library using in-house scripts (available on
request).
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