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Abstract

The functional specialization of cell types arises during development and is shaped by cell–cell communication networks
determining a distribution of functional cell states that are collectively important for tissue functioning. However, the
identification of these tissue-specific functional cell states remains challenging. Although a plethora of computational
approaches have been successful in detecting cell types and subtypes, they fail in resolving tissue-specific functional cell
states. To address this issue, we present FunRes, a computational method designed for the identification of functional cell
states. FunRes relies on scRNA-seq data of a tissue to initially reconstruct the functional cell–cell communication network,
which is leveraged for partitioning each cell type into functional cell states. We applied FunRes to 177 cell types in 10
different tissues and demonstrated that the detected states correspond to known functional cell states of various cell types,
which cannot be recapitulated by existing computational tools. Finally, we characterize emerging and vanishing functional
cell states in aging and disease, and demonstrate their involvement in key tissue functions. Thus, we believe that FunRes
will be of great utility in the characterization of the functional landscape of cell types and the identification of dysfunctional
cell states in aging and disease.
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Introduction
In multicellular organisms, the functional specification of cell
types arises during development and is further shaped by signals
from other cells. In particular, the exchange of these signals
through receptor–ligand-mediated cell–cell communication
networks determines a distribution of different functional
cell states that are collectively relevant for tissue functioning
[1]. Thus, cell types are composed of a variety of functional
cell states that are shaped by their tissue environment. More
specifically, in response to different stimuli, cells of the same
cell type can exhibit different phenotypes defined by physical,
molecular and functional characteristics, called functional cell
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states. Great efforts have been devoted to characterize tissue-
specific functional differences imparted by cell–cell interactions,
which has led to the identification of functional cell states in
various cell types. For instance, comparison of tissue-resident
macrophages in different organs revealed functionally relevant
differences in their gene expression programs [2]. While ileal
and colonic macrophages showed higher expression of CD74
compared to other tissue-resident macrophages, TGFB2 is
exclusively expressed by peritoneal macrophages [2]. Moreover,
transplantation of these macrophages to other organs repro-
grams their expression profile towards tissue-resident cells,
which demonstrates that the observed differences are largely
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imparted by their environment [2]. In addition, previous studies
investigated the effect of the environment on the functional
specification of stem cells with respect to their activity and
the tissue compartment in which they reside. For example,
neural stem cells in the subgranular and subventricular zones
show subtle phenotypic differences driven by the niche. While
subgranular zone stem cells express the transcription factor
(TF) HES5, which is induced by Notch signaling, subventricular
zone stem cells express Id proteins, which are induced by BMP
signaling, to maintain their function [3, 4]. Although these
studies have enabled the characterization of certain functional
cell states determined by cell–cell interactions in specific cell
types, the development of computational methods would greatly
aid the systematic identification and characterization of such
states.

The identification of cell types and subtypes has been tradi-
tionally performed by molecular biology approaches based on
the shape and size of cells, while, more recently, these popu-
lations have been characterized by their expression of cellular
membrane proteins. However, due to the limited number of
surface proteins, it is likely that important functional differences
between cell states cannot be described by combinations of
these proteins alone. Advances in single-cell RNA sequencing
(scRNA-seq) technologies have provided an unprecedented view
on the cellular heterogeneity within individual cell types. How-
ever, the exploitation of these datasets requires computational
tools for processing and clustering the data. A plethora of com-
putational tools have been developed in recent years for the
unsupervised clustering of scRNA-seq profiles [5–8]. Although
these tools have enabled the identification of several novel cell
subtypes, they do not specifically consider the effect of cell–
cell interactions on tissue-specific functional processes, and
therefore fail in resolving the heterogeneity in functional states
of different cell types.

In order to address this challenge, we present FunRes, a com-
putational method for the identification of tissue-specific func-
tional cell states that are induced by receptor–ligand-mediated
cell–cell interactions. FunRes employs single-cell RNA-seq data
to reconstruct the cell–cell communication network among cell
types. In particular, FunRes exclusively detects interactions that
are functionally relevant to each cell type by warranting the
compatibility of the signal with the intracellular signaling and
transcriptional network. Next, FunRes leverages this network to
identify functional cell states by partitioning cell types based
on cell–cell interactions and the functional annotation of down-
stream target TFs. We applied FunRes to 177 cell types in 10
different tissues and demonstrate that the detected states cor-
respond to known functional cell states of various immune
and non-immune cell types, including macrophages, NK and
endothelial cells, which cannot be recapitulated by existing com-
putational tools. Moreover, comparison of the identified func-
tional cell states of the same cell types in different tissues
showed conserved states carrying out essential cell-type func-
tions as well as the existence of states with unique function-
alities. Finally, we assessed the effect of aging and disease on
the composition of functional cell states. Although the overall
number of functional cell states does not significantly change,
certain cell types, such as enterocytes of the large intestine, hep-
atic sinusoidal epithelial cells and pancreatic alpha cells, display
vast differences in their composition of functional states. More-
over, we validate the detected functional cell states in aged and
pathologic tissues by providing evidence for their involvement
in pathological tissue functions.

In summary, FunRes constitutes the first computational
method specifically designed for identifying functional cell
states induced by receptor-ligand mediated cell–cell inter-
actions and complements current clustering methodologies
that successfully detect cell types and subtypes. We demon-
strate that FunRes is applicable to a wide range of tissue
conditions and can accurately detect functional cell states.
Thus, we believe that FunRes will be of great utility in the
characterization of the functional landscape of cell types and
the identification of dysfunctional cell states in aging and
disease.

Material and Methods
Assembly of cell–cell communication scaffolds,
intracellular signaling and TF-gene regulatory
interactions

A cell–cell communication scaffold was generated for human
and mouse on the basis of a previously published dataset includ-
ing manually curated, validated and predicted intercellular inter-
actions (Figure 1A) [9]. These interactions have been collected
from different databases, i.e. DLRP [10], HPMR [11], IUPHAR [12],
HPRD [13] and String DB [14] or manually validated in previ-
ous studies. The interactions were further filtered based on
UniProt [15] annotations to include only ligands annotated to
be ‘Secreted’. Since the original dataset only consists of human
data, these interactions were mapped to mouse orthologs using
BioMart from Ensembl [16].

The intracellular signaling network is composed of path-
way interactions included in Omnipath [17], Reactome [18] and
MetaCore from Thomson Reuters. In particular, all pathways
from MetaCore were obtained including all signal transduction
interactions while discarding transcriptional gene regulatory
interactions. MetaCore objects were mapped to gene symbols
using the provided mapping table. In case MetaCore objects
of the regulator or regulated gene mapped to multiple gene
symbols, all possible interactions between the associated gene
symbols were generated using a mapping table provided by
MetaCore.

Gene regulatory interactions were obtained from MetaCore
from Thomson Reuters, a manually curated resource of gene–
gene interactions, on 01 April 2019 for human and mouse genes.
Only transcriptional regulatory interactions with known effects,
i.e. activation or inhibition, were selected by filtering for ‘direct
interactions’ with reported effects ‘activation’ or ‘inhibition’.
MetaCore objects were again mapped to gene symbols using the
provided mapping table. As in case of the intracellular signal-
ing network, if MetaCore objects of the regulator or regulated
gene mapped to multiple gene symbols, all possible interactions
between the associated gene symbols were generated using an
in-house script.

Selection of preserved TFs

To select preserved TFs, FunRes identifies transcription factors
that are expressed in at least a user-defined fraction of cells. For
the analysis presented in this manuscript, we selected a permis-
sive cutoff of 10% for all samples. For that, FunRes transforms the
expression data into a binary format in which TFs with at least
one count become ‘1’ while not-expressed TFs become ‘0’ and
aggregates the binary data by cell type. Finally, FunRes selects
in each subpopulation the TFs that are expressed in the top
five-percentile of cells.
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Detecting receptors inducing preserved TFs

To detect receptors inducing the expression of the selected TFs,
FunRes employs a Markov Chain model of intracellular signaling,
called SigHotSpotter, to identify high-probability intermediate
molecules (Figure 1A) [19]. In brief, SigHotSpotter uses single-
cell RNA-seq data of a subpopulation and the assembled intra-
cellular signaling network to create a state transition matrix
representing the traversal of a signal through the network. The
state transition matrix represents a finite discrete Markov Chain
and is subsequently evolved to create the stationary distribution.
The stationary distribution displays the intermediate molecules
exhibiting the highest steady state probabilities. Afterwards,
SigHotSpotter connects the intermediate molecules to inter-
face TFs, i.e. the first transcription factors in the signal trans-
duction chain, and characterizes the compatibility with their
downstream targets. Calculating all shortest paths from high-
probability intermediate molecules to downstream preserved
TFs defines a compatibility score that classifies each molecule as
being active or inactive. Here, a high-probability gene is deemed
compatible with its downstream target if the expression of the
gene and target TF agrees with the sign of the interaction path,
i.e. an even number of inhibitions is an activating path while all
other paths are inhibiting. In case of an activation, the interme-
diate and target genes have to be expressed whereas, in case
of an inhibition, the target gene must not be expressed. Next,
a gene is compatible, if a significant number of its targets is
compatible. Significance is assessed using a hypergeometric test
with P-value cutoff 0.05. Following the same rationale, recep-
tors are identified that target the compatible high-probability
intermediates.

Inference of the cell–cell communication network

The main algorithm consists of four steps. First, preserved TFs
and the receptors regulating them are selected in each cell pop-
ulation, as described before. Second, ligands expressed in a user-
defined fraction of cells are selected in each cell population. For
this study, a fraction of 10% was selected. Third, ligand–receptor
interactions are established between two cell populations if (i)
the receptor was selected in the first step for the first population,
(ii) the ligand was selected in the second step for the second
population and (iii) the receptor-ligand interaction is contained
in cell–cell communication scaffold. Every interaction between
receptor r in subpopulation p1 and ligand l in subpopulation p2
is augmented with an interaction strength sr,l,p1,p2 defined by:

sr,l,p1,p2 =
⎛
⎝ 1∣∣{xr,p1|xr,p1 > 0

}∣∣
∑

{xr,p1 |xr,p1>0}
xr,p1

⎞
⎠

•
⎛
⎝ 1∣∣{xl,p2|xl,p2 > 0

}∣∣
∑

{xl,p2 |xl,p2>0}
xl,p2

⎞
⎠ (1)

Informally, the score is the product of average non-zero
receptor expression values and average non-zero ligand expres-
sion values with respect to the receptor r and its expressing
population p1 as well as to the ligand l and its expressing
population p2.

Significance of each interaction is determined by comparing
the score of an interaction between two cell types against a
background distribution of scores between these cell types based

on all interactions in the scaffold. Interactions in the 90th per-
centile that have at least one significant downstream TF target
are retained in the final cell–cell communication network.

Identification of functional cell states

After inferring the cell–cell communication network, FunRes cre-
ates an incidence matrix of receptor/downstream TF expression
for each cell type (Figure 1B). In particular, each cell in the cell
type under study is represented by a binary vector in which
each entry corresponds to a receptor/downstream TF pair. If both
the receptor and downstream TF are expressed in a cell, the
corresponding entry in the vector will be ‘1’ and ‘0’ otherwise.
Hierarchical clustering is performed on the resulting incidence
matrix using the ‘hclust’ R function with Euclidean distance and
complete linkage. The optimal number of clusters is computed
based on the Dunn index, an internal cluster evaluation metric
comparing within-cluster with the between-cluster distances.
Finally, Gene Ontology [20, 21] enrichment of biological processes
is performed using the DOSE R package (Figure 1B) [22]. Terms
with false discovery rate lower than 0.01 are considered signifi-
cant. Clusters having identical functional annotations are subse-
quently merged. The resulting clusters constitute the identified
functional cell states. Importantly, FunRes does not require the
proteins within the enriched GO terms to be identical, but only
the terms themselves.

Comparison with state-of-the-art clustering methods

We selected Seurat [5, 6], SC3 [7] and SINCERA [8] for assessing
their ability to detect functional cell states. All methods were
employed in a standard workflow with default parameters
in R. In particular, for Seurat, the 2000 most variable genes
were detected using the ‘FindVariableFeatures’ method with
selection method ‘vst’. Subsequently, the data were scaled
(‘ScaleData’ function) and principal component analysis (PCA)
(‘RunPCA’ function) was performed. Finally, the data were
clustered by employing the ‘FindNeighbors’ and ‘FindClusters’
functions on the first 10 principal components. SC3 was
invoked using the ‘sc3’ function and the maximum number
of clusters was set to 10. SINCERA was invoked without specific
pre-processing steps. All analyses were carried out in R v3.6.1.

Results
Identification of functional cell states based on cell–cell
communication networks

For the purpose of identifying niche-induced functional cell
states, FunRes initially reconstructs the cell–cell communication
networks among all cell types in a dataset (Figure 1A). In par-
ticular, it integrates transcriptional and signaling networks with
extracellular ligand–receptor interactions following a bottom-
up approach by first selecting transcription factors (TFs) whose
expression is preserved across cells. Next, FunRes identifies
receptors that regulate these preserved TFs by employing a
previously introduced Markov Chain model that assesses signal
transduction probabilities from receptors to their co-expressed
TFs [19]. Finally, FunRes finds cognate ligands for these recep-
tors from a previously curated set of ligand–receptor interac-
tions [9]. Based on a previous study about the proportions of
functional cell states in heterogeneous T cell populations, we
required throughout this study both the ligands and receptors
to be expressed in more than 10% of cells of the secreting and
receiving cell population, respectively [23].
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Figure 1. Method overview. (A) Based on single-cell RNA-seq data of a tissue, ResFun infers active receptors in each cell population. Based on these receptors, ResFun

reconstructs a cell–cell communication network by identifying interactions having a significantly higher score compared to other interactions in the interaction scaffold.

(B) Given a reconstructed cell–cell communication network of a tissue, FunRes identifies functional cell states for each cell type individually. First, cells are represented

as a binary vector of receptor/downstream TF expression. If a receptor and its corresponding downstream TF is expressed in a cell, it will be represented as ‘1’ (red) and

‘0’ (blue) otherwise. An optimal number of clusters is determined, which will be subjected to functional enrichment analysis. If two clusters are enriched in the same

processes, they will be merged. The merged clusters define the functional cell states.

After reconstructing the functional cell–cell communication
network, FunRes partitions each cell type into different func-
tional cell states based on the identified cell–cell interactions
and their downstream TF targets (Figure 1B). More specifically,
hierarchical clustering is performed to group cells by their func-
tion based on the downstream effect of cell–cell interactions
they are participating in. Finally, the optimal number of func-
tional states in each cell type is determined by evaluating cluster
consistency. Notably, the optimal number of states could be
equal to one, which results in no partitioning of the cell type
under consideration, suggesting no niche-induced functional
heterogeneity.

Functional evaluation of niche-induced cell states

We employed FunRes to identify niche-induced functional cell
states of 177 cell types in 10 mouse tissues from Tabula Muris
Senis [24]. On average, each cell type was partitioned into 2.49
functional states (median: 2), with a maximum of nine identified
states in enterocytes of the intestinal epithelium and pancreatic
alpha cells (Figure 2A). Nevertheless, the vast majority of cell
types is partitioned into at most three functional cell states with
16% of cell types remaining unpartitioned.

To assess the performance of our method, we evaluated the
function of the identified cell states with known cell state mark-
ers compiled from literature and compared the performance
of FunRes against current clustering methods. As a result, we
were able to collect evidence for multiple functional cell states
in the heart, kidney and liver. Firstly, we identified functional
cell states of cardiac coronary vascular endothelial cells. As a
result, FunRes detected two clusters differentiated by Bmpr2
signaling. While the Bmpr2-positive state corresponds to qui-
escent coronary vascular endothelial cells, the Bmpr2-negative

state consists of activated cells undergoing endothelial mes-
enchymal transition, which is required for cardiac functioning
[25]. In this regard, FosB is activated by Bmpr2 according to
FunRes and is downregulated in active vascular endothelial cells
[26]. Thus, Bmpr2 and FosB serve as markers for quiescent and
active coronary vascular endothelial cells. In order to assess the
ability of current clustering methods in identifying functional
cell states, we compared the results from FunRes against Seurat
[5, 6], SC3 [7] and SINCERA [8]. As a result, SINCERA and SC3
detected 19 and 9 clusters, respectively, none of which could
be distinguished using the marker genes of active and quies-
cent endothelial cells. Similar to FunRes, Seurat detected three
clusters. However, no significant difference in the expression of
these cell state markers could be detected. Consequently, none
of the clusters corresponds to the functional cell states identified
by FunRes (Supplementary Figure S1).

Secondly, we assessed the functional cell states of kidney
macrophages and identified two states that are differenti-
ated based on Nrp1 signaling. In particular, the first cluster
expresses Nrp1 and Il10, all of which are known markers of
M2 macrophages, an immunosuppressive cell state necessary
for wound healing and cessation of the inflammatory response
to pathogens (Figure 2B) [27, 28]. Previous reports showed
that activation of Nrp1, which is involved in the cell–cell
interactions differentiating the two clusters, induces this
functional state, which underscores the accuracy of FunRes
in detecting functionally relevant cell–cell interactions. In
addition, the other functional cell state is characterized by
active Tlr2 and Tlr4 signaling, which results in the polarization
into M1 macrophages [29]. Indeed, cells belonging to this
cluster express the M1 markers Nfatc1, Tnfsf9 and Il16
[30–32]. Thus, the identified cell states correspond to M1 and M2
polarization of macrophages, respectively. In contrast, current
clustering methodologies cannot resemble this finding. Seurat

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa283#supplementary-data
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Figure 2. Validation of FunRes and comparison to the state-of-the-art methods. (A) Histogram of the number of identified functional cell states in all cell types of all

tissues. (B–D) Heatmaps of genes important for the function of the identified functional cell states in kidney macrophages (B), liver B cells (C) and liver NK cells (D).

The expression values are scaled for each gene individually. (E and F) Visualization of how different cues from the environment induce downstream marker genes of

peripheral (E) and adaptive (F) NK cell states.

was unable to cluster the data due to the failure of PCA with
default parameters as the number of kidney macrophage cells
is below the number of principal components to be computed.
Sincera partitioned the cells into 35 different clusters having
on average 1.09 cells whereas SC3 was the only tool providing a
reasonable number of clusters. However, these populations do
not correspond to M1 and M2 macrophages as known marker
genes are expressed across clusters (Supplementary Figure S2).

Thirdly, we investigated the functional states of liver B cells
and identified two states that are distinguished by IL4R signal-
ing [33]. Previous studies elucidated the role of IL4R signaling
and found that it induces autophagy, a key mechanism for the
maintenance of B cell memory against pathogens and synthesis
of antigens, such as IgE [34]. Moreover, B cells with active IL4R
signaling express the conventional B cell genes Tnfrsf13b and
Tnfrsf13c (Figure 2C) [35, 36]. In contrast, the other identified
cell state is deficient of IL4R signaling and express the plasma
cell markers Sec61a1 (Figure 2C) [37]. Comparison of the cell
states identified by FunRes to current clustering methodologies
reveals that all of the other methods fail to detect the underlying
functional heterogeneity. While Seurat was unable to perform
clustering due to the failure of PCA with default parameters as
the number of liver B cells is below the number of principal
components to be computed, Sincera partitioned the data such
that each cell belongs to a different cluster. In addition, SC3 did
not detect any functional heterogeneity in liver B cells and leaves
the data unpartitioned (Supplementary Figure S3).

Finally, we applied our method to liver NK cells and detected
two functional NK cell states defined by differential downstream
signaling targets. In particular, cells of the second cluster specif-
ically activate Ikzf3 (Figure 2D), whereas other downstream sig-
naling targets, such as Stat3, Stat1 and Ets1, are commonly

activated in both clusters. Indeed, the second cluster is charac-
terized by Ikzf2 and Ikzf3 expression, two markers of peripheral
NK cells (Figure 2E) [38]. In contrast, the first cluster shows high
expression of the adaptive NK cell markers Klrc1 and Klrc2
(Figure 2F) [39, 40]. Similar to the case of kidney macrophages,
Sincera produced an excess of clusters with, on average, only
1.38 cells whereas Seurat produced no clusters due to the fail-
ure of PCA with default parameters as the number of liver
NK cells is below the number of principal components to be
computed. Although SC3 detected 2 clusters like FunRes, they
could not be attributed to different functional NK cell states
(Supplementary Figure S4).

In summary, FunRes was able to dissect the functional
heterogeneity of cell types in various tissues and accurately
identified known functional states, while current clustering
methods failed to provide satisfactory results. Moreover,
comparison of the clusterings identified by each method shows
only a moderate agreement between the functional cell states
detected by FunRes and the results of Seurat, SC3 and SINCERA
(Supplementary Figure S5).

Comparison of functional cell states in different tissues

Next, we set out to characterize the niche-induced functional
states of macrophages and B cells in different tissues. As
expected, we detected conserved functional states of kidney
and limb muscle macrophages with activated Tlr2, Tlr4 and
Tnfrsf1a signaling pathways, which constitute the key signaling
cascades for the recognition of antigens and the activation
of macrophages [41, 42]. However, while kidney macrophages
show an Nrp1-positive subpopulation corresponding to M2
polarization, Nrp1 signaling is inactive in all limb muscle

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa283#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa283#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa283#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa283#supplementary-data
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macrophages. However, a subset of cells in the limb muscle
display activity of the Il1 decoy receptor Il1r2, which is
unique to M2 polarized macrophages. Moreover, these cells
display an activated Il6 signaling pathway, which has been
previously shown to be an alternative mechanism for M2
macrophage polarization [43]. This demonstrates that M2
macrophages reside in both tissues, but are alternatively
activated.

In contrast to macrophages, B cells were detected in the
spleen, liver, limb muscle and lung having vastly different
functional states that greatly differ between the spleen and
liver/limb muscle/lung tissues (Figure 3A). In particular, the
identified functional B cell states in the liver and limb muscle are
commonly characterized by Il2 receptor signaling activity, which
is involved in B cell proliferation and plasma cell differentiation
[44, 45]. However, unique functional cell states are acquired
through Il4ra and Cxcr4 signaling activity in these tissues. As
previously described, Il4ra promotes B cell autophagy required
for memory maintenance and antigen presentation [33]. In
contrast, Cxcr4 signaling is uniquely activated in the functional
state of limb muscle B cells demonstrating the differentiation
of these cells into plasma cells [46]. While B cells lose their
responsiveness to Cxcl12, the cognate ligand of Cxcr4, during
development, they regain their sensitivity upon differentiation
into mature B cells [46]. Due to the involvement of Il4ra and Cxcr4
in plasma cell differentiation, we compared the downstream
targets of these signaling cascades identified by FunRes and
found Foxo1 to be the only common TF. Previous studies
already revealed the key role of Foxo1 in plasma cell function
and differentiation as an activator of Prdm1, a plasma cell
master regulator [47]. Therefore, the identified functional B
cell states unique to liver and limb muscle tissue, respectively,
induce plasma cell differentiation through distinct signaling
pathways. Opposed to liver and limb muscle tissues, the
functional B cell states in the lung are characterized by Il2 and
interferon gamma signaling, which is the only commonality
with B cells from the spleen. Whereas a B cell state expressing
Ifngr1 was detected in both spleen and lung tissues, their
functions vary due to the presence of co-stimulatory signals. As
expected, the identified functional B cell states in the spleen are
characterized by active Cd40 and interferon gamma signaling
corresponding to a proliferative state [48]. In contrast, no co-
stimulatory signals were detected in pulmonary B cell states,
which suggests an inhibition of B cell activity [48]. This finding
is consistent with the second functional state identified in
pulmonary B cells, which shows Il2 receptor signaling activity
as well as the absence of interferon gamma signaling, similar
to the functional states of limb muscle and liver B cells [44,
45].

Functional heterogeneity underlying aging and disease
identifies emerging cell states

Finally, we investigated the influence of different tissue con-
ditions, such as aging and disease, on the functional states of
cell types. In order to interrogate how aging affects the func-
tional cell states of macrophages, we compared the identified
states in kidney and limb muscle tissue in young and old mice.
Based on our analysis, we observed a significant decline in
macrophage polarization due to the inactivation of Nrp1 and
Il6r signaling pathways. In particular, while a functional state
of kidney macrophages exists in old mice that is characterized
by the ability to respond to antigens through Tlr2 signaling,
the capacity of limb muscle macrophages to antigen response

is significantly reduced. Moreover, the heterogeneous activa-
tion pattern of macrophages in young tissues has generally
declined, which results in more homogeneous, quiescent states.
This observation is consistent with previous studies reporting a
significant decline of macrophage activation during aging, which
is mediated by reduced Tlr signal transduction capacity due to
dysfunctional MyD88 [49].

In order to determine whether the loss of niche-induced
functional states is a general characteristic of aging tissues,
we compared the number of identified functional states for
each cell type (Figure 3B). However, no statistically significant
difference could be detected (two-sided Wilcoxon-signed-rank
test, P-value: 0.64). While in more than 85% of cell types, the
number of states differed by at most two, three cell types
differed in more than six niche-induced functional states. For
example, the increase of detected functional states in hepatic
sinusoidal endothelial cells is largely driven by the specific
activation of the transcription factors Mef2c, Nr3c1 and Jun
through distinct signaling cascades of the same receptors.
Indeed, these TFs carry out protective functions in hepatic
endothelial cells by stimulating cellular survival, modulating
the immune response and preventing the breakdown of the
extracellular matrix [50–52]. Similarly, an increase in niche-
induced functional states can be observed in pancreatic alpha
cells due to an elevated selectivity in the activation of Bmpr1a,
Itgav and Ddr1. These receptors regulate key functions of
alpha cells, such as glucagon secretion [53], even though
their combinatorial effect remains elusive. Furthermore, we
observe a few of cellular processes unique to young and old
tissues, respectively (Figure 3C and D). In contrast to hepatic
sinusoidal endothelial and pancreatic alpha cells, enterocytes
of the large intestinal epithelium show a marked reduction of
heterogeneity with age, which is associated to the impairment
of key signaling pathways, including protective signals, such as
Lpa and Somatostatin, as well as fat uptake through the sortilin
receptor.

Likewise, we investigated the effects of pathologic tissue
conditions on the functional states of cell types exemplified
in a dataset of human liver cirrhosis [54]. Hepatic cirrhosis is
a chronic disease characterized by the progressive formation
of permanent scar tissue through fibrosis. Hepatocytes are the
main parenchymal cells of the liver, making up 50–60% of the
tissue and are involved in key functions, such as lipid synthesis
and detoxification. However, their dysregulation in the context
of liver fibrosis and the functional states they attain remains
elusive. Therefore, we applied FunRes, to healthy and cirrhotic
human liver samples for identifying the functional states of
hepatocytes. As a result, our method detected two functional
states in healthy liver tissue characterized by Sdc1 and Cd74
signaling. Indeed, Sdc1 is necessary for the uptake and degrada-
tion of triglyceride-rich lipoproteins in the liver and is therefore
involved in a key function of the liver [55]. In addition, Cd74
is a key component of the response to acute liver injury by
antigen processing and host defense [56]. In contrast, a great
diversity of functional states can be observed in cirrhotic liver
tissue. In total, FunRes identified six functional states that are
characterized by interferon gamma, leptin receptor, Cxcr4, Tnf,
Cd40 and Caveolin-1 signaling (Figure 3E). While two functional
states show a highly pro-inflammatory phenotype mediated by
interferon gamma, Tnfrsf1a and Cxcr4, three states are char-
acterized by Lepr, Cd40 and Cav1 signaling. The function of
leptin receptor in the context of cirrhosis has been subject to
previous studies that demonstrated the production of Tnf and
Il1 due to leptin signaling activation [57]. Moreover, in a rat
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Figure 3. Comparison of functional states across tissues and tissue conditions. (A) Heatmap of active signaling cascades induced by cell–cell interactions in B cells of

three different tissues. Each row corresponds to a pair of receptor and downstream TF target, whereas columns correspond to cells. Expression of both the receptor and

downstream TF target in a cell is depicted in red. Failure to express any of the two genes is depicted in grey. B cells from all tissues share active Il2 signaling cascades

targeting common (Ets1, Foxo1) and unique downstream TFs (Stat3, Junb, Spib, Fos). (B) Bar chart of identified functional cell states per cell type in young and old tissues.

The number of functional states does not significantly change in aging, except for certain cell types, such as pancreatic alpha cells, endothelial cells of the hepatic

sinusoid and enterocytes of the large intestine epithelium. (C and D) Cellular processes unique to pancreatic alpha cells in young and old tissues. The size of the dots

represents the fraction of genes in the category that are expressed in the corresponding state, whereas the color indicates significance from blue (less significant) to

red (most significant). (E) Heatmap of active signaling cascades induced by cell–cell interactions in hepatocytes of cirrhotic liver tissue. Each row corresponds to a pair

of receptor and downstream TF target, whereas columns correspond to cells. Expression of both the receptor and downstream TF target in a cell is depicted in red. Six

functional cell states were identified that are characterized by Interferon-gamma, CD40, Cav1 and Leptr signaling, respectively.

model of liver cirrhosis, no significant changes in the expres-
sion of Lepr have been found, which is consistent with our
data. Nevertheless, FunRes only detects significant signaling
activity in pathologic livers highlighting the significance of this
method. On the contrary, previous studies suggested that the

functional hepatocyte state characterized by active Cd40 sig-
naling likely amplifies Fas-dependent apoptosis, thus contribut-
ing to the progressive formation of scar tissue in response to
injury [58]. Finally, functional states with Caveolin-1 signaling
activity regulate endocytosis, energy metabolism and fatty acid
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uptake as well as inhibit NOS3, which promotes liver fibrosis
[59].

Discussion and Conclusion
In this study, we presented FunRes, a computational method
for resolving tissue-specific functional cell states that are
determined by receptor–ligand-mediated cell–cell interactions.
This method accounts for the effect of cell–cell interactions on
specific cellular processes, which have been shown to play a
fundamental role in the specification of functional cell states
[60–62]. Namely, FunRes identifies functional cell states based
on the downstream target genes of cell–cell interactions and the
cellular processes they participate in. Hence, our approach is
conceptually different from current clustering methods solely
relying on differences in the expression of the most variable
genes regardless of their cellular function. As a result, unlike
other methods, FunRes was able to resolve functional states
of various cell types. Importantly, the cell–cell interactions
underlying functional cell states were largely supported by
previous studies, indicating that FunRes can inform about the
cues inducing these states.

The validation of our method was further corroborated by
the comparison of functional cell states in different tissues
and tissue conditions. In particular, FunRes identified previously
reported differences in the functional states of macrophages
and B cells, including the appearance of specific functional cell
states, such as wound-healing macrophages in the limb muscle.
Furthermore, we applied FunRes to several examples of aging
and disease to disentangle the composition of functional cell
states in these conditions. For instance, in the case of liver cirrho-
sis, results show the emergence of novel functional hepatocyte
states sustained by Caveolin-1 and Leptin signaling that are
characterized by dysregulated metabolic processes contributing
to pathological tissue functioning.

A limitation of FunRes is that it solely considers receptor–
ligand-mediated cell–cell interactions whereas it ignores other
ways of cellular communication, such as via exosomes. In addi-
tion, this method does not incorporate the effect of environmen-
tal factors, such as metabolites, on the functional cell states [63].
In this regard, the method could be extended to overcome some
of these limitations.

In summary, FunRes is the first computational method that
systematically resolves tissue-specific functional cell states,
thereby providing a functional characterization of the identified
states. Thus, we believe FunRes will be of great utility in the
characterization of the tissue-specific functional landscape and
in the identification of dysfunctional cell states underlying aging
and disease.
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Key Points
• The first method, FunRes is the first method proposed

for resolving functional cell states of heterogeneous
cell types. As such, FunRes is complementary to exist-
ing clustering methods for single-cell RNA-seq data,
which have been successfully applied to delineate cell
types and subtypes.

• Due to its underlying cell–cell interaction model, Fun-
Res provides insights into the environmental cues
inducing the identified functional cell states. More-
over, we showed in several examples that the identi-
fied cues have been implicated in the function of the
identified states.

• FunRes can be used to compare the functional cell
states between different tissues and tissue conditions
to reveal differences in their composition. In the pre-
sented case studies, FunRes identified known differ-
ences between the same cell states in different tissues
as well as emerging and vanishing functional states in
the context of aging and disease.
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