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Abstract 

The fermentation process is widely used in the industry for bioethanol production. Even though it is widely used, 
microbial contamination is unpredictable and difficult to control. The problem of reduced productivity is directly 
linked to competition for nutrients during contamination. Yeasts representing the Candida species are frequently 
isolated contaminants. Elucidating the behavior of a contaminant during the fermentation cycle is essential for 
combatting the contamination. Consequently, the aim of the current study was to better understand the functional 
and transcriptional behavior of a contaminating yeast Candida tropicalis. We used a global RNA sequencing approach 
(RNA-seq/MiSeq) to analyze gene expression. Genes with significantly repressed or induced expression, and related to 
the fermentations process, such as sugar transport, pyruvate decarboxylase, amino acid metabolism, membrane, tol‑
erance to high concentrations of ethanol and temperatures, nutrient suppression), and transcription-linked processes, 
were identified. The expression pattern suggested that the functional and transcriptional behavior of the contami‑
nating yeast during fermentation for bioethanol production is similar to that of the standard yeast Saccharomyces 
cerevisiae. In addition, the analysis confirmed that C. tropicalis is an important contaminant of the alcoholic fermenta‑
tion process, generating bioethanol and viability through its tolerance to all the adversities of a fermentation process 
essential for the production of bioethanol. According on the gene expression profile, many of these mechanisms are 
similar to those of S. cerevisiae strains currently used for bioethanol production. These mechanisms can inform studies 
on antimicrobials, to combat yeast contamination during industrial bioethanol production.
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Introduction
Sugarcane is widely distributed in the tropical and sub-
tropical regions, and is the main source of sugar and 
bioethanol (Amorim et  al. 2011). For example, an esti-
mated production of 691 billion tons of sugarcane from 
the 2017/18 crop and 27 billion liters of ethanol has been 
reported for Brazil, according to the Campanha Nacional 
de Abastecimento (National Supply Campaign) (CONAB 
2018). The sugarcane used for bioethanol produc-
tion is derived from Saccharum ssp., with hybrids from 
crosses between Saccharum officinarum and Saccharum 

spontaneum used in the industry (Dillon et  al. 2007; 
Canilha et  al. 2012). The most commonly used yeast in 
the sugarcane industry is S. cerevisiae, because of its 
ability to adapt to the various growth conditions during 
bioethanol production (Liti et  al. 2009). The first-gener-
ation process for bioethanol production is widespread in 
Brazil, but it involves non-sterile conditions, resulting in 
major microbial contamination (Basso et al. 2008).

Contaminations of the fermentation process may be of 
soil or plant origin, with bacteria, such as Lactobacillus 
ssp., and yeasts, such as Candida ssp., Pichia ssp., and 
Schizosaccharomyces ssp. (Cabrini and Gallo 1999). These 
contaminants can negatively impact the productivity of S. 
cerevisiae by competing for nutrients, and inhibiting its 
cellular metabolism by flocculation, toxin synthesis, and 
the production organic acids (Nobre et al. 2007; Skinner 
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and Leathers 2004). Controlling contaminant growth 
and verifying their behavior in the presence of a variety 
of fermentative microorganisms is essential (David et al. 
2014). We therefore aimed to elucidate the transcrip-
tional behavior of a relevant yeast contaminant, C. tropi-
calis, during a fermentation cycle using high-throughput 
sequencing.

Materials and methods
Yeast strain
The yeast strain analyzed in the current study was C. trop-
icalis ATCC MYA3404 (Broad Institute, USA). It is one 
of the main soil contaminants in sugarcane plantations, 
and had been isolated from a fermenter tank in Brazil. 
Yeast cultures were maintained in a yeast extract-pep-
tone-dextrose medium [YEPD; 2% dextrose w/v (Synth—
Diadema, Brazil), 1% yeast extract w/v (Kasvi—Curitiba, 
Brazil), 2% peptone w/v (Acumedia—Indaiatuba, Brazil), 
and 2% bacteriological agar w/v (Himedia—West Ches-
ter, Pennsylvania, USA)] at 30 °C.

Cyclic alcoholic fermentation
The cells were first cultured in the YEPD liquid medium 
to obtain an appropriate biomass (10%, w/v) for scal-
ing up. For this, they were first grown in an Erlenmeyer 
flask with total volume of 50 mL, initially inoculated with 
5 × 106 cells/mL and then grown with orbital shaking at 
150 rpm at 30 °C for 24 h. Then, the cultures were centri-
fuged at 3 g, the supernatant was discarded, the cell mass 
suspended in fresh YEPD liquid medium, and transferred 
to a new Erlenmeyer flask (250  mL), up to 20% of the 
total volume of the flask. The cultures were grown with 
orbital shaking (150 rpm) at 30 °C for 24 h. The cultures 
were similarly scaled up to Erlenmeyer flask volumes of 
500 mL, 1 L, and 2 L, to finally obtain the desired amount 
of biomass for the fermentation test.

For the fermentation assay, 100 mL of sugarcane juice 
was pasteurized by boiling and sterilized in an autoclave 
at 1 atm 121 °C. With the sterilize sugarcane broth, 10 g 
of the C. tropicalis biomass was added and the fermenta-
tion proceeded with orbital shaking (50 rpm), at 30 °C for 
8 h. Samples (30 mL) were collected at the begging and 
the end of fermentation, immediately after the inocula-
tion (0 h), and after 8 h fermentation. These times were 
selected primarily because it is known that a fermenta-
tion peak of yeast occurs 6–8 h after the start of fermen-
tation. They were also chosen to reveal, by monitoring 
the changes in expression of the functional and tran-
scriptional genes, the strategy used by the contaminant 
yeast to adapt to, grow, ferment, and tolerate the chang-
ing culture conditions at the beginning and end of the 

fermentation, to compare with those of the standard 
yeast S. cerevisiae.

RNA isolation and sequencing
The samples collected in replicate, yeast cells C0 and 
P0 (0  h), and C8 and P8 (8  h) were centrifuged at 3g 
at 4  °C for 10  min, and washed three times with PBS 
buffer. Total RNA from these two samples was isolated 
using RNeasy mini kit (QIAGEN—Hilden, Germany), 
according to the manufacturer’s protocol. The amount 
of RNA in each sample was determined using a Quibit 
fluorometer (Thermo Fisher Scientific—Waltham, Mas-
sachusetts, EUA), with the quality determined based on 
the RIN value and by visualization using a BioAnalyzer 
(Agilent Genomic—Santa Clara, CA, EUA). Purified 
total RNA was fragmented (fragments of approximately 
76–200  bp) in a fragmentation buffer Illumina (San 
Diego, California, EUA). First-strand cDNA was syn-
thesized using random hexamer primers. Double-
stranded cDNA was purified using QuiaQuick PCR 
extraction kit (QIAGEN), which was followed by end-
polishing. Sequencing adapters Illumina were added 
to the ends of RNA fragments, and the fragments were 
enriched by PCR amplification. Finally, the DNA library 
products were sequenced using an Illumina MiSeq 
platform.

Differential expression and representative ontology terms
FastQC (http://www.bioin​forma​tics.babha​ram.ac.uk/
proje​cts/fastq​c/) was used for library analysis. The 
reads were filtered using Trimmomatic v 0.36 (Bolger 
et  al. 2014), with the parameters “ILLUMINACLIP: 
adapters.fa:2:30:10, HEADCROP: 13, LEADING: 30, 
TRAILING: 26, SLIDINGWINDOWN: 4:22, MINLEN: 
18”.

The reads were mapped to the C. tropicalis genome 
(accession number GCA_000006335.3, 2017/10/29) 
using HISAT2 (Kim et  al. 2015) with default param-
eters. Read counts per million were generated using 
BEDTools Intersect v 2.25.0 (Quilan and Nall 2010) with 
default parameters, based on genome annotations. The 
differential gene expression analysis (C8/P8 vs. C0/P0) 
was performed using the DeSeq 2 package (Love et al. 
2014). Genes with a false discovery rate (FDR) < 0.01 
and log2 fold-change of 1 were considered to be dif-
ferentially expressed. Gene ontology (GO) terms corre-
sponding to C. tropicalis genes were obtained from the 
UniProt database, and an in-house Python v 3.5 script 
was used to determine the frequency of each term for 
the differentially expressed genes (DEGs) and were ana-
lyzed using REViGO (Supek et  al. 2011). The Illumina 
sequencing data were deposited in the NCBI Sequence 
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Read Archive database (SRA) under the accession num-
ber SRP150532 (ID: SUB4151841).

Results
Sequence data and mapping to the C. tropicalis genome
Sequence mapping resulted in an approximately 96% 
overall alignment to the C. tropicalis reference genome 
for the two samples, which represented two pairs of bio-
logical replicates (C0/P0 and C8/P8). Overall, 22 genes 
were excluded from further analysis because no reads 
have been mapped to them. Considering the number of 
clean reads in each sample, more reads were detected in 
the 0 h sample than the 8 h sample (Table 1).

Differential expression analysis
Overall, 949 DEGs were identified (506 were up-reg-
ulated and 443 were down-regulated). As relevant to 
understanding, the pathways and pathways via used by C. 
tropicalis during the fermentation process, many of the 
top 100 genes (both up- and down-regulated) were essen-
tial for fermentation. These included alcohol dehydroge-
nase, pyruvate carboxylase, glycolysis/gluconeogenesis, 
sugar transport, meiosis, metabolism, stress tolerance 
(resistance), and cell structure. Interestingly, a large 
number of genes essential for fermentation were down-
regulated, while genes involved in nuclear function, tran-
scription, and tolerance were up-regulated (Table 2).

The results were also visualized at the level of indi-
vidual gene expression (Fig.  1). The functional catego-
ries of genes up-regulated at 0 h (C0/P0) included genes 
involved in amino acid metabolism (CTRG_00021, 
CTRG_00141, CTRG_00079, CTRG_00221, and 
CTRG_00294), mitochondrial activity (CTRG_00165, 
CTRG_00269, CTRG_00270, and CTRG_00309), 
F-actin cytoskeleton (CTRG_00235), sugar transport 
(CTRG_00112), and enzymes related to the initial fer-
mentation period (CTRG_00301). This suggested that at 
0 h, the yeast contaminant expressed more genes related 
to initial fermentation as ATP formation, energy, cellu-
lar cycle, and to start for the expression of genes related 
to tolerance/resistance to the adverse fermentation 

condition (Fig.  1a). On the other hand, in the 8  h sam-
ples (C8/P8), genes for ammonium metabolism (CTRG_ 
00229, CTRG_00119, CTRG_00031, CTRG_00152, 
CTRG_00040, CTRG_00051, CTRG_00127, 
CTRG_00013 and CTRG_00254), transcription fac-
tors (CTRG_00028, CTRG_00252, CTRG_00025, and 
CTRG_00253), and stress oxidative (CTRG_ 00011, 
CTRG_00046, and CTRG_00031) were up-regulated. 
This may have reflected high metabolic activity of the 
yeast contaminant, and its adaptation to the fermentation 
process, coinciding with the peak of bioethanol produc-
tion. In this step it also highlights adverse effects as high 
temperature and ethanol concentration (affect the cel-
lular membrane and viability), suppression of nutrients 
directly linked the viability e metabolic activity the yeast, 
which are conditions usually observed in 6–8 h of the fer-
mentation process (Fig. 1b).

GO analysis
The results of GO analysis corresponded to DEG data, 
with a high number of down-regulated genes involved 
in such cellular processes, as enzymatic process of trans-
ferases and phospholipases, wall/cell membrane, energy, 
metabolism, and ATP formation (Fig.  2). Up-regulated 
genes were enriched in functions related to the spliceo-
some, ribosomes/transcription, amino acid metabolism, 
and oxidative stress (Fig. 2).

Table 1  Quantification of  the  reads of  the  RNA-Seq 
(Illumina) sequencing and  mapping of  time 0  h and  8  h 
of samples of contaminant yeast, C. tropicalis 

Sequencing and mapping parameters of the C0 plus P0 and C8 plus P8 genome 
samples

Sample name Raw reads Number reads 
filtering

Genome 
map (%)

C0 + P0 7,385,154 7,141,555 96.1

C8 + P8 6,486,114 6,261,749 96.2

Table 2  Functional classification and  quantification 
of  differentially expressed gene at  time 0  h and  8  h 
of contaminant yeast, C. tropicalis 

Functional classification and quantification of down and up regulated and 
repressed genes from the C0 and P0 and C8/P8 samples. Statistical significant for 
Fold Change > 2 or < − 2 and p value < 0.01

Genes functions Genes 
down regulated

Genes 
up regulated

Alcohol dehydrogenase 7 –

Sugar transport 9 6

Pyruvate decarboxylase acyl-coen‑
zyme

5 1

Histone 1 4

Amino acid metabolism 15 17

Division cellular (meiosis) 1 1

Membrane 10 10

Metals transporter 3 2

Stress oxidative (resistance) 6 7

Glycolysis/gluconeogenesis 8 5

Nuclear (transcription) 9 19

Structure (wall) 3 –

Nucleotides – 5

Hypothetical functions 19 27
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Discussion
Bioethanol production proceeds in several stages. The 
most important factor for the efficiency of bioethanol 
production is the capacity of a microorganism to con-
sume the entire starter compound to which it is exposed, 
and to perform the relevant biochemical reactions in 
a dynamic and coordinated manner. If all the required 
stages of conversion of sugars, formation of cellular 
energy and production of bioethanol are complete and 
synchronized, the production is effective. However, in 
the Brazilian industry, the presence of contaminants is 
a problem directly affecting process productivity (Costa 
et  al. 2015). Contaminants found in Brazilian distiller-
ies may be of bacterial or fungal origin, and may reduce 
bioethanol production by growth inhibition, reduction of 
nutrient availability, and increasing acidity (Bayrock et al. 
2003). The origins of these contaminants include the soil, 
plant, must, stillage, and yeast cream after centrifugation 
in batch processes (Cabrini and Gallo 1999; Limtog et al. 
2014).

Basílio et  al. (2008) pointed out that C. tropicalis is 
one of the most relevant contaminants found in the 

sugarcane juice from Brazilian distilleries that causes 
severe contamination and directly impacts production. 
This was evidenced by the observation that C. tropicalis 
assimilates approximately 63% of sucrose compared to 
the amount assimilated by the industrial standard yeast 
strain, S. cerevisiae (Basílio et  al. 2008). The similari-
ties between these two yeast strains go beyond the phe-
notypic characteristics and fermentative profiles, and 
include the transcriptional profile, the analysis of which 
has revealed correlation between the expressions of many 
genes in the two species. Genes for the essential nuclear 
and cytoplasmic functions have been described in C. 
tropicalis (Butler et al. 2009). It is interesting to note that 
this level of expression and molecular details essential for 
the production of bioethanol present in S. cerevisiae were 
also observed in the C. tropicalis samples analyzed in the 
current study.

The adaptive response of yeast to fermentation may be 
associated with the genetic machinery of the cell. Stud-
ies identified a locus or a group of genes responsible for 
adaption to a fermentative environmental would be use-
ful for to verify the level of tolerance to the stress of the 

Fig. 1  Heatmap of the top 30 differently expressed genes of contaminant yeast, C. tropicalis at 0 h and 8 h in the fermentation alcoholic cycle. a 
Down-regulated genes at 8 h (C8 and P8) in contrast to 0 h (C0 and P0); b up-regulated genes at 8 h (C8 and P8) in contrast to 0 h (C0 and P0). 
Genes with log2 Fold Change > 1 or < − 1 and FDR < 0.01 with statistical significance. Heatmap values are rlog-normalized and scale by z-score. 
Color scale ate top right represent lowest to highest change in expression (blue and red)
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yeast during the fermentation process (Stambuck et  al. 
2009; Zaky et al. 2016). It has been shown that the ver-
satility of yeast, enabling it to adapt and grow under new 
conditions, is essential for its viability. Similar observa-
tions were made for 0  h samples in the current study, 
confirming that the growth rate increase is associated 
with cellular homeostasis and cell–cell ratio (Ibañez et al. 
2014). Further, the expression of genes from processes 
important for the initial fermentation stage was higher at 
0  h than after 8  h, e.g., amino acid metabolism, assimi-
lation of metals, cellular respiration, and adaptive pro-
cesses (tolerance).

Amino acid metabolism is essential for the overall 
metabolism of the eukaryotic cell, since it directly regu-
lates sugar metabolism (Jiranek et al. 1995). Based on the 
gene expression profiles, assimilation of amino acids was 
higher at 8 h than at 0 h, suggesting that the yeast con-
taminant behaved similarly to the standard S. cerevisiae 
strain in terms of fermentation kinetics (Marques et  al. 
2018). The obtained data corroborated those of Jiranek 

et  al. (1995), and Albergaria and Aneborg (2016), who 
showed that increasing the number of non-Saccharo-
myces yeasts in the fermentation process increased the 
capacity to assimilate amino acid sources directly derived 
from the sugar at the beginning of fermentation, and 
dependent on innate metabolism and process conditions 
(Jiranek et al. 1995; Albergaria and Aneborg 2016).

Throughout the fermentation process, a source of 
nitrogen is required for yeast growth and metabolism 
(Gobert et  al. 2017), and nitrogen deficiency leads to 
biomass loss and viability loss (Hazelwood et  al. 2008). 
The sources of nitrogen assimilated during fermentation 
include arginine, valine, asparagine, ammonia, alanine, 
and glutamine. It has been demonstrated that S. cerevi-
siae prefers ammonia as the nitrogen source (Kensawad 
et al. 2015). The mechanisms of nitrogen assimilation in 
S. cerevisiae are well known, and revealed by such stud-
ies as that of Magasanik and Kaiser (2002). The authors 
demonstrated the expression of assimilation permeases 
for preferred nitrogen sources, with the repression and 

Fig. 2  Biological process quantification for up-regulated and down-regulated genes of contaminant yeast, C. tropicalis at 0 h and 8 h in the 
fermentation alcoholic cycle. a Biological process represent among down-regulated genes at time 8 h (C8 and P8), represent per the bars in red 
color in contrast at time 0 h (C0 and P0); b biological process represent among up-regulated genes at time 8 h (C8 and P8), represent per the bars in 
green color in contrast at time 0 h (C0 and P0)
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degradation of secondary sources via a control system 
known as nitrogen catabolite repression (NCR), enhanc-
ing fermentation efficiency (Magasanik and Kaiser 2002). 
However, these mechanisms are not well known in non-
Saccharomyces species, even though some studies indi-
cate that the mechanism of nitrogen assimilation in a 
fermentative medium may be similar to that of standard 
yeasts S. cerevisiae (Jolly et al. 2014), as was suggested for 
C. tropicalis in the current study.

We observed the expression of many genes encoding 
mitochondrial enzymes linked to amino acid biosyn-
thesis, evidencing the potential use of C. tropicalis in 
fermentation. These proteins are located within the mito-
chondrion, and are involved in the transport of electrons 
and the formation of ATP via a reduction of NADH and 
NADPH, an essential step of the fermentation process 
(Kahar et al. 2017). Of the enzymes important for the bio-
synthesis of these amino acids, two were highlighted in 
the current study (delta-1-proline-5-carboxylase reduc-
tase and delta-1-proline-5-dehydrogenase), revealing the 
importance of proline in C. tropicalis metabolism (Bran-
diss and Falvery 1992). Proline, in turn, is a rich source 
of nitrogen by is converted step of the electron transport 
chain, as well as other amino acids, resulting in the gen-
eration of NADP+ (Takagy 2008).

Further, we observed increased expression of genes 
related to lipoic acid biosynthesis, mainly at 0  h. This 
suggested that the yeast cell uses all possible pathways 
for energy formation at that time, to engage in fermen-
tation. Lipoic acid, in addition to neutralizing free radi-
cals, is also associated with energy production (Kursu 
et  al. 2013). In S. cerevisiae, lipoic acid has been linked 
to oxidative decarboxylation reactions via a multi-
enzyme complex, which directly affects the activity of 
the enzymes pyruvate dehydrogenase (PDH) and alpha-
ketoglutarate dehydrogenase (KDH), linked to cellular 
energy generation (Schonauer et al. 2009).

The sequencing data also suggested the activity of 
the enzyme cytochrome C in C. tropicalis at 0  h. This 
was unsurprising, considering the essential role of this 
enzyme in ATP formation (Mc Clelland et al. 2014). The 
enzyme is located in the inner part of on the lipoprotein 
membrane the mitochondrion, and plays a key role in the 
respiratory chain, in addition to being an intrinsic activa-
tor of the apoptosis (Zhao et al. 2018). In eukaryotes, it is 
linked to the COX pathway for ATP formation (Garcia-
Villegas et al. 2017).

A gene encoding an integral membrane protein belong-
ing to the family of phosphate transducers (PHO89) was 
also expressed at 0  h, supporting the notion that the 
yeast was using all viable mechanisms for energy genera-
tion at that time. This was consistent with what has been 
reported for S. cerevisiae (Samyn and Persson 2016). This 

protein exhibits interesting characteristics in eukaryotes: 
it is induced by calcium levels change (Ca2+) in condi-
tions of stress; it is involved in cellular homeostasis; and 
also acts as a pH sensor of the fermentative medium 
(Wang et al. 2015). In S. cerevisiae, activation of the Ca2+ 
signaling and calcineurin pathways marks an adaptive 
stress response (Sengottayan et al. 2013). One of the most 
frequently observed effects of pH change is the alkaliza-
tion of the growth medium, which negatively impacts 
the absorption of metals and glucose (Ãrino 2010). In 
Candida albicans, changes in pH also affect yeast mor-
phogenesis and pathogenicity, indicating that the envi-
ronment is fundamentally important for the cellular 
wellbeing of eukaryotes (Wang et al. 2011).

The F-actin gene was one of the identified DEGs in the 
current study, and is directly linked to the fundamental 
process of endocytosis (Wang and Carlssom 2017). Actin 
plays a role in cell structure, including cell wall growth, in 
yeasts as Saccharomyces sp. and Candida sp. It also plays 
a role in polarity maintenance and resistance to osmotic 
forces (Suzuki et  al. 1998). In fermenter yeast, actin 
filaments are present at vacuolar membrane fusions, 
directed by proteins RhoGTPases (Rho1p and Cdc42p) 
linked to enhancing cell growth and maintaining cell 
osmolality during fermentation (Bodman et al. 2015).

Expression of genes acting on the glucose pathway by 
the activity of permeases was detected at 0 h and 8 h in 
the current study. This indicates that C. tropicalis uses 
glucose to generate energy throughout the fermentation 
cycle, keeping other cellular processes active, and thus, 
competing with standards yeasts S. cerevisiae up until 
end of the fermentation process.

The expression of genes linked to the production of 
pentose was observed after 8  h. This corroborates the 
other findings of the current study, because of the link 
to the structure of nucleic acids, mainly ribose. Indeed, 
expression of these genes accompanied the increased 
expression of genes linked to nuclear functions.

Sequencing data for the 0  h sample indicated active 
functions relating to ATP production and adaptation 
to environmental stress, and a classical phenotypic 
of fermenting yeast. By contrast, at 8 h, in addition to 
the classical functions apparent at 0  h, the expression 
of nuclear functions linked to histones, spliceosome, 
splicing, other processes of transcription and cellular 
division, and the expression of tolerance genes (resist-
ance processes) was enhanced. These observations may 
be interpreted in the context of viability loss associated 
with high bioethanol levels at 8 h, since viable cells are 
in a metabolically active state. The increase in pyrimi-
dine production, transcription, splicing, and spliceo-
some is important, acting as a rebound effect of the cell 
loss. Cells produce substantially more proteins (such as 
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phosphatases, redutases, and transferases) to maintain 
viability and remain metabolically active. Accordingly, 
Xu et al. (2012) proposed a new strategy of improving 
the production of pyruvate and reducing the produc-
tion of metabolic by-products by regulating pyrimidine 
biosynthesis, as observed in the 8 h sample in the cur-
rent study.

The above findings are consistent with the observa-
tions of Shi (2017) and Scheres and Nagai (2017), who 
reported that pre-mRNA splicing and the spliceosome 
act to concatenate junctions, and form mature mRNA 
molecules for translation. These molecular activities 
also reflect active fermentation, as the nuclear activities 
are related to the cell status, once again reflecting the 
fermentative behavior of the yeast C. tropicalis (Zafrir 
and Tuller 2017).

In light of the presented sequencing data, we con-
clude that C. tropicalis is a potential and relevant con-
taminant of the alcoholic fermentation process. The 
data revealed a functional and transcriptional similarity 
between this contaminant yeast and the standard yeast 
S. cerevisiae used in the industrial fermentation pro-
cess. The contaminant yeast is versatile, as it expressed 
genes for adaptation, growth, competitiveness (mainly 
for nutrients), multiplication, and tolerance of the fer-
mentative process. The data also indicated that in addi-
tion to the processes, and activation of the fermentative 
and metabolic pathways that had been established for 
S. cerevisiae during bioethanol production, C. tropicalis 
adapts to tolerate the adverse conditions of the fermen-
tation cycle (increased temperature, osmotic stress, 
nutrient level reduction and competition for nutrients, 
and bioethanol toxicity after 8  h). On transcriptional 
level, compared to the standard yeast S. cerevisiae, 
some similarities in gene activation were apparent. 
Interestingly, C. tropicalis activated genes specific to 
bioethanol production and an appreciable number of 
resistance genes in the first hours of fermentation, with 
continued expression throughout the entire fermenta-
tion cycle. That is different from S. cerevisiae, in which 
genes for bioethanol production are the predominant 
genes expressed throughout the 8 h fermentation cycle. 
The presented findings, i.e., the determined behavioral 
and transcriptional profiles of the analyzed C. tropicalis 
cells during an 8  h fermentation process, can be used 
to inform future antimicrobial research, to detect and 
combat C. tropicalis contamination during the fermen-
tation process for industrial bioethanol production.
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