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Expression of tissue-restricted antigens (TRAs) in thymic epithelial cells (TECs) ensures

negative selection of highly self-reactive T cells to establish central tolerance. Whether

some of these TRAs could exert their canonical biological functions to shape thymic

environment to regulate T cell development is unclear. Analyses of publicly available

databases have revealed expression of transcripts at various levels of many cytokines

and cytokine receptors such as IL-15, IL-15Rα, IL-13, and IL-23a in both human and

mouse TECs. Ablation of either IL-15 or IL-15Rα in TECs selectively impairs type 1 innate

like T cell, such as iNKT1 and γδT1 cell, development in the thymus, indicating that TECs

not only serve as an important source of IL-15 but also trans-present IL-15 to ensure type

1 innate like T cell development. Because type 1 innate like T cells are proinflammatory,

our data suggest the possibility that TEC may intrinsically control thymic inflammatory

innate like T cells to influence thymic environment.

Keywords: IL-15, IL-15Rα, thymic epithelial cells, iNKT cells, γδT cells, type 1 innate like T cells

How innate like T cell such as iNKT cell and γδT cell development is regulated and the role of
thymic epithelial cells (TECs) in their development is not fully understood. We analyzed publicly
available databases and have found that transcripts of many cytokines and cytokine receptors are
expressed in both human andmouse TECs.We demonstrated that TEC-derived IL-15 and IL-15Rα

play important and selective roles for type 1 innate like T cell, such as iNKT1 and γδT1 cell,
development in the thymus. As iNKT1 cells are proinflammatory and contribute to adipogenesis,
our data suggest the possibility that TEC may intrinsically control thymic inflammatory innate like
T cells to influence thymic environment.

INTRODUCTION

Two lineages of T cells, the αβT cell and γδT cell lineages that express distinct TCR receptor
αβ chains and γδ chains, are generated in the thymus. αβT cells develop sequentially from
the CD4−CD8− double negative (DN) stage, the CD4+CD8+ double positive (DP) stage,
and to the TCRαβ+CD4+CD8− or TCRαβ+CD4−CD8+ single positive (SP) stage. Several
αβT cells sublineages, including conventional CD4+ and CD8+ αβT cells, regulatory T cells,
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invariant natural killer T (iNKT) cells, and mucosal associate
invariant T (MAIT) cells, with both distinct and common
phenotypic and functional properties are evolved within the
thymus (1–4). DN thymocytes can be sequentially defined
into early T cell progenitors (ETP, Lin−cKit+CD44+CD25−),
CD44+CD25+ DN2, CD44−CD25+ DN3, and CD44−CD25−

DN4 stages. At the DN2 and DN3 stages, γδT cells are generated
after productively expressing functional γδ TCRs (5). In contrast
to conventional αβT cells, iNKT cells, MAIT cells, and γδT
cells can complete their differentiation into effector cells in the
thymus, which appears to be regulated by thymic environment
(6–11). These effector lineages include the type 1 sublineage
(iNKT1/MAIT1/γδT1) that express T-bet and IFNγ, the type 2
sublineage (iNKT2/MAIT2/γδT2) that express Gata3 and IL-4,
and the type 3 sublineage (iNKT17/MAIT17/γδT17) that express
RORγt and IL-17A (8, 9, 12–19). While naïve T cells require
several days to differentiate to effector cells, these innate like T
cells can be activated quickly and are able to rapidly produce a
variety of cytokines in response to agonistic stimuli to shape both
innate and adaptive immunity.

In addition to crucial roles of TCR signals for both αβT
and γδT cell development, local environment plays important
roles in these innate like T cell maturation and differentiation to
effector lineages. IL-15 is critical for development of iNKT cells,
especially, for the NK1.1+CD44+ stage 3 and IFNγ-producing T-
bet+ iNKT1 cells (20–23). Similarly, γδT cell effector lineages are
also controlled by local cytokines. IFNγ-producing γδT1 cells are
severely decreased in pLNs in IL-15 or IL-15Rα deficientmice. IL-
15 induces γδT1 cell proliferation and survival via upregulating
Bcl-xL and Mcl-1 (24, 25). An important feature of IL-15
signaling is that IL-15Rα serves as a high affinity IL-15-binding
protein to trans-present IL-15 to the IL-15Rβ/γc complex on
neighboring cells (26–30). IL-15Rα mediated trans-presentation
of IL-15 promotes NK cells and CD8T cell homeostasis (26–
30). Interestingly, IL-15Rα deficiency causes severe impairment
of stage 3 iNKT1 cell development (6, 7). Although it has been
reported that radiation-resistant cells in the thymus provide IL-
15 and trans-present IL-15 via IL-15Rα to promote iNKT cell
development (6, 7), the exact cellular source of IL-15 and the cell
type(s) that trans-present IL-15 via IL-15Rα have been unclear as
the thymus contains many cell types including radiation resistant
non-hematopoietic cells and some hematopoietic cells that could
also be radiation resistant.

Thymic epithelial cells (TECs) are crucial for thymopoiesis
and thymus function to generate a vast repertoire of T cells
that are able to perform immune defenses but are also self-
tolerated. Cortical TECs (cTECs) and medullary TECs (mTECs)
localize in discrete regions in the thymus and perform different
function (31–33). cTECs are mainly responsible for positive
selection of developing thymocytes expressing functional TCRs
capable of recognition of self-peptide/MHC complexes (34–
37). mTECs ensure highly self-reactive T cells are ablated to
establish central tolerance via presentation of promiscuously
expressed tissue restricted antigens (TRAs) controlled by Aire
and Fezf2 (34, 36, 38–41). In this report, we analyzed publicly
available databases and revealed that TECs indeed express a
variety of cytokine and cytokine receptors at various levels. We

demonstrated further that ablation of either IL-15 or IL-15Rα in
TECs selectively impaired development and/or homeostasis of
iNKT1 and γδT1 cells in the thymus, indicating that TECs not
only serve as an important source of IL-15 but also trans-present
IL-15 to ensure type 1 innate like T cell development. Our data
suggest that possibility that TECmay intrinsically control thymic
inflammatory innate like T cells, which may in turn influence
thymic environment.

RESULTS

Expression of a Variety of Cytokines and
Cytokine Receptors Including
IL-15/IL-15Rα by mTECs
To determine the expression of cytokines and cytokine
receptors in mTECs, we searched the publicly available Skyline
RNAseq database from The Immunological Genome Project
(Immgen.org) for mRNA levels in mTEC. mRNAs of many
cytokines and their receptors could be detected in mTECs at
various levels (Figures 1A,B). For cytokines, Il7 is expressed at
high levels and Il23a is expressed close to high levels (Figure 1A);
Csf1, IL12a, Il15, Il27, Tgfb2, Tgfb3, Tnf, Tnfsf9, and Tnfsf10
are expressed at intermediate levels; Many other cytokines such
as Il10, Il12b, il17c, Il1b, Il4, Il33, and several Tnf superfamily
members are expressed at low levels; several other cytokines
such as Ifng, Il17a, Il17d and Tgfb1were expressed at very low
or trace levels. For cytokine receptors, Csf2rb, Ifngr2, Il11ra1,
Il13ra1, Il1rn, Il2rg, and Il4ra are expressed at high levels,
whereas most cytokine receptors including Il15ra are expressed
at intermediate levels and a few of cytokine receptors such
as Il22ra2, Csf3r, and Il17rd were expressed between low and
trace levels. Compared with different types of immune cells and
other stromal cells, mTECs were among the highest expressers
of mRNAs for multiple cytokines and cytokine receptors such as
Il7, Il10, Il11ra1, Il13, Il15, Il15ra, Il17c, Il20rb, Il23a, Il27, Tnfsf4,
Tnfsf9, and Tnfsf15 (Figure 1C). Thus, mTECs express mRNAs of
many cytokines and cytokine receptors at various levels.

Expression of Discrete Cytokines in Murine
TEC Subsets
Recently, murine TECs have been defined into 5 subsets based
on single cell RNA sequencing analysis (42–48). To further
investigate expression of cytokines and their receptors in TEC
subsets, we analyzed scRNAseq data of TECs generated by the
Ido Amit group, which had sequenced more TECs than other
reports (42). Using the Seurat package approach (49), we could
define TECs from 4 to 6 week old mice into 10 populations
(Figure 2A). Populations 3, 4, and 8 are Psmb11+ and represent
cTECs; populations 2 and 9 are Krt14+ and represent mTEC-
I; populations 1, 6, and 7 are Aire+ and Fezf2+ and represent
mTEC-II; population 5 is enriched with Il25, Pou2f3, and Dclk1
and represents mTEC-IV or Tuft cells; population 0 is the
most abundant population that expresses the highest levels of
multiple molecules such as H2-ab1, Psmb11, Krt14, Aire, Fezf2,
and Dclk1 as well as cytokines and cytokine receptors, although
at low frequencies. This population may represent mTEC-III
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FIGURE 1 | Expression of various cytokines and cytokine receptors in mTECs. (A) mRNA levels of cytokines in mTECs. Expression levels: 0–5, Trace; 2–20, very low;

20–80, low; 80–800, intermediate; 800–8,000, high according to Immgen.org. (B) mRNA levels of cytokine receptors in mTECs. (C) Heatmap showing relative mRNA

levels of cytokine and cytokine receptor among mTECs, immune cells, and other stromal cells. Data shown are compiled from the RNAseq data from Immgen.org.

(Figure 2B). Interestingly, Aire+/Fezf2+ populations 1, 6, and
7 (mTEC-II) also contain high levels and/or frequencies of
cytokines/cytokine receptor mRNAs such as Il13, Il23a, Il27,
and Tnf. In addition to Il25, mTEC-IV also is the highest Il10
expresser. Although cTECs (populations 3, 4, and 8) contain
highest frequencies of Il7+ cells, populations 1, 2, and 9
(mTEC-I/III) contain cells expressing higher levels of Il7 than
cTECs. Il15 is expressed at high frequencies in population 1
and its levels appear higher in mTEC populations than cTEC
populations, which is consistent with the detection of IL-15
reporter expression in the medulla in the mouse thymus (50).
Il15ra is expressed at higher frequencies in populations 1 and
2 of mTECs and populations 3 and 4 of cTECs. However, the
expression levels in these mTECs appear higher than in cTECs.

Overall,Aire/Fezf2+ mTECs appear to express multiple cytokines
at levels higher than cTECs while cTECs express higher levels of
Il7 than mTECs.

Expression of Cytokines and Cytokine
Receptors in Human TEC Subsets
Similar to murine TECs, a recent report has found human
TECs could also be defined into multiple populations based
scRNAseq transcriptomic analysis (51). Human TECs also
contain TEC-I – IV populations that mimic their murine
counterparts. In addition, human TECs also contain MYOD1-
and MYOG-expression myoid TEC-myo and NEUROD1- and
NEURODG1- expressing TEC-neuro populations (Figure 3A)
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FIGURE 2 | Discrete and promiscuous expression of cytokines and cytokine receptors in murine TEC subsets. scRNAseq data of TECs from 4 to 6 weeks old mice

were analyzed. (A) tSNE plots showing TEC populations. (B) tSNE plots (top panels) and violin plots (bottom panels) showing distribution of cytokine/cytokine

receptor expressing cells in different TEC populations. Data shown are generated from the scRNAseq data from Bornstein et al. (42).

(51). We searched the Human Fetal Thymic Epithelium Gene
Expression Web Portal (https://developmentcellatlas.ncl.ac.uk/
datasets/HCA_thymus/human_epi/) for cytokines and cytokine
receptors and revealed that human TECs also express many
cytokine mRNAs at various levels (Figure 3B). IL15, IL15RA,
IL11RA, IL13RA1, IL1R1, IL23A, IL32, IL34, TGF1B1, TNF, and
CSF1 are noticeably expressed at intermediate or high levels.
Thus, similar to murine TECs, human TECs also expressed
various cytokine/cytokine receptors at the mRNA levels.

TEC-Derived IL-15 Promoted iNKT1
Development
Thymic iNKT cells are defined into 0–3 stages based on
differential expression of CD24, CD44, and NK1.1. IL-15/IL-15R
signal promoted the development of T-bet+ iNKT1 cells, which

occupy most of the CD44+NK1.1+ stage 3 iNKT cells (6,
7, 20–23). To investigate whether IL-15 expressed on TECs
may exert biologic consequence besides serving as a TRA, we
generated and analyzed TEC-specific IL-15 deficient, Il15f /f -
Foxn1Cremice. Foxn1Cremice direct Cre expression starting on
embryonic day 11.5 in TECs and ablate gene in both mTECs
and cTECs (52). Compared with WT control mice, Il15f /f -
Foxn1Cre mice did not show obvious alterations in thymocyte
development (Figure 4A). However, their thymic iNKT cells,
which were CD1d-Tetramer loaded with PBS-57 positive (CD1d-
Tet+) and TCRβ+, showed 42.8 and 50.4% decreases of both
percentages and numbers, respectively (Figures 4B,C). Within
iNKT cells, CD24+CD44− stage 0 and CD24−CD44− stage
1 iNKT cells were not altered; CD24−CD44+NK1.1− stage 2
iNKT cell percentages were not changed but numbers were
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FIGURE 3 | Expression of cytokines and cytokine receptors in human TEC

subsets. (A) UMAP presentation of human fetal TEC clusters adapted from

Jong-Eun Park et al. (51). (B) Dot-plot showing mRNA levels of indicated

cytokine/cytokine receptors in the nine human TEC clusters from scRNAseq

analysis. The size and color of the dot represent the percentage of cells within

a cluster expressing the mRNA and the average expression level across all

cells within a cluster. Light green and dark red represent low and high levels,

respectively.

decreased 54.8%; CD24−CD44+NK1.1+ stage 3 iNKT cells
were decreased in both percentages (51.1%) and more severely
in numbers (74.4%) (Figures 4D,E). Moreover, T-bet+RORγt−

iNKT1 cells were decreased in both percentages (31.8%) and,
more severely, in numbers (66.2%). In contrast, T-bet−RORγt+

iNKT17 cell percentages were not decreased, although numbers
of these cells were moderately decreased (54.9%). In contrast,
T-bet−RORγt−Gata3+ iNKT2 cells were not altered in either
percentages or numbers (Figures 4F,G). Thus, TEC-derived IL-
15 is important for iNKT1 but not iNKT2 differentiation and/or
homeostasis. Additionally, TEC-derived IL-15 also exerts a weak
role for iNKT17 cell differentiation/homeostasis.

IL-15Rα Expressed in TECs Selectively
Promoted iNKT1 Cell Development
IL-15Rα can trans-present IL-15 to IL-15R to trigger IL-
15R signaling (26, 27). It has been reported that radiation-
resistant thymic stromal cells may trans-present IL-15 to

promote stage 3 and iNKT1 cell development via enhancing
Bcl-2 mediated survival. The data were generated in lethally
irradiated IL15Rα−/− mice reconstituted with WT bone marrow
cells (6, 7). However, these studies did not distinguish the
role of TECs, other stromal cells, and radiation-resistant
tissue resident macrophages or lymphoid tissue inducer cells.
To investigate whether IL-15Rα expressed on TECs has
biological consequences, we analyzed TEC-specific IL-15Rα

deficient, Il15raf /f -Foxn1Cremice. Thymocyte development was
not grossly affected in Il15raf /f -Foxn1Cre mice (Figure 5A).
However, Il15raf /f -Foxn1Cre mice displayed 62.7 and 66.4%
decreases of thymic iNKT cell percentages and numbers,
respectively (Figures 5B,C). Within iNKT cells, percentages of
stage 0, 1, and 2 cells were increased 2.1, 1.5, and 1.5-fold,
respectively. However, their numbers were not significantly
changed (Figures 5D,E). Stage 3 iNKT cells were decreased in
both percentages (19.5%) and numbers (72.8%). Furthermore,
T-bet+RORγt− iNKT1 cells but not T-bet−RORγt+ iNKT17 or
T-bet−RORγt−GATA3+ iNKT2 cells were severely decreased in
Il15raf /f -Foxn1Cre thymus (Figures 5F,G). Thus, IL-15Rα on
TECs played an important and selective role for iNKT1 but not
for iNKT2/17 differentiation or early iNKT cell development.

IL-15 and IL-15Rα Expression in TECs
Selectively Promoted γδT1 but Not γδT17
Cell Development
γδT cells are another innate like T cell lineage that differentiate
to effector lineages in the thymus. γδT cells also contain T-bet+

IFNγ-producing γδT1 and RORγt+ IL-17A-producing γδT17
lineages (53–55). γδT1 cells express CD122, the IL-2/15Rβ chain,
and IL-15R signal is also important for γδT1 cell differentiation
as well as γδT cell homeostasis and migration (20, 56–61). In
Il15f /f -Foxn1Cre thymus, γδT cell percentages and numbers
were not obviously different from controls (Figures 6A,B).
However, T-bet+RORγt− γδT1 cells but not T-bet−RORγt+

γδT17 cells were decreased 54.8% in percentages and 57.7%
numbers (Figures 6C,D), indicating that TEC-derived IL-15
plays an important role for γδT1 cell development/homeostasis
in the thymus.

Similarly, IL-15Rα deficiency in TECs in Il15raf /f -
Foxn1Cre mice did not obviously affect total γδT cell
percentages or numbers (Figures 6E,F). However, γδT1
but not γδT17 cells in the thymus were decreased 69.1%
in percentages and 70.4% numbers (Figures 6G,H).
Thus, IL-15Rα on TECs also selectively promoted
γδT1 cell differentiation but appeared dispensable for
γδT17 differentiation.

DISCUSSION

It has been long appreciated that TECs control local environment
to shape both conventional and innate like T cell development.
We analyzed publicly available RNAseq and scRNAseq data
and found that TECs, especially mTECs, express mRNAs for
numerous cytokines and cytokine receptors such as Il13, Il23a,
Il15, and Il27 as well as Il15ra in mouse and/or human.
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FIGURE 4 | Impairment of iNKT1 development/homeostasis in TEC-specific IL-15 deficient mice. Thymocytes from 2 to 3 weeks old Il15f/f -Foxn1Cre and WT

(Il15+/+-Foxn1Cre or Il15f/f ) control mice were stained with fluorescently labeled PBS-57-loaded CD1d-Tetramer (CD1d-Tet), antibodies for TCRβ, CD4, CD8, other

indicated molecules, and lineage markers (CD11b, B220, Ter119, CD11c, F4/80) as well as a fixable Live/Dead stain. (A) Scatter graph represents percentages and

numbers of CD4−CD8− double negative (DN), CD4+CD8+ double positive (DP), and TCRβ+ CD4+CD8− or CD4−CD8+ single positive (SP) mature T cells. (B)

Representative FACS plots showing TCRβ and CD1d-Tet staining of live gated Lin− thymocytes. (C) Scatter plots of iNKT cell percentages and numbers. (D)

Representative FACS plots showing CD24 vs. CD44 staining of total iNKT cells and CD44 vs. NK1.1 staining of CD24− iNKT cells. (E) Scatter graphs of percentages

and numbers of stage 0–3 iNKT cells. (F) Representative FACS plots showing T-bet vs. RORγt staining of CD24− iNKT cells and GATA3 vs. RORγt staining of CD24−

T-bet−RORγt− iNKT cells. (G) Scatter graphs of percentages and numbers of iNKT1/2/17 cells. Data shown are representative of or pooled from five experiments.

Connection lines indicate sex-matched littermates. *p < 0.05; **p < 0.01 determined by two-tail pairwise Student t-test.

Some cytokines and cytokine receptors including IL-15 and
IL-15Rα are single chain molecules. It is conceivable that
these molecules could be expressed as biologically functional
molecules in TECs if they are properly processed inside
these cells. While multiple previous studies have found radio-
resistant cell derived IL-15 and/or IL-15Rα or have suggested
that mTEC-derived IL-15 and/or IL-15Rα are important for
iNKT cell, especially iNKT1 cell, development, no TEC-specific
ablation of these molecules have been reported (6, 7, 62).
We examined how TEC-specific IL-15 or IL-15Rα deficiency
affects T cell, especially innate like T cell, development. We
found that ablation of either IL-15 or IL-15Rα in TECs causes
significant impairment of iNKT1 and γδT1 cell development
in the thymus. Our data reveal that TECs not only serve as
an indispensable source of IL-15 but also trans-present IL-
15 for proper type 1 innate T cell development. At present,
we do not known whether expression of various cytokine and
cytokine receptors in TECs is dependent on Aire or Fezf2
and whether they function in TECs as TRAs to ensure T

cell central tolerance. Nevertheless, our observations, together
with those that mTEC-IV-derived IL-25 promotes iNKT2
development in the thymus (42, 43), suggest the possibility that
some cytokines and cytokine receptors expressed in TECs may
function both as TRAs and biologically active molecules that
can exert their canonical biological functions in the thymus to
shape local thymic environment to regulate T cell, particularly
innate like T cell, development. Further studies are needed to
examine whether TEC-specific ablation of IL-15 and IL-15Rα

leads to escape the negative selection of T cells reactive to
these molecules.

Of note, TEC-deficiency of IL-15 or IL-15Rα does not
completely abolish type 1 innate like T cell development.
It is possible other cell types such as dendritic cells and
macrophages in the thymus may play partially redundant roles
with TECs. Interestingly, TEC-specific IL-15 deficiency weakly
reduced iNKT17 numbers in the thymus. This observation
is consistent with previous reports that injection of IL-
15/IL-15Rα complex induced expansion of both thymic
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FIGURE 5 | Selective defects in iNKT1 but not iNKT2/17 cell differentiation in

Il15raf/f -Foxn1Cre mice. Thymocytes from 6 to 8 weeks old Il15raf/f -Foxn1Cre

and WT (Il15ra+/+-Foxn1Cre or Il15raf/f ) control mice were analyzed similarly

as Figure 4. (A) Scatter graph represents percentages and numbers of DN,

DP, and TCRβ+ CD4+CD8− or CD4−CD8+ SP mature T cells. (B)

Representative FACS plots showing TCRβ and CD1d-Tet staining of live gated

Lin− thymocytes. (C) Scatter plots of iNKT cell percentages and numbers. (D)

Representative FACS plots showing CD24 vs. CD44 staining of total iNKT cells

and CD44 vs. NK1.1 staining of CD24− iNKT cells. (E) Scatter graphs of

percentages and numbers of stage 0–3 iNKT cells. (F) Representative FACS

plots showing T-bet vs. RORγt

(Continued)

FIGURE 5 | staining of CD24− iNKT cells and GATA3 vs. RORγt staining of

CD24− T-bet−RORγt− iNKT cells. The gating of GATA3+ iNKT cells is based

on its levels in T-bet+ iNKT cells. (G) Scatter graphs of percentages and

numbers of iNKT1/2/17 cells. Data shown are representative of or pooled from

three to five experiments. Connection lines indicate sex-matched littermates.

*p < 0.05; **p < 0.01 determined by two-tail pairwise Student t-test.

iNKT1 and iNKT17 cells in mice (62, 63). Thus, TEC-
derived IL-15 also plays an important role for iNKT17
cell development. Of note, our study does not distinguish
the role of mTEC and cTEC derived IL-15/IL-15Rα for
iNKT1 and γdT1 development as Foxn1Cre ablates genes
in both mTECs and cTECs. However, IL-15 appears to be
expressed mainly in mTECs and IL-15Rα is expressed at
higher levels in mTECs than cTECs (Figure 2). Additionally,
it has been found that mTECs are critical for iNKT1 cell
development and induction of IL15R signaling by injecting
IL-15/IL-15Rα complex into micer is able to overcome
mTEC deficiency to promote iNKT1 development (62, 63).
Similarly, γdT cells differentiate into effector lineages in
the medulla (64). Together, these observations support that
mTECs provide critical source of IL-15 for iNKT1 and γδT1
cell development.

Although mRNAs encoding many cytokines and cytokine
receptors are expressed in TECs, some of them are biologically
active only after complex with other molecules. For example,
IL-12 and IL-23 that are heterodimers of an IL-12B (IL-
12p40) subunit and the IL-12A (IL-12p35) subunit or the IL-
23A (IL-23p19) subunit, respectively. Simultaneous expression
of both subunits in the same cells would be required
for formation of a functional protein. It is intriguing that
expression levels among cytokines and cytokine receptors
varies drastically in TECs. Il23a is expressed at the highest
levels in mTECs. Whether such high levels of expression
ensure full deletion of IL-23A reactive T cells, increase
the chance of coexpression with IL-12B in some TECs,
or IL-23A itself has biological activity in TECs remain to
be explored.

The ability of TECs to produce cytokines and
trans-presentation of cytokine(s) to shape thymic
environment to control innate like T cell effector lineage
differentiation/homeostasis in the thymus could have important
implications for thymus biology. Despite the importance of
the thymus for T cell generation, it undergoes involution
or atrophy with advancing age. Thymic involution may
contribute to the decline of immune functions, increased
infection-induced mortality and morbidity, and autoimmune
diseases in the elderly population (65–67). Although many
extrinsic factors that can modulate the course of thymic
involution have been identified, none is able to prevent or
stop thymic involution. It has been noted that age-associated
thymic involution is associated with accumulation of fatty
tissue and inhibition of adipogenesis delays thymic involution.
Interestingly, adipogenesis is promoted by local inflammation
that is negatively controlled by iNKT2 and M2 macrophages
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FIGURE 6 | Selective defects in γδT1 but not γδT17 cell differentiation in TEC-specific IL-15 or IL-15Rα deficient mice. (A–D) Thymocytes from 2 to 3 weeks old

Il15f/f -Foxn1Cre and WT (Il15+/+-Foxn1Cre or Il15f/f ) control mice were labeled with fluorescently tagged antibodies as well as a fixable Live/Dead stain. (A)

Representative FACS plots showing TCRβ and TCRγδ staining of live gated thymocytes. (B) Scatter graphs showing γδT cell percentages and numbers. (C)

Representative FACS plots showing T-bet vs. RORγt in γδT cells. (D) Scatter graphs showing percentages and numbers of γδT1/17 lineages. Data shown are

representative of or pooled from five experiments. Connection lines indicate sex-matched littermates. *p < 0.05 determined by two-tail pairwise Student t-test. (E–H)

Thymocytes from 6 to 8 weeks old Il15raf/f -Foxn1Cre and WT (Il15ra+/+-Foxn1Cre or Il15raf/f ) control mice were labeled with fluorescently tagged antibodies as well

as a fixable Live/Dead stain. (E) Representative FACS plots showing TCRβ and TCRγδ staining of live gated thymocytes. (F) Scatter graphs showing γδT cell

percentages and numbers. (G) Representative FACS plots showing T-bet vs. RORγt in γδT cells. T-bet+ γdT cell gating is based on its levels in TCRβ+CD44−CD122−

cells (Supplementary Figure 1B). (H) Scatter graphs showing percentages and numbers of γδT1/17 lineages. Data shown are representative of or pooled from five

experiments. Connection lines indicate sex-matched littermates. *p < 0.05 determined by two-tail pairwise Student t-test.

but positively controlled by IFNγ and M1 macrophages (68–70).
Given the ability of TEC sublineages to control type 1 and type
2 innate like T cell differentiation and iNKT cells can in turn
regulate mTECs and thymic dendritic cells (63, 71), it is possible
that thymic involution is an intrinsically programmed process
encarved in and triggered by TECs (particularly mTECs) via
shaping local thymic environment and presence of innate like
T cell effector lineages in the thymus. A hypothesis warrants
further investigation.

MATERIALS AND METHODS

Mice
Il15raf /f mice (28) and Il15f /f mice (72) were kindly provided

by Drs. Kimberly Schluns and Averil Ma and Drs. Nan-Shih Liao

and Shirley Luckhart, were bred with B6(Cg)-Foxn1tm3(cre)Nrm/J

(Foxn1Cre) mice (52) that were kindly provided by Dr. Nancy
Manley, to generate Il15raf /f−Foxn1Cre and Il15f /f−Foxn1Cre
mice as well as Il15raf /f , Il15f /f , andWT-Foxn1Cre control mice.
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Mice were maintained in a pathogen free facility. All mouse
experiments were performed following a protocol approved
by the Institutional Animal Care and Use Committee of
Duke University.

Flow Cytometry and Antibodies
Thymocytes cells were prepared according to published protocols
(73, 74). Cells were stained for surface markers with appropriate
fluorochrome-conjugated antibodies and tetramers in PBS
containing 2% FBS on ice for 30min followed by intracellular
staining of transcription factors using the eBioscience Foxp3
Staining Buffer Set according to the manufacturer’s protocols.
PE- or APC-labeled PBS-57-loaded CD1d-Tetramers (CD1d-
Tet) were provided by the NIH Tetramer Core Facility.
Fluorochrome-conjugated anti-TCRβ (clone H57-597), NK1.1
(clone PK136), CD44 (clone IM7), CD24 (clone M1/69), CD11b
(clone M170), CD11c (clone N418), F4/80 (clone BM8), B220
(clone RA3-6B2), TER119/Erythroid Cells (clone TER-119), CD4
(GK1.5), CD8a (53-6.7), T-bet (4B10), TCRγδ (clone GL3), CD3
(clone 145-2C11), CD45 (clone 30-F11), CD27 (clone LG.3A10)
were purchased from Biolegend; GATA3 (L50-823), RORγt
(Q31-378) were purchased from BD Biosciences. Cell death was
identified using the Live/DeadTM Fixable Violet Dead Cell Stain
(Thermo Fisher Scientific). Data were collected using a BD
LSRFortessaTM cytometer (BD Biosciences). Data were analyzed
using the FlowJo Version 9.2 software (Tree Star).

Expression of Cytokines and Cytokine
Receptors From the Immunological
Genome Project
Skyline RNAseq database from the Immunological Genome
Project (Immgen.org) was searched for mRNA levels of indicated
cytokines and cytokine receptors. In the Immunological Genome
Project, 34 immune cell types from male and female mice were
profiled by RNA-seq. Expression of mRNA was normalized
for each cell types with the Z-score method. To visualize
the different values among different cell types, the data for
each cell were plotted as a heatmap using the pheatmap
program (75).

Analyses of Murine TEC scRNAseq Data
Raw counts of scRNAseq data of TECs from 4 to 6 weeks
old mice reported by Bornstein et al. (42) were downloaded
from GEO Database under the accession number GSE103967.
scRNAseq data were pre-processed using the Seurat package
(version 3.1.1) (49) in R (version 3.5.3). Genes expressed in
fewer than 3 cells and cells with no more than 50 detected
genes were filtered out. Filtered datasets were normalized
the gene expression measurements for each cell by the total
expression multiplied with a scale factor of 10,000 by default,
followed by log-transformation of the results using the global-
scaling normalization method, LogNormalize. The technical
noise and/or biological sources of variation were mitigated
via ScaleData function to improve downstream dimensionality
reduction and clustering. Highly variable genes were screened
with Find Variable Features function for downstream analysis.
Principle component analysis (PCA) were performed on the

scaled data using the RunPCA function. Significant PCs were
identified as those with a strong enrichment of low p-value
genes based on the Jackstraw algorithm. For cell clustering,
k-nearest neighbors were calculated and the SNN graphs
were constructed using Find Neighbors. Top 20 PCs were
selected for analysis using Find Clusters. Cells within the
graph-based clusters determined above were co-localized for
visualization on the tSNE plot via RunTSNE and TSNEPlot.
Find All Markers were applied to find markers that define
clusters via differential expression. Feature Plot was applied
to visualize individual gene expression on a tSNE plot.
VlnPlot was applied to show expression probability distributions
across clusters.

Analyses of Human TEC scRNAseq Data
Expression of cytokines and cytokine receptors in human
TECs was searched online based on scRNAseq analyses
(https://developmentcellatlas.ncl.ac.uk/datasets/HCA_
thymus/human_epi/) (51). Data were presented as a bubble
plot with bubble size representing percentages of TECs
expressing individual molecules and bubble color representing
expression levels.

Statistical Analysis
Data shown represent means ± SEMs and were analyzed
with the two-tailed pairwise Student t-test using the Prism
5/GraphPad software for statistical differences. Each pair
of mice represents sex-matched littermates and is indicated
by a connecting line between test and control mice. P-
values < 0.05 were considered significant (∗p < 0.05,
∗∗p < 0.01).
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