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Abstract

The learning process and hyper-parameter optimization of artificial neural networks (ANNs)
and deep learning (DL) architectures is considered one of the most challenging machine
learning problems. Several past studies have used gradient-based back propagation methods
to train DL architectures. However, gradient-based methods have major drawbacks such as
stucking at local minimums in multi-objective cost functions, expensive execution time due to
calculating gradient information with thousands of iterations and needing the cost functions
to be continuous. Since training the ANNs and DLs is an NP-hard optimization problem,
their structure and parameters optimization using the meta-heuristic (MH) algorithms has
been considerably raised. MH algorithms can accurately formulate the optimal estimation of
DL components (such as hyper-parameter, weights, number of layers, number of neurons,
learning rate, etc.). This paper provides a comprehensive review of the optimization of ANNs
and DLs using MH algorithms. In this paper, we have reviewed the latest developments in
the use of MH algorithms in the DL and ANN methods, presented their disadvantages and
advantages, and pointed out some research directions to fill the gaps between MHs and DL
methods. Moreover, it has been explained that the evolutionary hybrid architecture still has
limited applicability in the literature. Also, this paper classifies the latest MH algorithms in the
literature to demonstrate their effectiveness in DL and ANN training for various applications.
Most researchers tend to extend novel hybrid algorithms by combining MHs to optimize the
hyper-parameters of DLs and ANNs. The development of hybrid MHs helps improving
algorithms performance and capable of solving complex optimization problems. In general,
the optimal performance of the MHs should be able to achieve a suitable trade-off between
exploration and exploitation features. Hence, this paper tries to summarize various MH
algorithms in terms of the convergence trend, exploration, exploitation, and the ability to
avoid local minima. The integration of MH with DLs is expected to accelerate the training
process in the coming few years. However, relevant publications in this way are still rare.
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Abbreviations

AE Autoencoder

ABC Artificial bee colony

ANFIS Adaptive network fuzzy inference system
ACO Ant colony optimization

ANN Artificial neural network

ACS Artificial cooperative search

BM Boltzmann machine

Al Artificial intelligence

BNN Biological neural network

BA Bat algorithm

BP Backpropagation

BBO Biogeography-based optimization
BRNN Bayesian regularisation neural network
BMO Bird mating optimizer

CNN Convolutional neural network

CCA Convex combination algorithm

CPNN Condensed polynomial neural network
CMA-ES  Covariance matrix adaptation based evolutionary strategy
DAE Deep autoencoder

ChOA Chimp optimization algorithm

DBM Deep Boltzmann machine

CRO Coral reef optimization

DBN Deep belief network

CS Cuckoo search

DDAE Deep denoising autoencoder

DE Differential evolution

DENNSs Differential equation neural networks
DGO Dynamic group optimisation

DL Deep learning

EA Evolutionary algorithm

DNN Deep neural networks

EBO Ecogeography-based optimization
DSN Deep stacking network

EC Evolutionary computation

EDEN Evolutionary deep networks

EvoDL Evolutionary deep learning

FFNN Feed forward neural network

EO Extremal optimization

FLNFN Functional-link-based neural fuzzy network
ES Evolution strategy

GAN Generative adversarial network
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FA Firefly algorithm

GRNN Generalized regression neural network
FOA Fruit fly optimization algorithm
LLRBENN Local linear radial basis function neural network
FSA Fish swarm algorithm

LSTM Long short-term memory

GA Genetic algorithm

ML Machine learning

GD Gradient descent

MNIST Mixed National Institute of Standards and Technology
GSA Gravitational search algorithm

NCL-NN  Negative correlation learning neural network
GOA Grasshopper optimization algorithm
NEN Neural fuzzy network

GP Genetic programming

NN Neural network

GPU Graphics processing unit

NNARX Neural nonlinear auto-regressive exogenous
GSO Group search optimization

PUNN Product unit neural network

GWO Grey wolf optimizer

QRNN Quantile regression neural network

HS Harmony search

QNN Qubit neural network

JA Jaya algorithm

RaANN Randomized artificial neural network
MEA Memetic evolution algorithm

RBFNN Radial basis function neural network
MH Meta-heuristic

RBM Restricted Boltzmann machine

MOO Multi-objective optimization

RFNN Recurrent fuzzy neural network
NSGA-II Non-dominated sorting genetic algorithm
RL Reinforcement learning

PSO Particle swarm optimization

RNN Recurrent neural network

QBA Quantum-based algorithm

RRNN Recurrent random neural network

SA Simulated annealing

SOFNN Self-organizing fuzzy neural network
SHO Selfish herd optimization algorithm
SMRN Single multiplicative recurrent neuron

SI Swarm intelligence

SAE Stacked auto encoder

TBO Trajectory-based optimization

SVM Support vector machine

TS Tabu search

WNN Wavelet neural network

WWO Water wave optimization
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1 Introduction

Artificial Intelligence (AI) was first introduced in the ideas and hypotheses of Gottfried Leib-
niz [1]. In 1943, McCulloch and Pitts proposed an evolutionary model of the human brain
that began research on the artificial neural network (ANN) [2]. ANNSs can learn and recognize
and solve a wide range of complex problems. Today, ANNs and deep learning (DL) tech-
niques are the most popular and main methods of machine learning (ML) algorithms [3-10].
Figure 1 compares the accuracy of a typical machine learning algorithm and a deep neural
network (DNN). As can be seen, if sufficient data and computational power are available,
DL techniques perform better (in terms of accuracy) than conventional machine learning
approaches [2].

Since 2006, DL has become a popular topic in machine learning. Its position in Al and
data science has been shown in Fig. 2 [10]. DL techniques are superior to traditional ML
algorithms due to data availability and systems processing power development [10, 11]. In
smaller databases and simple applications, traditional ML algorithms perform better because
they are easier to implement. This is one of the most important reasons that neural networks
and DL techniques had not grown much in the early years [1, 2, 12]. With the advent of the
Big Data era, much faster data collection, storage, updating, and management advances have
become possible. In addition, the development of GPU has made efficient processing in large
data sets. These dramatic advances have led to recent advances in DL techniques [2, 10].
Additionally, reducing the computation time and increasing the convergence process have
increased the popularity of these algorithms [3, 4]. Moreover, the position of DL and ANNs
in the taxonomy of artificial intelligence approaches has been shown in Fig. 3.

ANNS have been used in various applications, including function approximation [13,
14], classification [15-20], feature selection [21, 22], medical image registration [6], pattern
recognition [23-26], data mining [27], signal processing [28], Nonlinear system identifi-
cation [29, 30], speech processing [31], etc. In addition, different DL. methods have been
used in various applications, including classification [32-36], prediction [37-39], Phoneme
recognition [40], hand-written digit recognition [41-46], etc.

Deep Neural network

—————

Accuracy

\ 4

Data availability and computing power

Fig. 1 Comparison of the accuracy of a typical machine learning algorithm and a deep neural network [2]
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Artificial Intelligence

Fig. 2 The position of deep learning in artificial intelligence and data science [10]
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Fig. 3 Taxonomy of artificial intelligence approaches: Machine learning, natural computing, and decision
making

Supervised

Given the importance of using ANNs and DL methods in various applications, identi-
fying weaknesses and improving these algorithms is one of the current issues in machine
learning. The learning process of ANNs and DL architectures is considered one of the most
difficult machines learning challenges. Over the past two decades, optimizing the structure
and parameters of ANNs and DLs has been one of the main interests of researchers [§—10].
Optimization of ANNs and DLs is often considered from several aspects: optimization of
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weights, hyper-parameters, network structure, activation nodes, learning parameters, learning
algorithm, learning environment, etc. [9].

Optimizing weights, biases, and hyper-parameters is one of the most important parts of
neural networks and DL architectures. In fact, ANNs and DLs are distinguished by two pillars
of structure and learning algorithm. In many past studies, gradient-based methods have been
used for architecture training. However, due to the limitations of gradient-based algorithms,
the need to use optimization algorithms has been identified [8—10]. For example, in back
propagation (BP) learning algorithm, the goal of learning is to optimize the weights and
thresholds of the network to minimize the cost function.

In gradient-based learning algorithms, the cost function must be derivative to use BP.
This is also one of the weaknesses of gradient-based learning algorithms. Because, in many
cases, the activation function (and the cost function) is not derivative. Sigmoid activation
functions are commonly used in these algorithms. In the literature, several gradient-based
methods, such as Back Propagation (BP) and Levenberg Marquardt (LM) methods, have been
developed to teach neural network-based systems [29]. But gradient-based methods have the
following major drawbacks.

e For multi-objective cost functions, they may be stuck at local minimums.

e The execution time of these algorithms is very expensive due to the calculation of gradient
information with thousands of iterations.

o If there are several local minimums in the problem search space, the learning algorithm
reaches error = 0 in the first local minimum. As a result, the learning algorithm converges
in the first local minimum and will not achieve the optimal solution. MH algorithms easily
escape the local minimum using exploitation and exploration and are a good alternative
for gradient-based algorithms.

e In gradient-based learning algorithms, the cost function must be derivative. As a result,
the cost function must be continuous. This is also one of the weaknesses of gradient-based
learning algorithms. Because, in many cases, the activation function is not derivative.
For example, if a step function were used instead of the sigmoid function, all backward
calculations in gradient-based learning algorithms would be useless.

At first, Conjugate Gradient Algorithm [47], Newton’s Method [48], Stochastic Gradi-
ent Descent (SGD) [49], and Adaptive Moment Estimation (Adam) [50] were developed to
improve gradient-based learning algorithms, which have better generalizability and conver-
gence than the BP algorithm. However, these methods’ neural networks and DL architectures
are considered "black boxes" [8]. Because it cannot be interpreted with human intuition. Evo-
lutionary and swarm intelligence algorithms have provided a generalized and optimal network
[51-54].

Since training the ANNs and DLs is an NP-hard optimization problem, their structure
and parameters optimization using the meta-heuristic (MH) algorithms has been consider-
ably raised. As an optimization problem, MH algorithms formulate the optimal estimation
of DL components (such as hyper-parameter, weights, number of layers/neurons, learning
rate) [8]. The existence of multiple objectives in optimizing ANNs and DLs, such as error
minimization, network generalization, and model simplification, has increased the need for
multi-objective MH algorithms. Using MH algorithms to optimize ANNs and DL architec-
tures is still challenging, and more research is needed. Using MH algorithms to train DLs
improves the learning process. This increases the accuracy of the algorithm and reduces its
execution time.

The rest of the paper is organized as follows: Sect. 2 shows the research methodology. In
Sect. 3, first the concept of deep learning models is discussed, then some well-known and
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state-of-the-art competitive meta-heuristic algorithms are introduced. In Sect. 4, a compre-
hensive review of the training ANNs and DLs using MH algorithms has been collected. In
Sect. 5, the analysis of statistical results from the literature review, challenges and future
perspectives are reviewed. Finally, in Sect. 6, the conclusion of this paper is presented.

2 Methodology

This paper has used 440 papers from different journals and publishers in the field of training
ANNs and DL architectures (by MH algorithm) for a systematic literature review. First, 627
papers were reviewed, and after reading all the papers, 440 papers entered the next stage.
This study systematically searched Google Scholar, Web of Science, and Scopus databases
to find related papers. In particular, a thorough search was conducted in Elsevier, IEEE,
Springer, Taylor & Francis, John Wiley & Sons, MDPI, Tech Science Press, and other jour-
nals. Some conference papers were also selected. In addition, we searched for papers sources
to find missing papers. In this paper, only the papers published in English were selected. The
following keyword combinations have been used to search for papers:

‘Deep learning’, ‘Artificial neural networks’, ‘Meta-heuristics’, ‘Parameters optimiza-
tion’, ‘Optimized, ‘Training’, ‘Learning algorithm’, ‘Deep Autoencoder’, ‘Adaptive Network
Fuzzy Inference System’, ‘Convolutional Neural Network’, ‘Deep Boltzmann Machine’,
‘Deep Belief Network’, ‘Deep Neural Networks’, ‘Evolutionary Deep Networks’, ‘Feed
Forward Neural Network’, ‘Generative Adversarial Network’, ‘Long Short-Term Memory’,
‘Machine Learning’, ‘Radial Basis Function Neural Network’, ‘Recurrent Neural Network’,
‘Artificial Bee Colony’, ‘Ant Colony Optimization’, ‘Artificial Intelligence’, ‘Bat Algorithm’,
‘Biogeography-Based Optimization’, ‘Chimp Optimization Algorithm’, ‘Cuckoo Search’,
‘Differential Evolution’, ‘Evolutionary Algorithm’, ‘Evolutionary Computation’, ‘Evolu-
tionary Deep Learning’, ‘Evolution Strategy’, ‘Firefly Algorithm’, ‘Genetic Algorithm’,
‘Gravitational Search Algorithm’, ‘Grasshopper Optimization Algorithm’, ‘Grey Wolf
Optimizer’, ‘Harmony Search’, ‘Jaya Algorithm’, ‘Memetic Evolution Algorithm’, ‘Multi-
objective Optimization’, ‘Non-dominated Sorting Genetic Algorithm’, ‘Particle Swarm
Optimization’, ‘Quantum-Based Algorithm’, ‘Simulated Annealing’, ‘Swarm Intelligence’,
“Trajectory-Based Optimization’, ‘Tabu Search’, and etc.

In this paper, we have tried to collect and discuss all research from the beginning of
1988 to 2022 (September), and therefore 627 articles were selected. The bibliometric tool
in this paper was such that first, all papers’ titles and the abstract quality of journals based
on JCR were reviewed. After this initial review, 187 papers were deleted. Then, the papers
that entered the next phase were thoroughly reviewed, and all the discussions and challenges
related to this literature review were presented in the next sections.

After analyzing the candidate papers, we found that optimizing the parameters of artificial
neural networks and deep learning architectures is a major challenge, and meta-heuristic
algorithms are a promising way to solve this challenge. We also noticed that by the mid-
2022, there would be a big gap in collecting all papers in this field. Finally, the research
questions that need to be answered are as follows:

(1) Why is the optimization of ANNs and DL parameters important?

(2) Which MH algorithms are more used to optimize ANNs and DL architectures?

(3) Which of the ANN and DL parameters are optimized by meta-heuristic algorithms?

(4) Which applications (and dataset) are solved by DLs optimized by meta-heuristic algo-
rithms?
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(5) Which ANN and DL architectures are optimized by meta-heuristic algorithms?

(6) What is the effect of using meta-heuristic algorithms to optimize ANNs and DL archi-
tectures?

(7) What is the effect of improving meta-heuristic algorithms (and combination of MHs) to
optimize ANNs and DL architectures?

3 Background

In the late 1990s, two events created a new challenge in neural networks that marks the
beginning of DL today. Long short-term memory (LSTM) was introduced by Hochreiter and
Schmidhuber in 1997 and is still one of the most popular DL architectures [S5]. In 1998,
LeCun et al. developed the first convolutional neural network (CNN), LeNet-5, which yielded
significant results in the MNIST dataset [56]. Neither CNN nor LSTM attracted the attention
of the large Al community at the time. The last event in the return of deep neural networks
(DNNS5) was a paper by Hinton et al. in 2006 that introduced deep belief networks (DBN)
and produced far better results in the MNIST dataset [57, 58]. After this paper, the renaming
of deep neural networks to DL was completed, and a new era in the history of Al began.
Figure 4 shows common DL architectures, which are: Long short-term memory (LSTM),
Convolutional Neural Networks (CNNs), Deep Belief Networks (DBN), Recurrent Neural
Networks (RNN), Deep Boltzmann Machines (DBM), Deep Auto Encoder (DAE), and Deep
Neural Networks (DNN).

Much more research is needed to train and optimize the parameters and structure of ANNs
and DL architectures. The learning process of ANNs and DLs is one of the most difficult
machines learning challenges and has recently attracted the attention of many researchers [8,
10]. Figure 5 shows an example of the evolutionary deep learning architecture (PSO-DCNN)
for classification problem.

In recent years, MH algorithms have emerged as a promising method for training ANNs
and DLs. The term MH was first introduced in 1986 by Glover [59]. MH methods have become
very popular in the last two decades. In designing the MH algorithm, two contradictory
criteria are considered: Exploration in the search space and exploitation of the best solutions.
In exploration, unsearched areas are visited to ensure that all areas of the search space are
searched uniformly. Potential areas are explored more fully in exploitation to find a better
solution. Unlike exact methods, MHs solve large-scale problems in areasonable time. Figure 6
shows the different types of MHs, which include four main categories.

| The Deep Learning Categories |

B Artificial Neural Networks Long short-term memory [
—> ] |
Recurrent Neural Networks Deep Boltzmann machine
N Deep Neural Networks Deep Auto Encoder -
L Deep Belief Networks Convolutional Neural Networks -

Fig. 4 Common deep learning architectures
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Fig.5 An example of the evolutionary deep learning architecture (PSO-DCNN) for classification problem

Genetic Algorithm Particale Swarm Optimization Simulated Annealing Social Emotional Optimization

Evolution Strategies Ant Colony Optimization Harmony search Atrtificial Cooperative Search

Differential Evolution Bee Colony Optimization Gravitational search Social Emotional Optimization

Cuckoo Search Big Bang-Big Crunch Exchange Market Algorithm

Biogeography Optimizer

Fig. 6 Different types of meta-heuristic algorithms

Since a few decades ago, a few nature-inspired meta-heuristic algorithms, such as genetic
algorithm (GA) [60], ant colony optimization (ACO) [61], particle swarm optimization (PSO)
[62], simulated annealing (SA) [63], and differential evolution (DE) [64] have been introduced
and used for different optimization problems. Afterward, many studies concentrated on the
improvement or adaptation of these MH algorithms for new applications. Other researchers
tried to introduce new meta-heuristic algorithms by taking inspiration from nature. Some
newer algorithms such as the grey wolf optimization (gwo) [65], black widow optimiza-
tion (BWO) [66], chimp optimization algorithm (ChOA) [67], red fox optimization (RFO)
[68], and gannet optimization algorithm (GOA) [69] are the results of such efforts. Table
1 presents general information about some of the more popular algorithms. In the follow-
ing, five well-known algorithms called particle swarm optimization (PSO), genetic algorithm
(GA), artificial bee colony (ABC), differential evolution (DE), biogeography-based optimiza-
tion (BBO), and two state-of-the-art competitive algorithms called grey wolf optimization
(GWO), and chimp optimization algorithm (ChOA) are introduced.

3.1 Genetic Algorithm (GA)
Genetic algorithm is an exploratory search inspired by Charles Darwin’s theory of natural

evolution, first introduced by Holland in 1975 [60]. This algorithm reflects the natural selec-
tion process in which the best individuals for reproduction are selected to produce offspring.
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Table 1 General information of some meta-heuristic algorithms

Authors and references Algorithm’s name and abbreviation Year
Holland [60] Genetic algorithm (GA) 1975
Kirkpatrick et al. [63] Simulated annealing (SA) 1983
Glover [59] Tabu search (TS) 1986
Srinivas and Deb [70] NSGA for multi-objective optimization 1994
Eberhart and Kennedy [62] Particle swarm optimization (PSO) 1995
Dorigo et al. [61] Ant colony optimization (ACO) 1996
Storn and Price [64] Differential evolution (DE) 1997
Rubinstein [71] Cross entropy method (CEM) 1997
Miladenovic and Hansen [72] Variable neighborhood search (VNS) 1997
Hansen and Ostermeier [73] CMA-ES 2001
Geem et al. [74] Harmony search (HS) 2001
Hanseth and Aanestad [75] Bootstrap algorithm (BA) 2001
Larranaga and Lozano [76] Estimation of distribution algorithms (EDA) 2001
Pham et al. [77] Bees algorithms (BA) 2005
Karaboga [78] Artificial bee colony algorithm (ABC) 2005
Krishnanand and Ghose [79] Glowworm swarm optimization (GSO) 2006
Haddad et al. [80] Honey-bee mating optimization (HMO) 2006
Mucherino and Seref [81] Monkey search (MS) 2007
Atashpaz-Gargari and Lucas [82] Imperialist competitive algorithm (ICA) 2007
Simon [83] Biogeography-based optimization (BBO) 2008
Teodorovi¢ [84] Bee colony optimization (BCO) 2009
He et al. [85] Group search optimizer (GSO) 2009
Yang and Deb [86] Cuckoo search (CS) 2009
Rashedi et al. [87] Gravitational search algorithm (GSA) 2009
Kashan [88] League championship algorithm (LCA) 2009
Kadioglu and Sellmann [89] Dialectic search 2009
Shah-Hosseini [90] Intelligent water drops (IWD) 2009
Yang [91] Firefly algorithm (FA) 2009
Battiti and Brunato [92] Reactive search optimization (RSO) 2010
Yang [93] Bat algorithm (BA) 2010
Shah-Hosseini [94] Galaxy-based search algorithm (GbSA) 2011
Tamura and Yasuda [95] Spiral optimization (SO) 2011
Alsheddy [96] Guided local search (GLS) 2011
Rajabioun [97] Cuckoo optimization algorithm (COA) 2011
Gandomi and Alavi [98] Krill Herd (KH) algorithm 2012
Civicioglu [99] Differential search algorithm (DS) 2012
Sadollah et al. [100] Mine blast algorithm (MBA) 2013
Hatamlou [101] Black hole (BH) 2013
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Table 1 (continued)

Authors and references Algorithm’s name and abbreviation Year
Gandomi [102] Interior search algorithm (ISA) 2014
Cheng and Prayogo [103] Symbiotic organisms search (SOS) 2014
Mirjalili et al. [65] Grey wolf optimizer (GWO) 2014
Kashan [104] Optics inspired optimization (OIO) 2015
Kaveh and Mahdavi [105] Colliding bodies optimization (CBO) 2015
Salimi [106] Stochastic fractal search (SFS) 2015
Zheng [107] Water wave optimization (WWO) 2015
Dogan and olmez [108] Vortex search algorithm (VSA) 2015
Wang et al. [109] Elephant herding optimization (EHO) 2015
Kashan et al. [110] Grouping evolution strategies (GES) 2015
Mirjalili [111] Dragonfly algorithm 2016
Liang et al. [112] Virus optimization algorithm (VOA) 2016
Mirjalili [113] Sine cosine algorithm (SCA) 2016
Ebrahimi and Khamehchi [114] Sperm whale algorithm (SWA) 2016
Mirjalili et al. [115] Salp swarm algorithm (SSA) 2017
Baykasoglu and Akpinar [116] Weighted superposition attraction (WSA) 2017
Mortazavi et al. [117] Interactive search algorithm (ISA) 2018
Heidari et al. [118] Harris Hawks optimization (HHO) 2019
Yapici and Cetinkaya [119] Pathfinder algorithm (PFA) 2019
Kaur et al. [120] Tunicate swarm algorithm (TSA) 2020
Hayyolalam and Kazem [66] Black widow optimization (BWO) 2020
Khishe and Mosavi [67] Chimp optimization algorithm (ChOA) 2020
Braik et al. [121] Capuchin search algorithm (CapSA) 2021
Talatahari et al. [122] Crystal structure algorithm (CryStAl) 2021
Potap and WoZniak [68] Red fox optimization (RFO) 2021
Pan et al. [69] Gannet optimization algorithm (GOA) 2022
Eslami et al. [123] Aphid-Ant mutualism (AAM) 2022
Hashim et al. [124] Honey Badger algorithm (HBA) 2022

This algorithm repeatedly changes the population of individual solutions. In each genera-
tion, GA randomly selects individuals from the current population and uses them as parents
to produce offspring for the next generation. Over successive generations, the population
"evolves" toward an optimal solution. Four phases are considered in a GA.

e [nitial Population This process begins with a group of chromosomes called a population.
Each chromosome is a solution to the problem you want to solve. A chromosome is
characterized by a set of variables called genes.

e Selection Two pairs of chromosomes (parents) are selected based on their fitness scores.
Chromosomes with high fitness have more chance to be selected for reproduction.

e Crossover This operator is the most significant step in a GA algorithm. For each pair
of parents to be mated, a crossover point is randomly selected from within the genes.
Offspring are created by exchanging the genes of parents. The crossover operator is applied

@ Springer



M. Kaveh, M. S. Mesgari

Chromosome 174 w, . Wy, B, B, .. B,

Fig. 7 Chromosome definition in GA

Parent; (RMSE = 0.93) Child: (RMSE = 0.59)
[z [*]5]¢ BEERN | |
Standard
crossover
Parent; (RMSE = 0.82) Child: (RMSE = 0.70)

I KRR

Fig. 8 An example of single point crossover

Chromosome (RMSE = 0.82) Mutated (RMSE = 0.69)
Mutati
R 3142 16 17| 18

Fig. 9 Example of the mutation operator in GA

to improve the exploitation of algorithm. This operator actually searches the space around
a chromosome.

e Mutation In some newly formed offspring, some of their genes can be subjected to a
mutation. The mutation operator is applied to enhance exploration.

Today in many applications, GA is used to train the deep learning architectures such as
convolutional neural network (GA-CNN). In this proposed architectures, GA optimizes the
weights and biases of the CNN. In the following, GA modeling for this problem is presented.
For GA modeling, one of the main tasks is to define a solution in the form of a chromosome.
Figure 7 shows the definition of a chromosome in GA.

Figure 8 shows the single point crossover operator of standard GA. As can be seen, in a
single-point crossover, only two chromosomes are combined. Figure 9 illustrates the mutation
process of GA.

3.2 Differential Evolution (DE)

Differential evolution (DE) is a global optimization algorithm developed by Storn and Price
in the year 1997 [64]. Similar to other popular approaches, such as genetic algorithm and
evolutionary algorithm, the differential evolution starts with an initial population of candi-
date solutions. These candidate solutions are iteratively improved by introducing crossover,
mutation, and selection into the population, and retaining the fittest candidate solutions. Due
to its several competitive advantages, DE is one of the most popular MH algorithm used by
researchers and practitioners to tackle a diverse set of real-world applications. First, the imple-
mentation of DE is simpler than most other MHs. This feature enables those practitioners
who may not have strong coding skills to make simple adjustments to the DE coding to solve
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Fig. 10 The flowchart of DE
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problems. Second, despite its simplicity, DE can show a more promising optimization ability
than other MHs in solving different types of optimization problems such as nonlinearity and
multimodality. Third, various DE algorithms have appeared as the top three best-performing
optimizers in most CEC competitions since 2005. Figure 10 shows the flowchart of the DE
algorithm.

3.3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) algorithm is one of the most important intelligent opti-
mization algorithms in the field of Swarm Intelligence. This algorithm was introduced by
Kennedy and Eberhart in 1995, inspired by the social behavior of animals such as fish and
birds that live together in small and large groups. PSO is suitable for a wide range of contin-
uous and discrete problems and has performed very well in different optimization problems
[62].

In PSO, all possible solutions are mapped to corresponded particles, and every particle is
assigned an initial velocity that deputes a position change. For calculating the next velocity
of the particles in the solution space, an optimization function is utilized. Particle velocity is
made of three main movements: a) the percentage of the previous movement’s continuation,
b) the movement toward the best personal experience, and c) the movement toward the best
global experience. Equations (1) and (2) are respectively expressing the update of velocity
and position of the particles.

Via(t+1) = Via(t) + firand(0, 1) (Pia (1) — Xiq (1)) + firand(0, "2)(Pga (1) — Xia (1)) (1)

Xia(t+1) = Xig(t) + Vig(t+ 1) (@)
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3.4 Artificial Bee Colony (ABC)

Artificial bee colony (ABC) is a swarm based meta-heuristic algorithm that was introduced
by Karaboga in 2005. ABC was inspired by the intelligent search behavior of honey bees
[78]. In ABC algorithm, the colony contains three types of artificial bees (Fig. 11):

e Scout bees Solutions that are randomly generated to discover new spaces are called scout
bees. Scout bees are responsible for exploring the search space.

e Employed bees A number of scout bees with good fitness function become employed bees.
Employed bees are responsible for advertising quality food sources.

e Onlooker bees The onlooker bees are responsible for searching the neighborhood for
employed bees. Onlooker bees receive information about food sources and search around
these sources. The role of these bees is both exploitation and exploration of algorithm.

In ABC, scout bees randomly discover a population of initial solution vectors and then
repeatedly improve them by onlooker and employed bees (using neighbor search method
to move towards better solutions while eliminating poor solutions). In general, ABC uses
two main methods (neighbor search and random search) to get the optimal answer: Random
search by scout and onlooker bees and neighbor search by employed and onlooker bees.
In ABC, each candidate answer indicates the position of food source, and the quality of
the nectar is used as a fitness function. In this algorithm, first, all initial populations are
explored by scout bees. Scout bees with best fitness functions are selected as the employed
bees. Employed bees exploit the solution positions and then onlooker bees are created. The
higher the quality of the employed bee, the more onlooker bees will be created around it.
The onlooker bee also select new food positions (using the employed bee information) and
exploit around these positions. In the next step, random scout bees are created to find new

Employed bees

Fig. 11 Three types of artificial bees in ABC
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random food positions. ABC algorithm can be formulated as Eq. (3)-(5).

fit;
Pi=—<y— ©)
Zizl f”n
Vij = Xij +¢ij(Xij — Xij) @
Xi = er;lin +rand(0, 1)(X;{mx - X;{qin) ®)

where.
P; = Probability of selecting employed bees by onlooker bees.
fit; = Fitness function of the i’ solution.
Vij = Onlooker bee.

X{ = Scout bees.
x/

iin = Low limit of search space.

X}hax = High limit of search space, SN = Number of employed bees.
i €{1,2,...,SN}.

j = Dimension € {1, 2, ..., D}.

k = Onlooker bee number.

@i;j is the random number € [0, 1]

L = Scout bee number.

3.5 Biogeography-Based Optimization (BBO)

Biographical-based optimization is a population-based evolutionary algorithm first proposed
by Dan Simon in 2008 [83]. The answer in BBO is called habitat and habitat is considered
as a vector of its habitant. In addition, the value of each habitat is defined by the habitat
suitability index (HSI). The high value of HSI shows high fitness function of habitat. Three
main operators of BBO include migration, mutation and elitism. In BBO, each habitat has its
own emigration rate, immigration rate, and mutation rate. The emigration (i ; (k)) rate and
immigration rate (A (k)) are defined as Eq. (6) and Eq. (7).

PR 1)

/LJ(k)_EX(—N ) (6)
(i

k) =1 x(l—%) )

In which, k() represents the rank of the jth habitat after sorting accordance to their HSI
and N is the highest rank in the total habitat (population size). The rank k(j) is related to the
habitat suitability index (fitness function). In addition, E represents the highest emigration
rate and [ represents the highest immigration rate. Migration, mutation and elitism are the
main operators of this algorithm. By assuming H; as the host habitat and H; as the guest
habitat, the migration process for the standard BBO will be as the Eq. (8):

Hi(S1Vs) < H;(SIVs)+ H;(SIVs) 8)

According to the Eq. (8), the host habitat (selected based on the immigration rate and
roulette wheel method) receives information only from the guest habitat (selected based on
the emigration rate and roulette wheel method) and itself.
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3.6 Grey Wolf Optimization (GWO)

GWO is a swarm-based MH algorithm inspired by the the gray wolf’s hunting policies [65].
GWO divide the population into four levels: alpha, beta, delta, and omega. Alphas are the
leaders that make decisions about living, hunting, and moving wolfs, while the beta act as an
advisor to the alpha. The delta is responsible for warning when there is danger and protecting
the pack, providing food and caring for sick or injured wolves. In the end, Omega is the last
wolve that has to obey leaders. They follow four phases: hunting, searching, encircling, and
then attacking the prey. GWO is one of the state-of-the-art competitive MH algorithm, which
has attracted great attention of researchers. GWO is simple to set parameters, flexible and
has a good trade-off between exploration and exploitation.

3.7 Chimp optimization Algorithm (ChOA)

ChOA algorithms is one of the new MH algorithm introduced by Khishe and Mosavi in 2020.
ChOA is inspired by the chimps’ movement in group hunting and their sexual motivations
[67]. In the ChOA, prey hunting is utilized to reach the optimal solution in the optimiza-
tion problem. ChOA divides hunting into four main phases: driving, blocking, chasing, and
attacking. In the first, ChOA is initialized by the generating a random chimps’ population.
Chimps are then randomly classified into four groups: attacker, chaser, barrier, and driver. In
order to model driving and chasing the prey, Egs. (9)—(13) have been proposed.

d = c.X prey(t) = m.X chimp(®)| (C))
Xchimp(t +1) = X prey(t) —a.d (10)
a=2.fri—f (11)
c=2r> (12)

m = Chaotic_value (13)

where, X p¢y is the prey position vector, X cpimp denote the chimp position vector, ¢ present
the current iteration, a, candm are the coefficient vectors, f is the dynamic vector € [0, 2.5],
riandr, are the random vectors € [0, 1], and m denote a chaotic vector.

The chimps first detect the prey’s position in the hunting step using driver, blocker, and
chaser chimps. In the exploitation process, the hunting process is done by attackers. For this
purpose, the prey’s position is estimated by the attacker, barrier, chaser, and driver chimps,
and other chimps update their position through the prey. This process is formulated as Eqs.
(14)—(16).

d ptracher = 1€1.X Artacher — M. X\, dBarrier = 1€2.X Barrier — m2.X| (14)
dchaser = 1€3. X Chaser — m3.X|,  dpriver = 1€4.X priver — m4.X|
Xl = XAttacher - al(dAtmcher)s X2 = XBarrier - aZ(dBarrier) (15)

X3 = Xchaser — a3(dchaser)s X4 = Xpriver — a4(dpriver)
Xl + X2 + X3 + X4
Xt+1) = 1 (16)

where, X Asrqcher denotes the best search agent, X pqrrier 1S the second-best search agent,
X Chaser presents the third-best search agent, X p,iyer is the fourth-best search agent, and
X(t + 1) is the updated position of each chimp.
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Also, to set up the exploration process, a parameter is applied such thata > 1anda < —1
is the cause of diverging chimps and preys. As well, a parameter with the values between + 1
and — 1, help the chimps and preys to be converged and will lead to improved exploitation. In
addition, ¢ parameter helps the algorithm to have the exploration process. Finally, all chimps
attack their prey to achieve social rights (sexual incentive) after prey hunting regardless of
their duties. In order to formulate social behavior, chaotic maps are used as Eq. (17).

Xprey(t) —adifu < 0.5

Xchimp(t+1) =
chimp ) { Chaotic_valueifu > 0.5 (17

Where, w is the random number € [0, 1]

3.8 Memetic Algorithms (Hybridization)

It is complicated to find the best possible solution in the search space in large-scale opti-
mization problems. Moreover, changing algorithm variables does not have much influence
on the algorithm convergence. Therefore, for massive dataset with high complexity, even if
the researchers have determined accurate initial parameters, the algorithm will not be able
to perform adequate exploration and exploitation. Consequently, to achieve comprehensive
global and local searches, we need to apply powerful operators to make better exploration
and exploitation. MH algorithms can be combined with others and overcome this problem
by using the advantages and operators of other algorithms [125]. Despite promising results
achieved by MHs over the past years, many successful attempts have been made that do not
pursue a single inspiration from nature but compound various MHs exploiting their com-
plementarity. This is particularly important for challenging optimization applications where
combination methods show promising performance, leading to further intensification of the
research. Generally, High-level hybridization of MHs is achieved by running algorithms in a
sequence where all factors changed by one MH are transferred to the other algorithm [125].
According to the literature review, most hybridization models are designed for specific opti-
mization problem, including clustering, feature selection, and image segmentation. Since
modelling a hybrid model that would be able to improve more than one MH is challenging,
available solutions mostly use two competitive algorithms to an optimization problem. In
recent decades, researchers have utilized a combination of algorithms to improve the perfor-
mance of the optimization process.

3.9 Modification of MH (Devoted Local Search and Manipulating the Solutions
Space)

The increasing discovery of alternative methods to solve optimization problems makes it
necessary to parallelize and modify available algorithms. Achieving a suitable solution using
a MH algorithms may need a long runtime, iterations, or population. The first one is to
use the neighborhood search method in order to minimize the exploration of the solution
space. In addition, powerful CPU can affect the convergence speed of the MH algorithm
and therefore work more efficiently. In the proposed neighborhood search approach, smaller
populations called groups may formed. Suppose the number of computer cores is specified at
the beginning of the algorithm. In comparison with the standard version of MH algorithms, an
initial population consisting of N individuals is generated randomly. From this population,
suitable individuals are selected. Each individual in population will be the best adapted
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solution in the smaller group that will be created under his leadership. The second proposed
approach involves manipulating the solutions space to minimize the number of calculations.
In this proposition, the multi-threading approach plays a big role because dividing the space
and selecting the best areas does not cost extra. In addition, the third proposed approach is the
combination of the previous two methods. While the proposed approach of parallelization
and manipulation of solution space improves the performance of classical algorithms, they
are so flexible that can be improved with different ideas. In addition, it achieves better results
in different applications [126].

4 Review of the Training DL and AANs by MH Algorithms

This section provides an overview of the optimization of neural networks and DL architectures
using MH algorithms. The review of papers is divided into two parts: ANN optimization and
DL optimization.

4.1 Review1: Training the AANs by MH Algorithms

This section provides a comprehensive overview of the optimization of different types of
ANNGs using MH algorithms. Optimization of ANNSs is often considered from several aspects:
optimization of weights, hyper-parameters, network structure, activation nodes, learning
parameters, learning algorithm, learning environment, etc.

Eberhart and Kennedy [62] used the PSO algorithm to optimize the weights of an MLPNN.
The proposed architecture performed very well on a benchmark data set. Storn and Price [64]
used a differential evolution algorithm to optimize the weights of an FFNN. Experiments on
the nonlinear optimization problem indicated the superiority of the proposed DE-FFNN
algorithm. PSO algorithm was used by Chunkai et al. [127] to optimize the weights and
architecture of MLPNN. This hybrid approach was introduced to model the quality estimation
of a product. The results showed that the performance of PSO-MLPNN is better than other
algorithms. Li et al. [128] used the genetic algorithm to train the parameters and weights of
an ANN. The proposed architecture (GA-ANN) showed good performance for the pollutant
emissions problem.

Leung et al. [129] used the improved genetic algorithm (IGA) to optimize the architec-
ture and weights of an ANN. This study compared the proposed architecture (IGA-ANN)
with other architectures and presented better results. Meissner et al. [130] used an improved
PSO algorithm to optimize the number of neurons, parameters, and weights of an ANN. The
developed architecture showed good results in benchmark datasets. Geethanjali et al. [131]
used the PSO algorithm to train the ANN (MLFFNN). The results showed that the PSO-
MLFFNN architecture was more accurate and faster than the BP- MLFFNN architecture.
Yu et al. [132] used PSO and DPSO algorithms to optimize the architecture and parameters
(weight and bias) of a three-layer FFANN network. The proposed algorithm was named
ESPNet. A self-adaptive evolutionary strategy was used to improve PSO and DPSO. Experi-
mental results from two real-world problems show that ESPNet can generate compact neural
networks with good generalizability.

Khayatetal. [133] used GA and PSO algorithms to optimize the weights of a SOFNN. The
results showed that the optimized SOFNN architecture based on GA and PSO performs well.
Lin and Hsieh [134] used the improved PSO algorithm to optimize the weights of a three-layer
neural network. The proposed approach provided good performance for the classification
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data. Cruz-Ramirez et al. [135] used the Pareto Memetic Differential Evolution Algorithm
(MPDA) to optimize the structure and weights of a neural network. The proposed approach
performed well in benchmark problems. Subudhi and Jena [29] used the combination of
the memetic differential evolution (MDE) algorithm and BP algorithm (DEBP) to train a
multilayer neural network to identify a nonlinear system. DEBP performance was compared
with six other algorithms such as Back Propagation (BP), Genetic Algorithm (GA), PSO,
DE, Back Propagation genetic algorithm (GABP), and Back Propagation Particle Swarm
Optimization (PSOBP). The results of different algorithms showed that the proposed DEBP
has better identification compared to other cases.

Malviya and Pratihar [136] used PSO, BP, and two clustering algorithms (including Fuzzy
C-means) to train the RBFNN and MLFFNN networks for the MIG welding process problem.
In this research, connection weights and learning parameters are optimized. Zhao and Qian
[137] used the CPSO algorithm to optimize the weights and architecture of a three-layer
FFNN. The performance of CPSO-FFNN was compared with the existing architectures in
the research literature, and the results showed the superiority of the proposed architecture.
Green II et al. [138] used the CFO algorithm to optimize the weights of an ANN. The
performance of the CFO was compared with the PSO algorithm, which shows the superiority
of CFO-NN.

Vasumathi and Moorthi [139] used the PSO algorithm to optimize the weights of an ANN.
The results showed that the proposed PSO-ANN architecture performs well in the harmonic
estimation problem. Yaghini et al. [140] used a combination of the improved particle swarm
optimization (IOPSO) and the BP algorithm to train an ANN. The developed architecture
was implemented on eight benchmark datasets. IOPSO-BPA-ANN also performed better than
the other 10 algorithms. Dragoi et al. [141] used the differential evolutionary self-adaptation
algorithm (SADE) to optimize the weights, architecture, and learning parameters of an ANN.
The developed approach for the aerobic fermentation process was proposed and presented
good results. Ismail et al. [142] used a combination of PSO and BP algorithms to train the
product unit neural network (PUNN). The PSO-BP-PUNN architecture performed better
than the PSO-PUNN and BP-PUNN architectures.

Das et al. [143] used the PSO algorithm to train ANN. In this study, all four parameters
of weight, number of layers, number of neurons and learning parameters were optimized
simultaneously. According to the results, the PSO-ANN architecture performed better than
other architectures in the literature. Mirjalili et al. [144] used the BBO algorithm to optimize
the weights of an MLPNN for classification and function approximation problems. They
compared the BBO algorithm with five other metaheuristic algorithms and the BP and ELM
algorithms. BBO results were better than other algorithms in terms of accuracy and conver-
gence speed. Jaddi et al. [145] used the improvement of the bat algorithm to optimize an ANN.
Where both the ANN structure and the network weights are optimized. Statistical analysis
showed that the bat algorithm with Ring and Master-Slave strategies for the classification
problem performed better than other methods in the literature.

Jaddi et al. [146] used the improved bat algorithm (MBA) to optimize the weights, archi-
tecture, and active neurons of an ANN. The hybrid algorithm showed high performance in
six classification problems, two-time series problems and one real-world problem. Gonzélez
et al. [147] used the fuzzy gravitational search algorithm (FGSA) to train a neural network’s
modules, layers and nodes. The proposed FGSA-NN architecture was implemented for the
pattern recognition problem and provided acceptable results. Gaxiola et al. [148] used particle
swarm optimization and a genetic algorithm to optimize the weights of type-2 fuzzy inference
systems. The developed architectures were implemented on time series benchmark datasets.
According to the results, NNT2FWGA and NNT2FWPSO algorithms performed better than
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NNT2FW. Karaboga and Kaya [149] used the hybrid artificial bee colony algorithm (aABC)
to train ANFIS. The performance of aABC-ANFIS was compared with 14 other architectures
on four nonlinear dynamic systems, which showed its superiority in accuracy.

Jafrasteh and Fathianpour [150] used an improved artificial bee colony algorithm (SPABC)
to train the LLRBF neural network. The results of the proposed algorithm were compared
with six other MH algorithms that show the superiority of SPABC-LLRBFNN. Khishe et al.
[19] used the improved migration model of the biogeography-based optimization to optimize
the weights and biases of an MLPNN. They developed the exponential-logarithmic migra-
tion model to improve BBO performance. Additionally, the performance of the proposed
algorithm was compared with six other MH algorithms for sonar data classification, which
showed the superiority of IBBO-MLPNN. Ganjefar and Tofighi [151] used a combination of
GA and GD algorithms to train an ANN. The proposed HGAGD-NN approach has yielded
good results for several benchmark problems.

Aljarah etal. [152] used the whale optimization algorithm (WOA) to train the weights of an
MLPNN. They implemented the proposed WOA-MLP algorithm on 20 benchmark problems,
which produced better accuracy and speed than the BP, GA, PSO, ACO, DE, ES, and PBIL
algorithms. Heidari et al. [153] used the grasshopper optimization algorithm (GOA) to train
an MLPNN. The performance of GOA-MLPNN was evaluated with eight other algorithms
on five medical identification classification datasets. Finally, the proposed GOA-MLPNN
algorithm gave better results in different criteria. Hadavandi et al. [154] proposed an MLPNN
simulator based on the gray wolf optimizer (GWO) to predict the tensile strength of Siro-Spun
yarn. The gray wolf optimizer algorithm was applied to train the neural network weights.
Finally, proposed hybrid architecture GWO-MLPNN performed better than a traditional
learning-based neural network (BP-MLPNN).

Haznedar and Kalinli [155] used the SA algorithm to train an ANFIS. The SA-ANFIS
architecture was compared with GA, BP algorithms and various architectures from the
research literature, which showed the superiority of SA-ANFIS. Pham et al. [156] used
biogeography-based optimization to optimize the weights and parameters of an MLPNN to
predict the soil composition coefficient. This study used BP-MLPNN, RBFNN, Gaussian
Process (GP) and SVR algorithms to compare with BBO-MLPNN. According to the results,
the BBO-MLPNN algorithm excelled in three criteria: RMSE, MAE and correlation coeffi-
cient. Han et al. [157] used the improved mutation model of the DE algorithm to optimize
the neural network. The DE-BPNN model has been implemented to predict the performance
of pre-cooling systems, which has yielded far better results than other networks.

Rojas-Delgado et al. [158] used particle swarm optimization (PSO), firefly algorithm (FA),
and cuckoo search (CS) to train the ANN. The various neural network architectures trained by
meta-heuristic algorithms were implemented on six benchmark problems that performed very
well compared to traditional methods. Khishe and Mosavi [159] used the chimp optimization
algorithm to optimize the weights and biases of an MLPNN. In that study, the performance
of the MLPNN-ChOA algorithm was compared with the performance of IMA, GWO and a
hybrid algorithm on the underwater acoustic dataset classification problem, which showed
the superiority of the MLPNN-ChOA. Wang et al. [160] used the PSO and CA algorithms
to optimize the neural network weights. The combined particle swarm optimization (HPSO)
algorithm was first developed in that research. The HPSO algorithm was combined with
CA, and finally, the HPSO-CA algorithm was implemented for network training (HPSO-
CA-ANN). The developed algorithm and five other MH algorithms were implemented on 15
benchmark datasets that performed better than the others.

Al-Majidi et al. [161] used the PSO algorithm to optimize the weights and architecture of
FENN. The results showed that the optimized FFNN architecture based on the PSO accurately
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predicts the maximum power point. Ertugrul [54] used the differential evolution algorithm
(DE) to optimize the nodes and learning parameters of RaANN. The results showed that
the differential evolution algorithm for 48 synthetic datasets performed better than other
methods. Ansari et al. [162] used the magnetic optimization algorithm (MOA) & PSO to
optimize the weights of the back-propagation neural network. According to the results, the
proposed approach (MOA-BBNN) performed well in the bankruptcy prediction problem.

Zhang et al., [163] used the chicken swarm optimization (CSO) algorithm to optimize
the weights, biases, and number of layers of the Elman neural network (ENN). According to
the results, the proposed hybrid approach (CSO-ENN) performed well in the Air pollution
forecasting. Also, the performance of the proposed hybrid architecture has been better than
other algorithms. Li et al., [164] used the biogeography-based optimization (BBO) algorithm
to optimize the weights of MLPNN for medical image classification. The results showed that
the proposed hybrid architecture (BBO-MLPNN) performs better than the other original
architectures.

Table 2 summarizes the above research as well as many other studies. As can be seen,
for each research, the author’s name, year of publication, type of neural network, optimized
components in the network, type of MH algorithm used, application and data set used are
listed. In the following, for a more comprehensive review, some statistical analysis of the
research collected in Table 2 is presented.

4.1.1 Investigation of Optimized Components in ANNs

As an optimization problem, MH algorithms formulate the optimal estimation of ANN com-
ponents (such as weights, number of layers, number of neurons, learning rate, etc.). This
section examines the abundance of MH use for optimized components in neural networks
(according to the papers in Table 2). Figure 12 shows the relative abundance of research on
optimized components in ANNs using MH algorithms.

As shown in Fig. 12, in 221 studies (69%), weights and biases have been adjusted using
MH algorithms, which shows a high percentage. In 47 studies (14%), the number of neurons in
the layers has been adjusted using MH algorithms. Moreover, in 22 studies (7%), the number
of layers in the neural network has been adjusted. Finally, in 31 studies (10%), learning
parameters, learning algorithms or activation functions have been adjusted. Figure 13 also
shows the relative abundance of research in the simultaneous optimization of two components
of ANNSs.

As can be seen in Fig. 13, in 15 studies, weights and layers have been adjusted simultane-
ously. In 28 studies, weights and neurons; in 15 studies, weights and learning parameters; in
14 studies, the number of layers and neurons; in 6 studies, the number of layers and learning
parameters; and in 14 studies, the number of neurons and learning parameters have been
adjusted simultaneously. Figure 14 shows the relative abundance of research in the simulta-
neous optimization of three components of ANNs. As can be seen, in 6 studies, weights, the
number of neurons and learning parameters have been adjusted simultaneously. In 7 studies,
weights, number of layers and number of neurons; in 2 studies, weights, number of layers
and learning parameters; in 5 studies, number of layers, number of neurons and learning
parameters were adjusted simultaneously. According to Table 2, in only one study [143], all
four neural network components were adjusted simultaneously. Therefore, little research has
been done in this area.
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Fig. 12 Relative abundance of research on optimized components in ANNs using MH algorithms
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Fig. 13 Relative abundance of research in the simultaneous optimization of two components of ANNs using
MHs
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Fig. 14 Relative abundance of research in the simultaneous optimization of three components of ANNSs using
MHs
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Fig. 15 Meta-heuristic algorithms used to optimize ANNs

4.1.2 Investigation of Meta-Heuristic Algorithms Used in Ann’s Optimization

According to Table 2, many MH algorithms have been developed to optimize neural networks.
Figure 15 shows the MH algorithms used to optimize ANNs. PSO, 76 implementations and
GA, 47 implementations, was the most used MH algorithms. GWO, DE, SA, ABC, GSA,
WOA, BBO, and FOA algorithms are also in the next ranks. Most researchers tend to extend
novel hybrid algorithms by combining MHs to optimize the hyper-parameters of ANNs.
The development of hybrid MHs helps improving algorithms performance and capable of
solving complex optimization problems. According to the results of Table 2, many researches
have used the modification and hybridization of meta-heuristic algorithms to optimize neural
network parameters. Also, the performance of the proposed hybrid MH algorithms have been
better than others.

4.1.3 Checking the Number of Papers Published in Journals and Years

In this section, the papers in Table 2 are categorized according to the type of journals and
the year of their publication. Figure 16 shows the percentage of papers published in various
journals (based on Table 2). As shown, 74 papers (44%) in Elsevier, 30 papers (21%) in
Springer, 27 papers (13%) in IEEE, 16 papers (8%) in Taylor & Francis, 13 papers (6%) in
John Wiley & Sons, and 14 papers (8%) in other journals have been published regarding the
use of MH for ANNSs.

Figure 17 also indicates the changes in the number of papers published in different years
about the use of MH for Training ANNs. Between 1988 and 2002, few papers were developed
for neural network optimization. From 2003 to 2010, neural network optimization received
a little more attention from researchers, and the number of papers in this field increased.
But from 2011 to 2022, many researchers have worked on neural network optimization.
Especially since 2021, the number of these papers has been increasing. This implies that this
problem is still a challenge and many problems need to be resolved.

4.1.4 Applications of Hybrid MH-NNs

In this section, the application of the papers in Table 2 is evaluated. Figure 18 shows the

@ Springer
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Fig. 17 Changes in the number of papers published in different years about the use of MH for Training ANNs

application of the papers regarding the use of MH for ANNSs. 77 papers in benchmark prob-
lem (Classification, prediction, time series, optimization, system identification), 53 papers in
electrical engineering, signal processing and energy systems, 34 papers in civil engineering,
18 papers in mechanical engineering, 16 papers in biomedical and chemical engineering,
15 papers in medical image classification and medical diseases diagnosis, 8 papers in envi-
ronmental management, 8 papers in economy and product quality, and 19 papers in other
applications have been published regarding the use of MH for ANNS.

As can be seen, most of the MH-ANNSs were implemented on benchmark problems and
datasets. The optimal solutions of the benchmark problems are known. Therefore, they are
a very good criterion for evaluating algorithms. Also, many evolutionary ANNs have been
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Fig. 18 Application of papers regarding the use of MH for ANNs

implemented in electrical engineering, civil engineering, mechanical engineering, and med-
ical image classification applications. The results of these papers show that the proposed
hybrid ANNs architectures perform better than others. Therefore, it can be said that evolu-
tionary artificial neural networks (MH-ANNSs) are promising methods in these applications.

4.1.5 Contributions of Different Continents in Using the Hybrid MH-NN Models

Figure 19 shows the distribution of studied papers according to the affiliation of the authors
for each continent. As can be seen, Asia has the largest portion of contributions in the world
with the maximum number of papers from China, Korea, and India, while America has the
lowest contributions.

4.2 Review2: Training the DL Architectures by MH Algorithms

One of the weaknesses of DL architectures is finding the optimal value of algorithm parame-
ters. This section provides a comprehensive overview of optimizing different DL architectures
using MH algorithms. Optimization of DL architectures is often considered from several
aspects: optimization of weights, hyper-parameters, network structure, activation nodes,
learning parameters, learning algorithm, learning environment, etc. [9].

Ku et al. [367] used the genetic algorithm to optimize the weights of an RNN. The
proposed approach (GA-RNN) was compared with Lamarckian and Baldwinian mechanisms,
which indicated better results (convergence speed and accuracy). Blanco et al. [368] used the
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Fig. 19 Contributions of different continents in using the hybrid MH-NN models

genetic algorithm (GA) to improve the performance of an RNN. The results indicated that the
proposed algorithm solves the time complexity well. Delgado et al. [369] used multi-objective
SPEA2 and NSGA_II algorithms to optimize the topology and structure of an RNN. The
proposed architectures performed well for the time series problem. Bayer et al. [370] used
the NSGA_II to train an LSTM architecture. The results showed that the proposed network
performs well in learning sequences.

Lin and Lee [371] used the improved PSO algorithm to optimize the weights of an RFNN.
The results indicated that the IPSO algorithm for controlling nonlinear systems performed
better than other methods (traditional PSO and GA). Subrahmanya and Shin [372] used
the combination of PSO and CMA-ES algorithms to optimize the structure and weights of
an RNN. According to the results, the proposed architecture (HMH-RNN) indicated good
performance. Hsieh et al. [373] used the artificial bee colony (ABC) algorithm to optimize
the weights of an RNN. According to experiments, the proposed approach indicates good
capital market performance and can be implemented in a trading system to predict stock
prices and maximize profits.

David and Greental [41] used combined gradient-based learning and genetic algorithm
strategy to train a deep neural network. The proposed architecture performed very well in
the benchmark data set. Shinozaki and Watanabe [40] used GA and CMA-ES algorithms to
optimize the structure and parameters of a DNN. The results demonstrated that the proposed
algorithm is suitable for adjusting neural network parameters. Sheikhan et al. [374] used
the GSA binary algorithm to optimize the structure and weights of an RNN network. The
proposed algorithm (BGSA-RNN) was compared with gradient-based and PSO algorithms,
which provided significant results. A combination of evolutionary algorithm and DBN net-
work was used by Chen et al. [375] for image classification. The results indicated that the
execution time decreases rapidly.

Real et al. [376] used an evolutionary algorithm for convolutional neural network (CNN)
training to classify CIFAR-10 and CIFAR-100 datasets. The findings implied that the pro-
posed approach could provide competitive results in two popular datasets. Tang et al. [377]
used the PSO algorithm to optimize the weights of a DSNN. The proposed algorithm per-
formed very well in feature extraction problems and EEG signal detection. Song et al. [378]
used improved biogeography-based optimization (IBBO) to optimize the parameters and
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weights of DDEA. The results indicated that the proposed approach (IBBO-DDEA) for gas-
trointestinal complications prediction performed better than other methods (such as ANN
and other common architectures).

Da Silva et al. [379] used the PSO algorithm to optimize the hyper-parameters of a con-
volutional neural network. Experiments on a CAD system indicated an improvement in the
accuracy of the proposed algorithm. The WWO algorithm was used by Zhou et al. [380] to
optimize the structure and weights of a DNN. Experiments on several benchmark datasets
indicated that the proposed WWO-DNN approach performs better than the gradient-based
methods. Shi et al. [381] used the PSO algorithm to optimize the number of neurons in the
hidden layers of a deep neural network. Experimental results demonstrated that the detection
rate in the proposed algorithm was improved by 9.4% and 8.8% compared to conventional
DNN and support vector machine (SVM). In addition, another experiment compared to the
genetic algorithm (GA) proved that the proposed particle swarm optimization (PSO) is more
effective in deep neural network (DNN) optimization. Hong et al. [382] used the genetic
algorithm (GA) to optimize the parameters and hyper-parameters of the CNN. Experimental
results for the price forecasting problem showed that the proposed GA-CNN always offers
higher forecasting accuracy and lower error rates than other forecasting methods.

Guo et al. [383] used a distributed particle swarm optimization (DPSO) algorithm to
optimize the hyper-parameters of convolutional neural network (CNN). Experiments on the
image classification dataset indicated that the proposed DPSO method improved the per-
formance of the CNN model while reducing computational time compared to traditional
algorithms. ZahediNasab and Mohseni [384] used the genetic algorithm (GA) to optimize
the deep neural network (DNN) activation function. Experiments on the medical classifica-
tion and MNIST datasets showed the proposed approach’s superiority. It was also stated that
selecting an appropriate adaptive activation function plays an important role in the quality of
a deep neural network. Jallal et al. [385] used an improved PSO algorithm for DNN train-
ing to improve the prediction accuracy of a solar tracker. The DNN-RODDPSO algorithm
performed better than the standard algorithms in the literature. Elmasry et al. [386] used
the PSO algorithm to optimize the hyper-parameters of three DL algorithms called DNN,
LSTM-RNN and DBN. Experiments on the network intrusion detection problem proposed
that these three developed architectures performed better than conventional architectures.

Kan et al. [387] used the adaptive particle swarm optimization (APSO) algorithm to
optimize the weights and biases of the convolutional neural network (CNN). According to the
results, the proposed hybrid approach (APSO-CNN) performed well in IoT network intrusion
detection. Also, the performance of the proposed hybrid architecture has been better than other
algorithms. Kanna and Santhi, [388] used the black widow optimization (BWO) algorithm to
optimize the weights of CNN-LSTM for intrusion detection systems. The results showed that
the proposed hybrid architecture (BWO-CNN-LSTM) performs better than the other original
architectures. Ragab et al. [389] used enhanced gravitational search optimization (EGSO)
algorithm to optimize the weights and biases of the convolutional neural network (CNN).
According to the results, the proposed hybrid approach (EGSO-CNN) performed well in
COVID-19 diagnosis problem. Also, the performance of the proposed hybrid architecture
has been better than other algorithms.

Table 3 summarizes the above research as well as many other studies. As can be seen,
for each research, the author name, year of publication, type of DL, optimized components,
type of MH algorithm used, application and data set used are listed. In the following, for a
more comprehensive review, some statistical analysis of the research collected in Table 3 is
presented.
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4.2.1 Investigation of optimized components in DL architectures

As an optimization problem, MH algorithms formulate the optimal estimation of DL compo-
nents (such as hyper-parameter, weights, number of layers, number of neurons, learning rate,
etc.). This section examines the abundance of MH use for optimized components in DL archi-
tectures (according to the papers in Table 3). Figure 20 represents the relative abundance of
research on optimized components in DLs using MH algorithms. As demonstrated in Fig. 20,
in 61 studies (20%), weights and biases have been adjusted using MH algorithms. In 76 stud-
ies (26%), the number of layers and neurons in the layers have been adjusted using MH
algorithms. Moreover, in 114 studies (38%), hyper-parameters in DL architectures have been
adjusted. Finally, in 47 studies (16%), learning parameters, learning algorithms or activation
functions have been adjusted.

Figure 21 also indicates the relative abundance of research in the simultaneous optimiza-
tion of two components of DLs. As can be seen in Fig. 21, in 14 studies, weights and layers,
and neurons were adjusted simultaneously. In 12 studies, weights and hyper-parameter; in 4
studies, weights and learning parameters; in 40 studies, the number of layers and number of

Learning parameters & Activation
function, 16% Weights & bias,
20%

Hyper-parameter,
38%

Network architecture (Layers & Nodes),
26%

Fig. 20 Relative abundance of research on optimized components in DL architectures using MH algorithms

Number of paper
)
=1

—

Weight & Layers & Weight & hyper- Weight & Learning Layers & Nodes & Layers & Nodes & hyper-parameter &
Nodes hyper-parameter Learning parameters ~ Learning parameters

Optimized Components

Fig. 21 Relative abundance of research in the simultaneous optimization of two components of DL using MHs
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Fig. 22 Relative abundance of research in the simultaneous optimization of three components of DL using
MHs

neurons and hyper-parameter; in 31 studies, the number of layers and number of neurons and
learning parameters, and in 31 studies hyper-parameter and learning parameters have been
adjusted simultaneously. Figure 22 also represents the relative abundance of research in the
simultaneous optimization of three DL components (according to Table 3).

As can be seen, in 3 studies, weights, the number of layers and number of neurons and
the hyper-parameter were adjusted simultaneously. In 3 studies, weights, number of layers
and number of neurons and learning parameters; in 2 studies, weights, hyper-parameter
and learning parameters; in 18 studies, hyper-parameter, number of layers and number of
neurons and learning parameters were adjusted simultaneously. According to Table 3, in
only 2 studies, all four DL components were adjusted simultaneously. Therefore, very little
research has been done in this area (simultaneous optimization of three/four components).

4.2.2 Investigation of Meta-Heuristic Algorithms Used in DL’s Optimization
According to Table 3, many MH algorithms have been developed to optimize DL archi-

tectures. Figure 23 represents the MH algorithms used to optimize DLs. PSO with 48
implementations and GA with 27 implementations were the most used algorithms. EA,

80

60

50

Number of paper

40
30

20

., L |:|I:I|:||:||=||:||:||:||=||:||:|_

PSO GA ACO ABC NSGA_II EA CMA-ES HS FA GWO GSA GOA  WOA  Other
Meta-heuristic Algorithms

Fig. 23 Meta-heuristic algorithms used in DL’s optimization
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Fig. 24 The abundance of MHs used for different types of DL architectures

GWO, FA, WOA, ABC, ACO, HS, NSGA_II, CMA-ES, and GOA algorithms are also in
the next ranks.

4.2.3 Investigating the Abundance of MHs Used for Different Types of DL Architectures

Some of the popular DL architectures are Long short-term memory (LSTM), Convolutional
Neural Networks (CNNs), Deep Belief Networks (DBN), Recurrent Neural Networks (RNN),
Deep Boltzmann Machines (DBM), Deep Auto Encoder (DAE), and Deep Neural Networks
(DNN). In this section, the abundance of MHs used for different DL architectures is investi-
gated (Fig. 24). CNN with 96 implementations, LSTM with 37 implementations, and DBN
with 24 implementations were the most used DL architectures, which are set using MH algo-
rithms. DNN, RNN, DAE, DBM, GAN, DSNN, DAR, and EDEN architectures are also in
the next ranks.

4.2.4 Checking the Number of Papers Published in Journals and Years

In this section, the papers in Table 3 are categorized according to the type of journals and the
year of their publication. Figure 25 demonstrates the percentage of papers published in various
journals (based on Table 3). As indicated, 71 papers (37%) in Elsevier, 39 papers (20%) in

Others
18%

John Wiley & Sons

99, Elsevier

37%

Taylor & Francis
3%

IEEE
13%

Springer
20%

Fig. 25 Papers published in journals (based on Table 3)
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Fig. 26 Changes in the number of papers published in different years about the use of MH for Training DLs

Springer, 25 papers (13%) in IEEE, 6 papers (3%) in Taylor & Francis, and 17 papers (9%)
In John Wiley & Sons, and 35 papers (18%) in other journals have been published regarding
the use of MH for DL architectures.

Figure 26 also represents the changes in the number of papers published in different years
about the use of MH for Training DLs. Between 1988 and 2016, few papers were developed
for DL optimization. From 2017 to 2020, DL optimization received a little more attention
from researchers, and the number of papers in this field increased. But from 2021 to 2022,
many researchers have worked on DL optimization. This problem is still a challenge, and
many problems need to be resolved.

4.2.5 Applications of DLs

In this section, the application of the papers in Table 3 is evaluated. Figure 27 shows the
application of the papers regarding the use of MH for DLs. 48 papers in medical image
classification and medical diseases diagnosis, 46 papers in Benchmark problem (Classifica-
tion, prediction, time series, optimization, recognition, system identification), 44 papers in
electrical engineering, signal processing and energy systems, 23 papers in civil engineering
and environmental management, 8 papers in mechanical engineering, 3 papers in biomedical
and chemical engineering, 4 papers in economy and product quality, and 17 papers in other
applications have been published regarding the use of MH for ANNs.

As can be seen, most of the DLs were implemented on medical image classification
and benchmark problems (such as MNIST, CIFAR-10, Caltech, CINIC-10, and EMNIST
datasets). According to Table 3, evolutionary CNN architectures have been used in many
medical image classification applications. The results of these papers show that the proposed
hybrid DL architectures perform better than others. Therefore, the combination of MH and
CNNs methods can be useful for medical applications.

4.2.6 Contributions of Different Continents in Using the Hybrid MH-DL Models
Figure 28 shows the distribution of studied papers according to the affiliation of the authors

for each continent. As can be seen, Asia has the largest portion of contributions in the world,
while America has the lowest contributions.
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Fig. 28 Contributions of different continents in using the hybrid MH-DL models
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5 Discussion, Statistical Results, Limitations, and Future Challenges
5.1 Discussion and Statistical Results of Tables 2 and 3

As can be seen from the results of Tables 2 and 3, neural network optimization has been
considered by researchers from the past to the present. But the optimization of DL parameters
has recently been considered, and more research is needed in this field. The main reason is
that the DL concept has been seriously pursued since 2008. Therefore, many challenges and
more research are needed in this field. The existence of many parameters in DL architectures
has led to the use of MH algorithms to optimize them. According to Table 3, DL optimization
has been considered by researchers since 2015.

According to the literature review, well-known MH algorithms such as GA and PSO have
been used for training the NN and DL. But according to the No Free Lunch (NFL) theorem,
each problem has its characteristics, and different algorithms must be tested to solve it [540].
According to the NFL theorem, it is very difficult to find a comprehensive MH algorithm to
solve various problems [541]. Therefore, an MH algorithm may not be suitable for optimizing
the NN and DL parameters. However, it works well in solving some problems. In addition,
the only way to determine the convergence of the MH algorithm is through its experimental
evaluations. Because MH algorithms search the problem space (based on their operators), it is
difficult to choose the MH algorithm as the best method for a particular problem. Therefore,
it is necessary to use different algorithms to optimize the NN and DL parameters.

In many research studies on optimization problems [18, 19, 542, 543], improving com-
mon versions of MH algorithms (and combination of algorithm) has increased exploitation
and exploration power. In some recent research [66, 67, 120], new MH algorithms have
been introduced, which have performed better than the old algorithms in many optimization
problems. According to the literature review (Tables 2 and 3), in most research, common
algorithms (such as PSO and GA) have been used to optimize NN and DL. Therefore, the
development of old MH algorithms, as well as novel MH algorithms for optimizing NN and
DL parameters, is a new challenge, which can be seen in recent papers in Tables 2 and 3.

It is complicated to find the best possible solution in the search space in large-scale opti-
mization problems. Moreover, changing algorithm variables does not have much influence
on the algorithm convergence. Therefore, for massive dataset with high complexity, even if
the researchers have determined accurate initial parameters, the algorithm will not be able
to perform adequate exploration and exploitation. Consequently, to achieve comprehensive
global and local searches, we need to apply powerful operators to make better exploration
and exploitation. MH algorithms can be combined with others and overcome this problem by
using the advantages and operators of other algorithms. In recent decades, researchers have
utilized a combination of algorithms to improve the performance of the optimization process.
The weakness of an algorithm can be compensated by the operation of other algorithms.

Most researchers tend to extend novel hybrid algorithms by combining MHs to optimize
the hyper-parameters of DLs and ANNs. The development of hybrid MHs helps improving
algorithms performance and capable of solving complex optimization problems. According to
the results, many researches have used the modification and hybridization of meta-heuristic
algorithms to optimize ANN and DL parameters. Also, the performance of the proposed
hybrid MH algorithms have been better than others.

In general, the optimal performance of the MHs should be able to achieve a suitable trade-
off between exploration and exploitation features. The exploration operator can explore
the search space more efficiently and perform a global search to avoid getting stuck in
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local minimum, but it may encounter slow convergence. On other hand, the exploitation
operator leads to very high convergence rates, but may be trapped in a local minimum. Among
the existing MH algorithms, some of them are better in convergence trend (exploitation)
while others have more ability to avoid getting trapped in local optimum (exploration).
Table 4 indicates the comparison of different MH algorithms in terms of their ability of
finding global optimum, convergence trend, exploitation ability, exploration ability, parameter
setting, and implementation. As can be seen, grey wolf optimizer, black widow optimization,
chimp optimization algorithm, differential evolution, red fox optimization, capuchin search
algorithm, and gannet optimization algorithm perform well in most properties and their
operators can be used to improve other architectures. This framework is useful for researchers
for their applications in improved hybrid algorithm.

According to the statistical results of Table 2, in only one study, the simultaneous opti-
mization of all components (weights, number of layers, number of neurons and learning
functions/parameters) of neural networks has been investigated. Also, in two study, the
simultaneous optimization of all components (weights, number of layers and neurons, hyper-
parameter, and learning functions/parameters) of DLs has been investigated. However, there
is no research on training DL (simultaneous optimization of all components). So researchers
in the future can optimize all components simultaneously to improve network performance.
This is a challenge for both neural networks and DL architectures. In addition, in neural net-
works, in most cases, the weight of the network is optimized. But in DL architectures, weight,
hyper-parameter, and network structure are optimized equally. Since optimizing ANN and
DL architectures is a complex and multi-objective problem (MOOQ), using multi-objective
MH algorithms or developing new multi-objective MH algorithms is also challenging. While
in very few papers, multi-objective MH algorithms have been used to optimize ANN and DL
parameters (as represented in Tables 2 and 3).

In optimizing DL algorithms, CNN architecture is more trained. According to the NFL
theorem for MH algorithms, implementing all DL algorithms for various problems is also
challenging. In fact, different DL architectures need to be implemented for different problems
and their experimental results evaluated. Therefore, optimizing other DL architectures can
be considered to solve various problems in the future. Table 5 also indicates the advantages
and disadvantages of compared techniques.

5.2 Limitations of Deep Learning

Notwithstanding the positive outcomes of the reviewed papers, there are still some challenges
and limitations related to deep learning and DL methods that should be addressed.

e Over-fitting problem in a deep neural network Many parameters relate to unseen datasets in
some complex applications. This can cause a difference in the error caused by the training
dataset and the new unseen dataset.

e Hyper-parameters optimization DL architectures have several hyper-parameters, for exam-
ple, learning rate, number of hidden layers, number of neurons in each hidden layer, number
of convolution and max-pooling layers, and so on. Most often these hyper-parameters are
adjusted by trial and error method. MH algorithms formulate the optimal estimation of
DL components (such as hyper-parameter, weights, number of layers, number of neurons,
learning rate, etc.).

e Computing Power Required High computing power is required to tackle a real-world
problem using DL models. Therefore, experts are trying to develop high-performance
multi-core GPUs and similar processing units such as TPUs in the future.
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Table 5 Advantages and disadvantages of compared DL techniques

DL
method

Advantages

Disadvantages

DNN

DBN

CNN

RNN

. Its implementation is simple. Deep neural

networks with multiple hidden layers
automatically discover the features of
complex objects such as images

. ANNSs can be applied in parallel and work

fast. Consequently, they are specially
programmed to perform online processes

. It is unnecessary to identify key criteria
where DNN can define all criteria and then

determine which criteria are relevant

. DANN implementations allow developers

to add learning capabilities to their
applications

. Self-organization and Usability in big data

due to the training process

. The training of DBNs is divided into two

phases: the pre-training and the
fine-tuning. In the pre-training process, an
unsupervised algorithm based training is

performed for the feature extraction; while

in the fine-tuning process, a supervised
algorithm is performed for further
adjustment of the hyper-parameters

. DBN networks have a level of flexibility
3. DBN is applied to applications with

unlabeled data. Moreover, the overfitting
and underfitting errors can be avoided

. CNN is the first truly successful DL

method due to the successful training of
the hierarchical layers

. CNN requires minimal pre-processing

3. Itis suitable for feature extraction, image

classification, image recognition, and
prediction problems

. CNN reduce the number of parameters by

leverages spatial relationships

. CNN Fine-tunes all the layers of the

network

. RNNs Deal with sequential data
. RNNs can capture longer context patterns

3. RNNs are used to earn metal

. Lack of sufficient theoretical foundation

. Computationally cost. It requires a long

training time. Learning a DNN when
dealing with big data can take days or
months

. In DNNGs, a large number of

hyper-parameters need to be adjusted.
Moreover, with an increasing number of
hidden layers and nodes, the training
algorithm is more likely get trapped in
the local optimal

. A large amount of training data is

required to training process

. Deep in time (two phases learning)

. local information (Spatial data) is lost as

the network gets deeper

. A large amount of training data is

required to training process

. It requires a lot of time and computing

resources

. It requires a long training time
. Training process is difficult

. The performance of RNN decreases

rapidly
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Table 5 (continued)

DL Advantages Disadvantages

method

LSTM 1. It allows information to flow in both 1. Training process is difficult
forwards and backward processes within 2. Complex network structure

the network

. . . . 3. It is computationally expensive
2. It has a sensible processing for time series

data

3. It can learn its tasks without ability to
predict the local sequence

DBM 1. Able to learn internal representations 1. It requires a long training time
2. Itis a fully connected NN 2. Difficult to train
3. DBM Deals strongly with ambiguous
inputs
DAE 1. It has the ability to extract useful features 1. Training process is difficult
during the propagation and filter the 2. DAE Requires pre-training

useless data

2. DAE is an unsupervised DL architecture
used for dimensionality reduction

e Gradient-based learning The learning process of DL architectures is considered one of
the most challenging machine learning problems. Several past studies have used gradient-
based methods to train DL architectures. However, gradient-based methods have major
drawbacks such as stucking at local minimums in multi-objective cost functions, expensive
execution time due to calculating gradient information with thousands of iterations and
needing the cost functions to be continuous. Since training the ANNs and DLs is an NP-hard
optimization problem, their structure and parameters optimization using the meta-heuristic
algorithms has been considerably raised.

e Dataset unavailability for various applications DL requires a large amount of training
dataset. The classification accuracy of the DL architectures is highly dependent on the
quality and size of the dataset. However, unavailability of the dataset is one the biggest
barrier in the success of DL architectures.

e Determining the type of DL architecture to solve a particular problem Many studies have
used different DL architectures to solve engineering and medical problems. However, there
is no explanation for how these architectures are chosen to solve specific problems.

e Heterogeneity in image dataset The nature of data varies from hardware to hardware and
thus, there are many variations in images due to sensors and other factors. In addition, the
wide range of medical applications requires the combination of several different datasets
for learning and accuracy of algorithms.

e Architecture Implementation Cost Feature extraction can be done in advance and then
the proper methods can be implemented. The purpose of this process is to reduce the
computing runtime (training) and computing power required.

e Lack of results of different DL architectures on benchmark database The lack of results
of different DL architectures is still a challenge in solving many benchmark database or
benchmark engineering problems. For example, in some studies [544, 545], the authors
have used different DL architectures and compared the results with the decision tree.

@ Springer



M. Kaveh, M. S. Mesgari

e Reasonable Computing Time Some applications with many variables in some deep learning
methods, (such as DNN) have high dimensions, which poses a challenge for these models
to obtain an accurate DNN in a reasonable execution time.

e One-Shot Learning DL architectures require a lot of training data to provide high-quality
results. For example, the Image-Net database contains more than a million images, and the
DL architecture often requires thousands of instances to classify them correctly. Human
does not need thousands of bicycle images to learn a picture of a bicycle. When a bicycle
is shown to a child, they can often recognize another bicycle, even in different models,
shapes, and colors.

e Imbalanced data In this problem, one or more classes may have very few representatives
in the training process. MH algorithms can be used to deal with such problems.

e Theoretical backbone Unlike decision trees, SVMs, and other machine learning architec-
tures, most of the DL methods are yet to possess a strong theoretical backbone.

5.3 Future Work

While deep learning models have been successfully applied in various application fields, there
are future works and challenges that require to be addressed. Scientists and researchers should
do more research and work to overcome the challenges facing the future of deep learning. In
addition, more DL techniques and inspirations are needed to develop new DL architectures.
New techniques will be necessary for complex applications. In addition, DL architectures can
take advantage of various sub-domains of swarm intelligence and evolutionary computation
that are still unexplored. In this section, according to the literature review, some relevant
perspectives for future work are listed.

e Design of DL methods Deep learning is used as an efficient method to deal with big
data problem. Furthermore, DL method has get great success with a large number of
unlabeled data. However, rather strong techniques are required when a limited training
data is available. Therefore, it is important to consider designing DL techniques from
multiple training datasets in the future.

e DL andmobile devices The idea of DL chips has attracted the attention of many researchers.
Deep learning techniques can be implemented in mobile devices with low-power energy.

e Transfer Learning The learning architecture in the human brain has evolved over millions
of years and has been transferred from generation to generation. Humans transfer part of
their learning as an experience to future generations. In addition, humans constantly learn
about different tasks that help them learn specific tasks faster. For this reason, learning
different problems is achieved by making basic and easy settings. Developing the concept
of transfer learning in DL is one of the challenges in this field and can be a new field of
work for researchers in the future. Transfer learning reduces training time and the use of
previous learning experiences in new tasks.

e DL and Reinforcement Learning (RL) RL mainly involves goal-oriented algorithms that
learn how to achieve a complex goal. Recently, the combination of DL and RL methods has
attracted the attention of researchers. These methods have led to several applications such
as self-driving cars and AlphaGo. Future works can focus on exploring MH algorithms in
optimizing learning methods in deep RL.

e Unsupervised Learning-Based DL Because having labeled data is usually costly, the next
generation of DL techniques is more semi-supervised and unsupervised. Here, clustering
concepts and algorithms can be used to improve the performance of DL algorithms.
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e Stability of DL Stability analysis of DL is considered an important problem in this field
due to its numerous advantages for different applications. Therefore, we should focus on
some problems such as stability analysis, state estimation, and synchronization for DLs.

e Dimensionality reduction This problem is one of the most prevalent challenges needed to
be addressed since the number of the features from deep learning method can be huge.
This problem weakens the performance of the algorithm, since most of these features are
redundant. To address this problem in the future, various MHs can be combined with DL
models. MH algorithms first select the optimal features and then transfer them to a DL
model.

e Developing more challenging evolutionary DL models There are many papers in this
field (EvoDL), but not much paper has been undertaken to evolve Generative Adversarial
Network (GAN) by using MH algorithms. In addition, MH-based optimization algorithms
may also be explored to evolve DL extensions of non-iterative learning paradigms.

o Energy-efficient Learning Problem In most cases, DL architectures that work on big data
are inefficient in energy consumption. On the other hand, the human brain requires very
little energy to learning and often does not perform accurate calculations (estimates). This
energy is enough to learn about many problems and can add to the power of generalization.
Therefore, in the future, DL architectures must be designed to be energy efficient.

e [mprovement of MHs MH algorithms still need to be improved before applying them to
the deep learning architecture. Since most of MHs have a high capability in exploration or
exploitation, itis a challenging work to detect the MH that can balance between exploration
and exploitation. Furthermore, many of the MH algorithms ranked in CEC competitions
have not been used to optimize parameters of DLs.

6 Conclusions

Deep learning is a new approach to machine learning in recent years and has been successfully
applied in various applications. DL techniques are superior to traditional ML algorithms due
to data availability and systems processing power development. With the advent of the big
data era, much faster data collection, storage, updating, and management advances have
become possible. In addition, the development of GPU has made efficient processing in large
data sets. These dramatic advances have led to recent advances in DL techniques. DL methods
have been used in various applications, including image classification, prediction, Phoneme
recognition, hand-written digit recognition, etc.

The learning process and hyper-parameter optimization of ANNs and DLs is consid-
ered one of the most difficult machines learning challenges and has recently attracted many
researchers. Training the ANNs and DLs is an NP-hard optimization problem with several
theoretical and computational limitations. MH algorithms formulate NN and DL components
as an optimization problem. Therefore, this research presents a comprehensive review of NNs
and DLs’ optimization using meta-heuristic algorithms.

As can be seen from the results, neural network optimization has been considered by
researchers from the past to the present. But the optimization of DL parameters has recently
been considered. According to the literature review, well-known MH algorithms have been
used for training the NN and DL. Therefore, the development of these algorithms, as well as
novel MH algorithms for optimizing NN and DL parameters, is a new challenge. According to
the statistical results, researchers can optimize all components of ANNs and DL architectures

@ Springer



M. Kaveh, M. S. Mesgari

simultaneously to improve network performance in the future. In this way, they can use multi-
objective algorithms to teach architectures better. According to the results, evolutionary CNN
architectures have been used in many medical image classification applications. The results
of these papers show that the proposed hybrid MH-CNN architectures perform better than
others. Therefore, the combination of MH and CNN5 can be useful for medical applications.
In most papers, MHs have been used for image classification problems. Therefore, there is still
room to apply these hybrid methods in different applications and evaluate their performance
on different challenging real-world datasets.

In this paper, we have reviewed the latest developments in the use of MH algorithms in the
DL methods, presented their disadvantages and advantages, and pointed out some research
directions to fill the gaps between MHs and DL methods. Moreover, it has been explained
that the evolutionary hybrid architecture still has limited applicability in the literature. Using
MH algorithms to train DLs improves the learning process. This increases the accuracy of
the algorithm and reduces its execution time. The combination of MH and DLs provides
a good start to the DL process and improves the DL performance. It is difficult to assess
whether the deep learning methods will be at the academic boundary (without the integration
with MH). It is expected that in the coming years, combining DL with MH will accelerate
the training process and maintain high performance. According to the review of papers,
using MH algorithms to optimize DL architectures is still challenging, and more research is
needed in this field. It is expected that MH algorithms will be used more in the coming years
to improve the performance of DL architectures. However, relevant publications in this way
are still rare.
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