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Abstract 

Resistin-like molecules (RELMs) are highly cysteine-rich proteins, including RELMα, RELMβ, Resistin, and RELMγ. How-
ever, RELMs exhibit significant differences in structure, distribution, and function. The expression of RELMs is regulated 
by various signaling molecules, such as IL-4, IL-13, and their receptors. In addition, RELMs can mediate numerous 
signaling pathways, including HMGB1/RAGE, IL-4/IL-4Rα, PI3K/Akt/mTOR signaling pathways, and so on. RELMs pro-
teins are involved in wide range of physiological and pathological processes, including inflammatory response, cell 
proliferation, glucose metabolism, barrier defense, etc., and participate in the progression of numerous diseases such 
as lung diseases, intestinal diseases, cardiovascular diseases, and cancers. Meanwhile, RELMs can serve as biomark-
ers, risk predictors, and therapeutic targets for these diseases. An in-depth understanding of the role of RELMs may 
provide novel targets or strategies for the treatment and prevention of related diseases.
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Introduction
Resistin-like molecules (RELMs) are highly cysteine-
rich proteins that include RELMα, RELMβ, Resistin and 
RELMγ [1, 2]. Holcomb et  al. first discovered RELMα 
in bronchoalveolar lavage fluid (BALF) from mice with 
experimentally induced allergic pulmonary inflammation 

in 2000 and named it found in inflammatory zone 1 
(FIZZ1). RELMs has a variety of nomenclature due to its 
discovery in different tissues and diseases (Table  1) [1, 
3–8]. To date, four RELM proteins in rodents, includ-
ing mRELMα, mRELMβ, mResistin and mRELMγ, and 
two RELM proteins in human, including hResistin and 
hRELMβ, have been identified [1–3, 8]. RELMα and 
RELMβ can regulate different physiological and patho-
logical processes, including lung and intestinal inflamma-
tion, lung cell proliferation, glucose metabolism, skin and 
colon barrier defense, etc., and are related to the progres-
sion of multiple diseases such as lung diseases, intestinal 
diseases, cardiovascular diseases, and cancers. Resis-
tin shares 59% identity at the amino acid level between 
human and mouse forms [9]. mResistin is almost exclu-
sively expressed in white adipocytes of rodents, whereas 
macrophages are the primary source of hResistin in 
humans [10, 11]. Despite these differences between 
humans and rodents, accumulating evidence demon-
strates the role of resistin as a mediator between inflam-
mations and various chronic diseases such as metabolic 
disorders, cardiovascular diseases, and cancers [12, 
13]. Here, we mainly elucidate the signaling pathways, 
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biological functions, and related disease of the three 
isoforms of RELM family, including RELMα (Table  2), 
RELMβ (Table 3) and RELMγ.

Structure, distribution, and characteristics 
of RELMs
The mouse RELM gene and the human RELM gene 
are present on different chromosomes. The RELMβ 
gene (Retnlb), RELMα gene (Retnla), and RELMγ gene 
(Retnlg) in mice are in close proximity within one clus-
ter and reside on chromosome 16 [2, 14]. Human Retnlb 
is located on chromosome 3q13.1 [5]. The RELM genes 
encode secreted proteins of 105–114 amino acids with 
three major domains: an amino (N) terminal signal 
sequence, a variable midsection, and a highly conserved 
carboxy (C) terminal signature sequence that constitutes 
nearly half of the molecule [1]. The C terminal of RELMs 
contains a unique and invariant spacing of the cysteine 
residues: C-X11-C-X8-CX-C-X3-C-X10-C-X-C-X-C-X9-
CC-X3–6-END [1–3, 15]. In the whole members of the 
RELMs family, each of the 10 conserved cysteines par-
ticipates in a conserved structure that constitutes the 
characteristic region. RELMβ is a disulfide-linked dimer, 
while RELMα is a monomer under non-reducing con-
ditions. In RELMβ, the 11th cysteine mediates covalent 
dimerization through a disulfide bond, but this cysteine 
is absent in RELMα [16]. Furthermore, RELMβ can form 
hexamer, which consists of trimers linking to form hex-
amers through highly exposed disulfide bonds at the 
amino termini of their coiled-coil domains [17].

RELMα
In homeostasis, Retnla is present in various tissues and 
organs, such as the lung, heart, tongue, breast tissue, 
and white adipose tissue [1, 18]. Among them, Retnla 
is most abundant in white adipose tissue, especially in 
gonadal fat, followed by subcutaneous fat, but at low 
levels in mammary tissue [18]. In addition, RELMα is 
hardly expressed in 3T3-L1 adipocytes and preadipo-
cytes, suggesting that RELMα may be produced from 
the stromal vascular constituents of adipose tissue [1, 

19, 20]. Numerous studies have reported that RELMα is 
expressed in macrophages, dendritic cells (DCs), type II 
alveolar epithelial cells (AEC II), and pulmonary micro-
vascular endothelial cells (PMVECs), etc. [21–24].

The differential regulation of RELMα expression may 
depend on the relative expression levels of IL-4, IL-13, 
and their corresponding receptors such as IL-13Rα1. 
In response to IL-4, DCs can promote high-level pro-
duction of RELMα in  vitro and in  vivo [21]. During T 
helper cell type 2 (Th2) priming, RELMα expression by 
DCs promotes the secretion of IL-10 and IL-13 by T 
cells [21]. In the lungs of mice, IL-13Rα1 significantly 
up-regulates RELMα expression following Aspergillus 
fumigatus allergen challenge [25]. Moreover, in a mouse 
model of acute pulmonary inflammation by ovalbu-
min (OVA) allergen challenge, the expression of genes 
encoding RELMα and RELMβ in the lung is induced 
with a signal transducer and activator of transcription 6 
(STAT6)-dependent fashion [26]. The promoter region of 
RELMα contains functional binding sites for STAT6 and 
CCAAT/enhancer-binding protein (C/EBP) [26]. STAT6 
directly regulates IL-4 and IL-13-triggered induction of 
RELMα expression at the transcriptional level by cooper-
ating with C/EBP [26]. Meanwhile, IL-4 and IL-13 induce 
RELMα expression via activating STAT6 in rat AEC II 
during bleomycin (BLM)-induced lung fibrosis [22]. Pre-
vious studies have shown that paired immunoglobulin-
like receptor B (PIR-B) negatively regulates IL-4-induced 
RELMα expression in the lungs of mice and suppresses 
IL-4-induced macrophage-derived RELMα in  vitro [27]. 
Well-characterized markers of alternatively activated 
(M2) macrophages include RELMα and chitinase 3-like 
protein 3 (Ym1). In  vivo induction of RELMα and Ym1 
in macrophages from late-stage phospholipase C-defi-
cient mutant Trypanosoma brucei brucei-infected mice 
depends on IL-4, whereas interferon-γ (IFN-γ) antago-
nizes the effect of IL-4 on the expression of RELMα and 
Ym1 in vitro [23].

RELMβ
Generally, RELMβ is expressed in the lung, heart, kidney, 
and adrenal glands of human tissues, with the highest 
expression in the colon, while there is the little signal in 
the brain and liver [28]. Meanwhile, the mRNA and pro-
tein of RELMβ are abundant in the mouse colon and to a 
lesser level in the ileum [29]. A large number of studies 
have shown that RELMβ is expressed in goblet cells, pul-
monary arteries smooth muscle cells (PASMCs), human 
umbilical vein endothelial cells (UVECs), human pulmo-
nary artery endothelial cells (PAECs) and colon cancer 
cells, etc. [28, 30–32].

The expression of RELMβ is regulated by various sign-
aling molecules. The region between -418 and -588 in the 

Table 1 The nomenclature of RELMs

RELM Resistin-like molecule, FIZZ Found in inflammatory zone, HIMF Hypoxia-
induced mitogenic factor, ADSF Adipose tissue-specific secretory factor, XCP 
Ten-cysteine protein

Rodent classification Human classification

RELMα = FIZZ1 = HIMF = XCP2 Resistin = FIZZ3 = XCP1

RELMβ = FIZZ2 = XCP3 RELMβ = FIZZ2 = XCP2

Resistin = FIZZ3 = ADSF = XCP4

RELMγ = FIZZ4 = XCP1
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human RELMβ promoter contains two potential caudal 
type homeobox (Cdx) binding sites [32]. Cdx2, but not 
Cdx1, transactivates the human RELMβ promoter in a gob-
let cell-specific fashion in human colon cancer cells [32]. 
Cdx2 participates in the induction of intestine-specific 
expression of RELMβ in the presence of commensal bac-
teria in mice [32]. Both RELMα and RELMγ are induced 
by Th2-mediated acquired immune responses, which are 
independent of Cdx2 [32]. The previous study has dem-
onstrated that IL-4 and IL-13 protect against intestinal 
lumen-dwelling worms (expulsion of Nippostrongylus bra-
siliensis (N. brasiliensis) and Heligmosomoides polygyrus (H. 
polygyrus), but not Trichinella spiralis) primarily by induc-
ing intestinal epithelial cells (IECs) to differentiate into gob-
let cells that secrete RELMβ [30]. In the intestines of mice, 
Retnlb expression is markedly inhibited by high-protein 
and high-carbohydrate diets [33]. Intervention with insu-
lin and tumor necrosis factor-α (TNFα) as well as stearic 
acid (a saturated free fatty acid) upregulate RELMβ expres-
sion, while D-glucose downregulates RELMβ in human 
colon cancer cells [33]. However, galacto-oligosaccharides 
(GOS) enhance the expression of Retnlb in goblet cells [34]. 
In addition, deoxynivalenol suppresses RELMβ expression 
through activating protein kinase R (PKR) and mitogen-
activated protein kinase (MAPK) p38, thereby inhibiting 
the mRNA expression of intestinal mucins (MUC1, MUC2, 
and MUC3) of goblet cells [35].

RELMγ
To date, there are few studies on RELMγ. In mice, 
RELMγ mRNA and protein are typically abundant in 
bone marrow, lungs, colon, ileum, spleen, and pancreas 
[15, 29]. Especially in the bone marrow, about 30% of 
hematopoietic cells (including myelocytes and meta-
myelocytes or neutrophils) exist RELMγ. Furthermore, 
RELMγ is expressed in epithelial cells and goblet cells 
of the colon [29]. Increased serum concentrations of 
RELMγ are attributable to elevated production in the 
colon and bone marrow [29]. Interestingly, RELMβ and 
RELMγ form a homodimer and a heterodimer with each 
other in RELMs-overexpressing COS7 cells and mouse 
colon/serum [24]. Serum levels of RELMγ are obviously 
increased in high-fat-fed mice and db/db mice [29]. A 
previous study has shown that RELMγ enhances retinoic 
acid-induced proliferation rates and modulates terminal 
differentiation in the promyelocytic cell line HL60 [15].

Biological functions mediated by RELMs
RELMs are involved in the regulation of inflammation 
and immune responses
RELMα
RELMα exhibits an intriguing regulatory role in lung 
inflammation (Fig.  1). For example, RELMα stimulates 

inflammation response by recruiting inflammatory cells 
such as macrophages in the lung, and these events are 
attenuated by vascular endothelial growth factor recep-
tor-2 (VEGFR2) neutralization [36]. Meanwhile, RELMα 
promotes IL-6 expression in both macrophages and lung 
resident cells of the mouse lung in a hypoxia-inducible 
factor 1α (HIF-1α)-dependent manner [37]. In OVA-
induced pulmonary vascular remodeling in mice, lack 
of RELMα obviously inhibits a series of inflammatory 
cytokines and chemokines such as interleukin (IL)-1β, 
-1ra, -16, and -17; chemokine (C-X-C motif ) ligand 
(CXCL)-1, -2, -9, -10, -13; monocyte chemotactic pro-
tein-1 (MCP-1); macrophage colony-stimulating factor 
(M-CSF); tissue inhibitor of metalloproteinase 1 (TIMP-
1); and triggering receptor expressed on myeloid cells 1 
(TREM-1) in BALF [38]. In a mouse model of hypoxia, 
RELMα induces the expression of macrophage-specific 
high-mobility group box  1 (HMGB1), which belongs 
to damage-associated molecular pattern (DAMP) mol-
ecule, and receptor for advanced glycation end-products 
(RAGE) expression [39]. Notably, RELMα induces acety-
lation of HMGB1 by inhibiting the  NAD+-dependent 
deacetylase sirtuin (Sirt) 1, which promotes nucleus-to-
cytoplasm translocation and extracellular secretion of 
HMGB1, thereby enhancing vascular inflammation [39]. 
However, a deficiency of RELMα suppresses HMGB1/
RAGE signals and reduces the number of macrophages, 
especially DAMP-producing macrophages in hypoxic 
lung tissue [39]. In severe acute pancreatitis (SAP) rats, 
over-expression of RELMα augments inflammatory 
activity by inducing the activation of protein kinase B 
(Akt), nuclear factor kappa-B (NF-κB), p38 MAPK, extra-
cellular-signal-regulated kinases (ERK) and the expres-
sion of intracellular adhesion molecule 1 (ICAM-1) in 
lung tissue, and promoting the release of inflammatory 
cytokines such as serum IL-1β, IL-6, IL-8, TNF-α, and 
C-reactive protein (CRP), which aggravate acute pancre-
atitis-associated lung injury (APALI) [40]. In contrast, it 
has been reported that M2 macrophages-derived RELMα 
binding to  CD4+ T cells can attenuate the magnitude 
of the Schistosoma mansoni (S. mansoni) eggs-induced 
lung inflammatory response by decreasing the produc-
tion of Th2 cytokines (IL-4, IL-5, and IL-13) derived from 
 CD4+ T cell in a BTK (as a binding partner for RELMα)-
dependent manner [41]. Transient increases of IL-17A 
shortly after N. brasiliensis infection activates emphy-
sema that impairs alveolar structures [42]. However, lung 
B cells can produce RELMα to downregulate IL-17A of 
γδ T cells, thereby limiting emphysema [42].

RELMα can modulate intestinal inflammation fol-
lowing infection (Fig. 1). During dextran sodium sulfate 
(DSS)-induced experimental colitis in mice, RELMα is 
highly expressed in eosinophils and colonic epithelial 
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cells [43]. RELMα has also been found to promote bone 
marrow-derived (BMD) macrophage activation by syn-
ergizing with lipopolysaccharide (LPS) to amplify LPS-
induced proinflammatory cytokine (IL-6 and TNF-α) 
secretion and suppresses anti-inflammatory cytokines 
(IL-10) production [43]. However, deficiency of RELMα 
protects against experimental colitis in mice [43]. 

RELMα establishes a novel link among colonic inflam-
mation, energy uptake, and glucose metabolism. RELMα 
can be detected in serum, and its expression level is 
mediated by food intake and colonic inflammation [44]. 
Following DSS exposure, wild-type BALB/c and C57BL/6 
mice display increased levels of circulating RELMα, 
whereas RELMα-deficient mice are distinctly protected 

Fig. 1 Signaling pathways of RELMα and RELMβ inducing the inflammation in the lung and colon. RELMα promotes IL-6 expression in 
macrophages in a HIF-1α-dependent manner. RELMα induces a series of inflammatory cytokines and chemokines such as interleukin IL-1β, -1ra, 
-16 and -17; CXCL-1, -2, -9, -10, -13; MCP-1; M-CSF; TIMP-1; and TREM-1 in BALF. RELMα induces acetylation of HMGB1 by inhibiting deacetylase Sirt 
1, thereby enhancing vascular inflammation. RELMα promotes the release of inflammatory cytokines such as serum IL-1β, IL-6, IL-8, TNF-α, and CRP. 
M2 macrophage-derived RELMα binding to  CD4+ T cells can attenuate lung inflammatory response by decreasing the production of Th2 cytokines 
(IL-4, IL-5, and IL-13) derived from  CD4+ T cells in a BTK-dependent manner. Lung B cells can produce RELMα to downregulate IL-17A of γδ T cells, 
thereby limiting emphysema. RELMα exacerbates intestinal inflammation by promoting the IL-23p19/IL-17A immune axis. Eosinophils-derived 
RELMα promotes BMD macrophage activation by synergizing with LPS to amplify LPS-induced proinflammatory cytokine (IL-6 and TNF-α) secretion 
and suppresses anti-inflammatory cytokines (IL-10) production. RELMα induces proinflammatory eosinophil-directed cytokines (such as IL-5, CCL11, 
and CCL5) and IL-17. Goblet cell-derived RELMβ stimulates TNF-α, IL-6, and CCL5 in macrophages, thereby promoting intestinal inflammation. 
RELMβ-exposed macrophages induce expression of MHC II and secretion of IL-12/23p40, which can increase IFN-γ production by effector Th1 cells 
recruited to areas of inflammation
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from DSS-induced colitis and glucose injection-induced 
hyperglycemia independent of changes in insulin levels. 
Proinflammatory eosinophil-directed cytokines (such as 
IL-5, CC chemokine ligand 11 (CCL11)/eotaxin-1, and 
CCL5/RANTES) and IL-17 are substantially reduced in 
DSS-treated RELMα-deficient mice [44]. Consistently, 
DSS-treated RELMα-deficient mice displays signifi-
cantly decreased eosinophil accumulation and reduced 
phosphorylation of NF-κB, ERK1/2, and p38 MAPK in 
macrophages and eosinophils [44]. After infection with 
Citrobacter rodentium (C. rodentium) in mice, a murine 
model for enteropathogenic Escherichia coli (EPEC)/
enterohemorrhagic Escherichia coli (EHEC) intesti-
nal diseases in humans, RELMα exacerbates intestinal 
inflammation through promoting the IL-23p19/IL-17A 
immune axis [45]. Intestinal epithelial cells, infiltrat-
ing macrophages, and eosinophils are potent sources of 
RELMα in the colon of C. rodentium-infected mice [45]. 
Genetic deletion of RELMα obviously alleviates infec-
tion-induced colitis in mice and shows the deficiency of 
IL-23p19 in macrophages as well as the decrease of IL-
17A in  CD4+ T cells [45]. Meanwhile, RELMα inhibits 
Th2 cells and M2 macrophages, which may induce Th17 
immune response and intestinal inflammation [46].

RELMβ
RELMβ is predominantly expressed in goblet cells of the 
colon [47] and is involved in maintaining colonic bar-
rier function and susceptibility to colonic inflammation 
(Fig. 1). Deletion of RELMβ dramatically alleviates goblet 
cell damage in DSS-induced colitis [48]. Muc2-deficient 
mice develop spontaneous colitis with marked induc-
tion of the goblet cell mediator RELMβ [49]. However, 
RELMβ deficiency dramatically ameliorates colitis devel-
opment in Muc2−/− mice [49]. Likewise, SAMP1/YitFc 
(SAMP1/Fc) mice develop spontaneous ileitis, which 
shares many characteristics with human Crohn’s dis-
ease. Early and rapid induction of ileal RELMβ expres-
sion is associated with the development and progression 
of inflammation in SAMP1/Fc mice [50]. And RELMβ is 
obviously expressed in most goblet cells, as well as some 
intermediate cells and Paneth cells located at the base of 
the ileal crypt epithelium in SAMP1/Fc mice [50]. Mean-
while, RELMβ stimulates naive BMD macrophages to 
secrete large amounts of levels of TNF-α, IL-6, and CCL5 
[50]. In addition, RELMβ also promotes the expression 
of the inflammatory factors IL-8 and IL-1β by induc-
ing phosphorylation of p38 MAPK in BECs, which is 
involved in airway inflammation in chronic obstruc-
tive pulmonary disease (COPD) [51]. After the mice are 
chronically infected with gastrointestinal (GI) helminth 
Trichuris muris, the goblet cell-derived RELMβ stimu-
lates TNF-α and IL-6 in macrophages, thereby promoting 

intestinal inflammation [52]. The macrophages exposed 
to RELMβ induce the expression of major histocompat-
ibility complex class II (MHC II) and the secretion of 
IL-12/23p40, which can increase IFN-γ production by 
recruiting effector Th1 cells into the inflammatory region 
[52]. The lack of RELMβ downregulates the expression of 
IFN-γ and TNF-α derived from parasite-specific  CD4+ 
T cell, and attenuates intestinal inflammation in mice 
infected with Trichuris muris [52].

RELMs participate in cell proliferation
RELMα
RELMα is involved in the proliferation of different cells 
(Fig.  2). In the pulmonary arteries of mice, RELMα 
induces proliferative activity, hypertrophy, collagen, and 
extracellular matrix (ECM) deposition in an IL-4-de-
pendent manner [24]. And RELMα also increases the 
production of angiogenic factors/chemokines, includ-
ing vascular endothelial growth factor (VEGF), MCP-1 
and stromal derived factor-1 (SDF-1) in the lung resi-
dent cells, as well as macrophage infiltration, which are 
significantly inhibited in the lungs of IL-4-deficient mice 
[24]. Importantly, RELMα facilitates vascular remod-
eling through IL-4/IL-4Rα signaling pathway to acceler-
ate PMVECs proliferation, VEGF expression and MCP-1 
production [24]. In addition, VEGFR2 inhibitor sup-
presses RELMα-induced the proliferation and migra-
tion of PMVECs, as well as the production of MCP-1 
and SDF-1 [36]. Pulmonary vascular remodeling has 
been reported to require RELMα/HMGB1/RAGE-driven 
endothelial cell (ECs)-pulmonary vascular smooth mus-
cle cells (PVSMCs) crosstalk [53]. Particularly, in pul-
monary arterial hypertension (PAH), as a key DAMP 
mediator, HMGB1, which is produced and released by 
RELMα-stimulated ECs, leads to induction of autophagy 
and inhibition of apoptosis and bone morphogenetic 
protein receptor 2 (BMPR2) expression in PVSMCs, 
thus reducing PVSMCs proliferation [53]. ECs-derived 
HMGB1 also activates RAGE in ECs and PVSMCs to 
form a positive feedback loop, which contributes to the 
secretion and release of more HMGB1 and increases the 
expression of RAGE in these pulmonary vascular cells 
[53]. A previous study has shown that pulmonary-spe-
cific overexpression of RELMα enhances the number of 
BMD cells recruited into the remodeling pulmonary vas-
culature [54]. Hypoxia, while stimulating RELMα expres-
sion, promotes the proliferation of non-hematopoietic 
progenitor cells in the lungs of mice, but not in lungs of 
RELMα knockout mice [55]. RELMα induces robust pro-
liferation of mesenchymal stem cells (MSCs) dependent 
on phosphatidylinositol 3-kinase (PI3K)/Akt and ERK1/2 
activation in  vitro without affecting differentiation 
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potential [55]. Moreover, in a mouse model of eosino-
philic esophagitis (EoE), RELMα induction by doxycy-
cline (DOX) in the esophagus can promote epithelial cell 
hyperplasia and basal layer thickness, recruit activated 
 CD4+ and  CD4− T cell subsets, and exacerbate eosino-
phil accumulation [56].

RELMβ
RELMβ is closely associated with hypoxic-induced 
pulmonary vascular remodeling or hypoxia related 
fibrotic lung diseases (Fig. 2). Under hypoxic conditions, 
RELMβ mRNA is increased in lung epithelial cells, 
pulmonary artery adventitial fibroblasts and PASMCs 

Fig. 2 Signaling pathways of RELMα and RELMβ promoting PAH in the lung. RELMα facilitates vascular remodeling through IL-4/IL-4Rα signaling 
pathway to accelerate PMVECs proliferation, VEGF expression, and MCP-1 production. In PAH, HMGB1, which is produced and released by 
RELMα-stimulated ECs, leads to induction of autophagy and inhibition of apoptosis and BMPR2 expression in PVSMCs, thus reducing PVSMCs 
proliferation. ECs-derived HMGB1 also activates RAGE in ECs and PVSMCs to form a positive feedback loop, which contributes to the secretion 
and release of more HMGB1 and increases the expression of RAGE in these pulmonary vascular cells. RELMα induces robust proliferation of MSCs 
dependent on PI3K/Akt and ERK1/2 activation. RELMβ triggers PASMCs proliferation and pulmonary artery remodeling, resulting in PAH at least 
partially through  Ca2+-dependent PI3K/Akt/mTOR pathway and protein kinase C (PKC)/MAPK pathway. RELMβ leads to PLC-mediated inhibition 
of KCNK3, thereby promoting PASMCs proliferation during PAH development. RELMβ promotes the proliferation of human PASMCs via the 
FAK-survivin pathway. In BECs, RELMβ increases cells proliferation through phosphorylation of ERK1/2, PI3K and Akt, and elevates the expression 
of a range of remodeling mediators, including TGF-β2, EGF, VEGF, and MUC5AC, which contribute to airway remodeling. RELMβ increases the 
production of TGF-β1, TGF-β2, collagen I, fibronectin, α-SMA, laminin α1, and Hapl1 as well as the proliferation of human lung fibroblasts, which 
have an important functional role in airway remodeling. TGF-β1 can trigger RELMβ transcription to promote EndMT, proliferation, and migration in 
human UVECs and human PAECs by activation of SMAD2/3/4
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[28]. RELMβ significantly promotes the proliferation 
of lung epithelial cells and PASMCs, which appear to 
be mediated through the PI3K pathway [28]. A previ-
ous study has reported that hypoxia-induced RELMβ 
triggers PASMCs proliferation and pulmonary artery 
remodeling, resulting in PAH at least partially through 
 Ca2+-dependent PI3K/Akt/mTOR pathway and pro-
tein kinase C (PKC)/MAPK pathway [57]. Furthermore, 
hypoxia-induced RELMβ also leads to phospholipase 
C (PLC)-mediated inhibition of potassium channel 
subfamily K member 3 (KCNK3), thereby promoting 
PASMCs proliferation during PAH development [58]. 
RELMβ promotes the proliferation of human PASMCs 
via the focal adhesion kinase (FAK)-survivin pathway 
[59]. In human bronchial epithelial cells (BECs), IL-
13-induced RELMβ increases cells proliferation through 
phosphorylation of ERK1/2, PI3K, and Akt, and ele-
vates the expression of a range of remodeling media-
tors, including transforming growth factor (TGF)-β2, 
epidermal growth factor (EGF), VEGF and MUC5AC, 
which contribute to airway remodeling in diseases such 
as asthma [60]. In addition to epithelial cells, submu-
cosal fibroblasts and endothelial structural cells, as well 
as macrophages and other infiltrating leucocytes are 
potential sources of RELMβ in human asthmatic air-
ways [61]. RELMβ increases the production of TGF-β1, 
TGF-β2, collagen I, fibronectin, smooth muscle α-actin 
(α-SMA), laminin α1, and hyaluronan and proteogly-
can link protein 1 (Hapl1) as well as the proliferation of 
human lung fibroblasts, which have an important func-
tional role in airway remodeling [61]. Notably, TGF-β1 
has been shown to trigger RELMβ transcription to pro-
mote endothelial-to-mesenchymal transition (EndMT), 
proliferation, and migration in human UVECs and 
human PAECs by activation of SMAD2/3/4 [31].

Vascular smooth muscle cells (VSMCs) proliferation is 
one of the key pathophysiological manifestations of ath-
erosclerosis. RELMβ stimulates the migration and prolif-
eration of VSMCs, and causes phenotypic modulation by 
downregulating the expressions of α-SMA, smooth mus-
cle myosin heavy chain (SM-MHC) and calponin, and 
upregulating the expression of osteopontin (OPN) upon 
high glucose treatment, thereby inducing the occurrence 
and development of atherosclerosis [62]. Importantly, 
activation of ERK1/2 and p38 MAPK signaling path-
ways may be involved in VSMCs proliferation induced 
by RELMβ and high glucose co-stimulation [62]. In C. 
rodentium-induced colitis, goblet cell-derived RELMβ 
recruits  CD4+ T cell to the infected intestine [63]. Upon 
reaching the intestine,  CD4+ T cells produce the cytokine 
IL-22, which directly induces intestinal epithelial cells 
(IECs) proliferation to alleviate intestinal damage during 
C. rodentium infection [63].

RELMs regulate glucose metabolism
RELMα and RELMβ plays crucial roles in maintaining 
glucose metabolism and energy balance. CD301b pro-
tein is generally considered to be a prototypical marker 
of M2 macrophages [64]. Depletion of  CD301b+ mono-
nuclear phagocytes (MNPs) lead to reduced food intake, 
weight loss, lower blood glucose, increased insulin sensi-
tivity, and a marked reduction in serum RELMα in mice 
[64]. However, reconstitution of RELMα restores body 
weight and normoglycemia in  CD301b+ MNPs-depleted 
mice [64]. In addition, RELMβ has a similar effect on 
glucose metabolism. When fed a high-fat diet, trans-
genic mice with hepatic RELMβ over-expression exhib-
its obvious hyperglycemia, hyperlipidemia, fatty liver, 
pancreatic islet enlargement, and hepatic insulin resist-
ance [65]. Meanwhile, the expression levels of insulin 
receptor substrate (IRS)-1 and IRS-2 proteins as well as 
insulin-induced PI3K and Akt are attenuated in RELMβ 
transgenic mice [65]. In hepatocytes, RELMβ signifi-
cantly activates ERK1/2 and p38 MAPK, while weakly 
activates JNK [65]. Thus, chronic stimulation by RELMβ 
leads to glucose intolerance and hyperlipidemia associ-
ated with impaired insulin signaling, and the activations 
of the three MAPKs are probably related to suppression 
of insulin signaling [65]. At constant physiological insu-
lin levels, elevated circulating RELMβ levels dramatically 
stimulates glucose production [66]. In the small intes-
tine, transepithelial transport of glucose can be mediated 
by active absorption of sodium/glucose cotransporter 
1 (SGLT-1) and by a diffusive component of aggregated 
glucose transporter 2 (GLUT2) at the apical membrane. 
RELMβ attenuates SGLT-1 activity, whereas enhancing 
the presence of GLUT2 in the brush border membranes 
(BBMs) of enterocytes [67]. It has been demonstrated 
that mucosal RELMβ can promote absorption of glucose 
in the jejunum of rat [67]. Luminal RELMβ can directly 
accelerate glucose transport by GLUT2 at BBMs by 
increasing protein kinase C βII and its translocation to 
the BBMs and phosphorylation of AMP-activated pro-
tein kinase (AMPK) [67].

The body barrier protection of RELMs
RELMα, expressed by epidermal keratinocytes and sebo-
cytes, is currently believed to be an antimicrobial pro-
tein that shapes the composition of the skin microbiota 
and is required for vitamin-A-dependent resistance to 
skin infection [68]. RELMα is induced by microbiota 
colonization of murine skin, is bactericidal in vitro, and 
protects mouse skin from bacterial infection, which kills 
bacteria via membrane disruption [68].

RELMβ also participates in the local homeostatic reg-
ulation of the colonic epithelial barrier. Goblet cells are 
highly polarized exocrine epithelial cells that secrete 
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proteins apically into the lumen of the small and large 
intestines, which contributes to the production and main-
tenance of protective mucus blankets by synthesizing and 
secreting high-molecular-weight glycoproteins named 
mucins [69]. Intestinal mucus secreted by goblet cells 
is mainly composed of MUC2 glycoprotein in humans 
and mice, and acts as a lubricant and a dynamic bar-
rier to protect from the aggressive luminal environment 
[70]. In mice, Retnlb is uniquely restricted to the colonic 
crypt epithelium, and RELMβ protein is only expressed 
by goblet cells predominantly located in the distal half 
of the colon and cecum, with lower levels detectable in 
the proximal colon [71]. RELMβ enhances MUC2 and 
M1/MUC5AC gene expression in human colon cancer 
cells [70]. It also increases M1/MUC5AC secretion from 
human colon cancer cells and MUC2 secretion from 
murine intestinal goblet cells [70]. Intriguingly, RELMβ 
exerts its effect exclusively on the apical (luminal) side 
of human colon cancer cells, consistent with its role in 
luminal mucus secretion in mice [70]. Importantly, its 
action requires calcium, PKC, tyrosine kinases, and ERK 
activities, and acts synergistically with carbachol [70].

RELMs are involved in multiple diseases
RELMs and lung diseases
Pulmonary arterial hypertension
PAH is a vascular disorder with pulmonary vascular 
resistance and remodeling that can lead to right ven-
tricular failure and death. In particular, PAH-induced 
pulmonary vascular remodeling is characterized by 
medial hypertrophy or hyperplasia, intimal and adven-
titial fibrosis, thrombogenesis, and plexiform lesions, 
as well as perivascular infiltration of inflammatory cells 
such as B- and T-lymphocytes, mast cells, dendritic 
cells, macrophages, etc. [72]. RELMα and RELMβ are 
involved in PAH-induced pulmonary vascular remod-
eling. OVA challenge-induced PAH promotes elevated 
secretion of RELMα, RELMβ, and RELMγ in BALF of 
wild-type mice [38]. RELMα induces pulmonary vascu-
lar remodeling, angiogenesis, and recruitment of BMD 
cells through a HIF-1α-dependent mechanism, thereby 
accelerating the development of PAH in mice [37]. In 
addition, the mechanism of RELMα-induced PAH is 
mediated, at least in part, by up-regulating lung VEGF-
A expression and down-regulating VEGFR2 in a HIF-
1α-dependent manner [37]. During OVA stimulation in 
mice, genetic ablation of Retnla attenuates vessel muscu-
larization, suppresses perivascular inflammation, reduces 
the medial thickness of intra-alveolar vessels, and has 
fewer goblet cells in the upper airway epithelium, which 
prevents the increased pulmonary pressure and cardiac 
hypertrophy [38]. Knockdown of Retnla decreases genes 
associated with vascular remodeling (including those 

related to muscle proteins, contractile fibers, and the 
actin cytoskeleton) following the OVA challenge [38]. 
It has been found that intraperitoneal administration of 
N-acetylcysteine (NAC) prior to OVA challenge inhibits 
the expressions of RELMα, Ym1/chitinase 3-like protein 
4 (Ym2), and surfactant-associated protein D (SP-D) in 
BALF and lung tissue of mice [73]. Furthermore, there is 
evidence that RELMα obviously regulates mitochondrial 
metabolic parameters (such as reducing basal and maxi-
mal respiration), signaling pathways (such as decreas-
ing fatty acid oxidation (FAO) and increasing glycolytic 
oxidation), and bioenergetics (such as attenuating ATP-
linked oxygen consumption rate (OCR), and inducing 
extracellular acidification rate (ECAR) and proton pro-
duction) in the electron transport chain (ETC) of neo-
natal rat cardiomyocytes (NRCMs), thereby mediating 
cardiac energy metabolism and mitochondrial structure, 
biogenesis, and function, which is involved in pulmonary 
arterial hypertension and right ventricular hypertro-
phy [74]. Mechanistically, RELMα inhibits peroxisome 
proliferator-activated receptor gamma coactivator 1α 
(PGC-1α)/peroxisome proliferator-activated receptors 
alpha (PPARα)/estrogen-related receptor alpha (ERRα) 
signaling axis that decreases mitochondrial biogenesis 
genes (including mitochondrial transcription factor A 
(TFAM), mitochondrial topoisomerase I (Top1mt), mito-
chondrial DNA polymerase subunit gamma 2 (POLG2), 
and mitochondrial DNA-directed RNA polymerase (Pol-
rmt)), FAO metabolic genes (including long-chain acyl-
CoA dehydrogenase (LCAD), very long-chain acyl-CoA 
dehydrogenase (VLCAD), medium chain of acyl-CoA 
dehydrogenase (ACADM), and short chain of acyl-CoA 
dehydrogenase (ACADS)) as well as mitochondrial fatty 
acid (FA) transporter genes (including carnitine palmi-
toyltransferase-1A (Cpt-1a) and Cpt-1b) [74]. Moreo-
ver, RELMβ also regulates pulmonary hypertension. 
The expression of RELMβ is up-regulated in the lung 
tissue of patients with scleroderma-associated pulmo-
nary hypertension [75]. RELMβ can promote the pro-
liferation and activation of ERK1/2 in primary cultured 
human pulmonary endothelial and smooth muscle cells 
[75]. And, RELMβ induces the production of proinflam-
matory cytokine IL-6 by inducing the IκB kinase β (IKK-
β)-NF-κB-HIF-1α axis in human primary lung fibroblasts 
(HLFs) [37].

Asthma and allergic lung diseases
Asthma is characterized by inflammation and struc-
tural changes in the lung. Most asthma is allergy-related, 
manifested as Th2-type inflammation, and also occurs 
as an immune response to parasites. During airway 
remodeling in a rat model of allergic pulmonary inflam-
mation by OVA or BLM challenge, RELMα expression 
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is induced in AEC II and stimulates fibroblasts differ-
entiation into myofibroblasts that expresses differentia-
tion markers such as α-SMA and collagen type I, which 
contribute to airflow obstruction during progressive 
airway remodeling [76, 77]. Conversely, RELMα over-
expression has been reported to reduce the numbers of 
immune cells (including dendritic cells, macrophages, B 
cells, eosinophils, and neutrophils) in the BALF of OVA-
challenged mice, and to reduce mucus production in the 
airway epithelium, concomitant with a down-regulated 
Muc5ac levels [78]. These processes are accompanied by 
decreased levels of Th2 cytokines, including IL-4, IL-5, 
and IL-13, whereas levels of OVA-specific immunoglob-
ulin isotypes are unchanged [78]. Furthermore, RELMα 
overexpression attenuates allergic airway inflammation 
in OVA-challenged mice by inhibiting phosphorylation 
of ERK [78].

RELMβ has an important role in airway structural 
remodeling in asthma and allergic lung diseases. RELMβ 
is strongly produced in the lungs of mice with experi-
mental asthma caused by multiple allergens (OVA and 
Aspergillus) and Th2 cytokines (IL-4 and IL-13) via 
IL-13- and STAT6-dependent mechanisms [79]. Fol-
lowing allergen challenge, RELMβ mRNA is induced in 
the airway epithelium and in infiltrative cells (mainly 
monocytes) surrounding blood vessels and airways 
[79]. In addition, RELMβ induces leukocyte accumula-
tion (most prominently involving macrophages), gob-
let cell hyperplasia, perivascular and peribronchial 
collagen deposition, and fibroblast motogenic activity in 
lung [79]. Similarly, RELMβ is expressed in the human 
bronchial epithelium and that the immunoexpression 
is higher in asthmatics [80]. Contrarily, at homeostasis, 
loss of RELMβ up-regulates serum IgA and pro-inflam-
matory cytokines (TNFα, VEGF, and IFNγ) in the 
lung [81]. Inflammation and subepithelial fibrosis that 
characterize remodeling, as well as mediators such as 
IL-13, contribute to airway hyperresponsiveness (AHR) 
[81]. Nevertheless, the absence of RELMβ results in 
increased subepithelial fibrosis, AHR, and IL-13 expres-
sion in mice subjected to the fungal asthma model [81]. 
Cathelicidin antimicrobial peptide (CAMP), as a bacte-
ricidal agent in allergic asthma are also increased in the 
absence of RELMβ [81]. Deletion of RELMβ results in 
elevated markers of chronic diseases, including goblet 
cell numbers, Muc genes, airway wall remodeling, and 
hyperresponsiveness [81]. Thus, RELMβ may inhibit 
the development of chronic markers of allergic airways 
diseases. Studies have shown that MSC treatment can 
reduce airway inflammation, hyperresponsiveness and 
remodeling in chronic asthma [82]. Moreover, MSCs 
upregulate the RELMβ levels, which may serve as a bio-
marker of MSCs treatment outcomes [82].

Pulmonary fibrosis
Abnormal changes in the ECM in the airway or paren-
chymal tissue are pathological profiles of numerous 
respiratory diseases, including idiopathic pulmonary 
fibrosis (IPF), COPD, and asthma [83]. An oncostatin M 
(OSM)-RELMα pathway contributes to the ECM remod-
eling processes. Transient pulmonary over-expression of 
OSM by Adenovirus vector (AdOSM) markedly induces 
RELMα expression in mouse lung, increases RELMα in 
airway epithelial cells in vivo without IL-6 or STAT6, and 
can directly activate airway epithelial cells in  vitro [84]. 
However, loss of RELMα leads to less accumulation of 
M2 macrophages, less increase of ECM remodeling genes 
(collagen Type I Alpha 1 (COL1A1), collagen type III 
alpha 1 (COL3A1), matrix metalloproteinase 13 (MMP-
13), and TIMP-1), as well as less expression of parenchy-
mal α-SMA in AdOSM-treated mice [84]. It has been 
shown that Alternaria facilitates STAT6-dependent acute 
airway eosinophilia and epithelial RELMα expression, 
thereby enhancing airway fibrosis and epithelial thick-
ness [85]. Meanwhile, in BLM-treated mice, deficiency 
of PIR-B increases lung histopathology (such as excessive 
destruction of lung architecture, increased fibrocystic 
foci, and increased monocytes infiltration), and induces 
collagen expression and the IL-4-associated profibro-
genic markers RELMα, MMP-12, TIMP-1 and osteopon-
tin in alveolar macrophages, indicating that PIR-B can 
inhibit pulmonary fibrosis [27]. Furthermore, RELMβ 
is also involved in pulmonary fibrosis. RELMβ has been 
reported to be highly induced in the lungs of rodents 
with BLM-induced pulmonary fibrosis and human 
patients with idiopathic pulmonary fibrosis [86]. RELMβ 
expression is induced in both rat airway and alveolar epi-
thelial cells as well as in human small airway epithelial 
cells, which is driven by Th2 cytokines (IL-4 and IL-13) 
through STAT6 signaling [86]. In  vitro, RELMβ can 
stimulate the expression of collagen type I and α-SMA in 
lung fibroblasts, and promote fibroblast proliferation via 
activating ERK1/2 [86]. However, RELMβ deficiency sig-
nificantly suppresses pulmonary fibrosis [86]. In addition, 
RELMβ has chemoattractant activity for lung recruit-
ment of BMD cells, especially BMD  CD11c+ dendritic 
cells [86].

RELMs and infectious diseases
Parasitic infections
Acute infection with the GI nematode N. brasiliensis 
results in marked increases of RELMα and RELMβ lev-
els systemically and in infected tissue [87]. Meanwhile, 
RELMα expression is highly elevated at the sites of par-
asite migration and residence during chronic infection 
with the filarial nematode Litomosoides sigmodontis [88]. 
RELMα but not RELMβ significantly affects the immune 
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response to N. brasiliensis infection by down-regulating 
 CD4+ Th2 adaptive immune response in the lung, thus 
protecting the host but improving parasite fitness [87]. 
While RELMα attenuates infection-induced inflamma-
tion, leading to an increased parasite burden, RELMβ has 
modest effects on acute lung inflammation and parasite 
burden [87]. Generally, in the lung, RELMα is mainly 
expressed in airway ECs and parenchymal cells. In the 
small intestine, RELMα is expressed by goblet cells in the 
basal crypts and circulating leukocytes in the submucosa 
[89]. In addition, alveolar macrophages are the primary 
source of immune cellular for RELMα in the lung, fol-
lowed by dendritic cells and eosinophils [89]. During N. 
brasiliensis infection, RELMα in the airways is derived 
uniquely by non-immune cells, whereas immune cells 
are the major source of systemic RELMα in serum [89]. 
Although RELMα is highly expressed by non-BM-derived 
airway ECs and BM-originated immune cells, immune 
cells-derived RELMα is essential and sufficient for reduc-
ing the N. brasiliensis immune responses, while non-BM-
derived RELMα has no obvious effect on N. brasiliensis 
infection [89]. Macrophages expressing RELMα are vital 
for suppressing lethal lung injury during primary N. bra-
siliensis infection [90]. RELMα acts as an immune brake 
that provides mutually beneficial effects on the host and 
parasite by preventing tissue damage and delaying para-
site expulsion [89]. RELMα produced by BM-derived 
macrophages attenuates the Th2 inflammatory immune 
response induced by N. brasiliensis and subsequent N. 
brasiliensis clearance partly by direct inhibition of mac-
rophage recruitment and macrophage-worm interactions 
[89]. It has been shown that RELMα−/− mice infected 
with the GI parasite N. brasiliensis exacerbate lung 
pathology to migrating larvae, reduced fecundity, and 
facilitated expulsion of adult worms from the intestine, 
suggesting enhanced Th2 immunity [91]. Furthermore, 
there is evidence that RELMα-expressing lung interstitial 
but not alveolar macrophages are increased in a STAT6-
dependent manner during primary N. brasiliensis infec-
tion [90]. During N. brasiliensis secondary challenge, 
RELMα-expressing macrophages provide protective 
immunity against migrating parasites [90]. The forma-
tion of primary and secondary pulmonary granuloma is 
exacerbated in RELMα-deficient mice with the eggs of 
helminth parasite S. mansoni challenge, and the number 
of granuloma-associated eosinophils and serum IgE titers 
are also elevated [91]. Moreover, RELMα-deficient mice 
significantly increase hepatic granulomatous inflamma-
tion as well as the development of fibrosis and progres-
sion to hepatosplenic disease in mice chronically infected 
with S. mansoni cercariae [91]. The expression of RELMα 
is dependent on IL-4 and IL-13 and is inhibited by IFN-
γ, and eosinophils and epithelial cells are the major 

producers of RELMα in the liver and lung, respectively 
[91]. The Th2-inducible gene RELMα suppresses resist-
ance to GI nematode infection, pulmonary granuloma-
tous inflammation, and fibrosis by negatively regulating 
Th2-dependent responses [91].

Increased numbers of goblet cells are characteristic of 
infection with the GI nematode parasite N. brasiliensis 
and H. polygyrus, and are a source of protective factors, 
such as RELMβ, that are critical for worm expulsion [30]. 
The expression of Retnlb in bronchial epithelium is up-
regulated after N. brasiliensis infection in parallel with 
goblet cell hyperplasia [92]. However, goblet cell num-
bers and RELMβ expression are decreased significantly 
in IL-13Rα1−/− mice following secondary infection with 
the GI nematode parasite Heligmosomoides bakeri [93]. 
The binding of IL-13 to IL-13Rα1 is crucial for goblet 
cell proliferation, and enhanced RELMβ expression may 
be correlated with an increased number of goblet cells 
[93]. Within hours of primary N. brasiliensis infection, 
the release of IL-33 drives the initial expansion of IL-13+ 
innate lymphoid type 2 cells (ILC2s)/nuocytes, followed 
by IL-13+  CD4+ T cells in three days [94]. This accumu-
lation of IL-13 production contributes to IECs generat-
ing RELMβ and recruits eosinophils, which together lead 
to parasite destruction [95]. Furthermore, activation of 
RELMβ is a highly specific Th2 cytokine (IL-13)-depend-
ent intestinal response that is mediated by exposure to 
phylogenetically and biologically distinct GI nematode 
parasites (Trichuris spiralis, N. brasiliensis, Trichinella 
muris and Strongyloides stercoralis) that reside in differ-
ent regions of the GI tract [95]. RELMβ is a goblet cell-
specific immune effector molecule in the expulsion of GI 
nematodes by disrupting the ability of nematodes to opti-
mally sense the GI microenvironment [95].

Bacterial infections
Elevated levels of RELMβ are closely related to the sever-
ity and prognosis of disease in patients with community-
acquired pneumonia (CAP) [96]. Serum RELMβ levels 
are significantly increased in patients with severe CAP, 
particularly in non-survivors [96]. Meanwhile, the serum 
RELMβ level in patients with bacterial infection is nota-
bly higher than that in patients with non-bacterial infec-
tion [96]. However, the RELMβ level in the Mycoplasma 
pneumonia-positive group is significantly lower than that 
in the Mycoplasma pneumonia-negative group [96]. Ele-
vated levels of RELMβ displays positive correlations with 
the pneumonia severity index (PSI) and CURB-65 [96]. 
RELMβ in serum of patients with CAP is associated with 
30-day mortality outcome; and the combination of clini-
cal severity score and RELMβ significantly improve mor-
tality predictive ability [96].
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RELMβ is also a colonic antimicrobial protein. The 
amount of RELMβ in healthy human feces is compara-
ble to that showing antimicrobial activity in  vitro, indi-
cating that RELMβ may be involved in the regulation of 
gut microflora [97]. The mRNA and protein expression 
of RELMβ are induced by heat-inactivated S. aureus, 
but not by Escherichia coli in LS174T colonic epithe-
lial cells [97]. RELMβ thus reveals antimicrobial activ-
ity against Staphylococcus aureus (S. aureus), including 
methicillin-resistant S. aureus (MRSA) [97]. Mechanis-
tically, RELMβ binds to the cell surface of S. aureus and 
subsequently destroys the bacterial cytoplasm [97]. It has 
been reported that mouse and human RELMβ selectively 
kills Gram-negative bacteria by forming a membrane-
permeabilized pores that lyses the targeted bacterial cells 
[98]. In mice, RELMβ restricts the entry of Proteobacte-
ria into the inner mucus layer of the colon, thereby lim-
iting bacterial contact with the colonic mucosal surface 
[98]. The mucus produced by goblet cells contributes to 
the barrier function of the gut. Generally, mice lacking 
Muc2 develop spontaneous colitis [49]. RELMβ expres-
sion in Muc2-deficient mice significantly stimulates 
secretion of the antimicrobial lectin RegIIIβ that exerts 
its microbicidal effect predominantly on Gram-positive 
Lactobacillus species, which leads to microbial dysbio-
sis that exacerbates colitis [49]. Furthermore, oral sup-
plementation with murine Lactobacillus spp. attenuates 
spontaneous colitis in concert with increased produc-
tion of short-chain fatty acids in Muc2−/− mice [49]. In 
the absence of colonic fibroblasts, the lactic acid bacteria 
(LAB) (including Lactobacillus acidophilus CCFM137, 
Streptococcus thermophilus CCFM218, Lactobacillus reu-
teri CCFM14, and Lactobacillus rhamnosus CCFM237) 
increases mucus-related genes Retnlb transcription in 
goblet cells [99]. Nevertheless, none of the aforemen-
tioned LAB strains increases Retnlb expression in the 
presence of fibroblasts [99]. More importantly, TNF-α 
and IL-13 inhibit Retnlb expression under LAB strains 
[99, 100]. Furthermore, RELMβ increases the production 
of IL-2 and IL-6 by three pathogens (EPEC, C. rodentium, 
and Cryptosporidium parvum (C. parvum)) and induces 
both cytokines in the absence of pathogens [101].

RELMs and cardiovascular diseases
RELMα and RELMβ plays an importance role in the 
pathology of atherosclerosis. RELMα is up-regulated 
in atherosclerotic plaque of  ApoE−/− mice [102]. 
Importantly, RELMα dramatically enhances the pro-
liferation and migration of VSMCs [102]. It has been 
demonstrated that RELMα ameliorates HFD-induced 
hypercholesterolaemia and atherosclerosis by promoting 
the conversion of cholesterol into bile acids and medi-
ating its subsequent fecal excretion via liver receptor 

homologue-1 (Lrh-1)-induced enhancement of hepatic 
cholesterol 7α-hydroxylase (CYP7A1) gene transcrip-
tion [20]. Furthermore, RELMβ accelerates athero-
sclerosis development through lipid accumulation and 
inflammatory facilitation. Serum levels of RELMβ and 
RELMγ are obviously increased in high-fat-fed mice 
and db/db mice [29]. Enhanced serum concentrations 
of RELMβ and RELMγ are attributable to elevated pro-
duction in the colon (both RELMβ and RELMγ) and 
bone marrow (RELMγ only) [29]. RELMβ is abundantly 
expressed in foam cells of the human coronary artery 
atherosclerotic lesions [103]. RELMβ induces the forma-
tion of macrophage-derived foam cells by triggering lipid 
accumulation and increases the expressions of very low-
density lipoprotein receptor (VLDLR), scavenger recep-
tor A1 (SR-A1) and ATP binding cassette transporter A1 
(ABCA1), as well as decreases the expressions of ABCG1 
[103]. Furthermore, RELMβ up-regulates the expressions 
of inflammatory cytokines (such as TNFα, IL-1β, and 
IL-6) and NF-κB pathways with LPS stimulation in mac-
rophages [103].

RELMα and RELMβ are also involved in other vascu-
lar diseases. Idiopathic inflammatory myopathies are a 
rare and heterogeneous group of acquired autoimmune 
muscle disorders [104]. High levels of serum IL-18 have 
been observed in patients with inflammatory myopa-
thy [105]. In addition to its pro-inflammatory effects, 
IL-18 is a potent angiogenic mediator. There is evidence 
that RELMα promotes IL-18 secretion in myoblasts and 
induces endothelial progenitor cell tube formation and 
angiogenesis through activating 3-phosphoinositide-
dependent protein kinase-1 (PDK1)/PI3K/Akt/c-Jun 
signaling pathway [106]. Moreover, deletion of RELMβ 
inhibits angiotensin II (Ang II)-induced abdominal aor-
tic aneurysm (AAA) formation in  ApoE−/− mice [107]. 
The underlying mechanism may involve the down-regu-
lation of pro-inflammatory cytokines (MCP-1 and IL-6), 
MMP-2 and MMP-9, which are mediated by phospho-
rylation of ERK1/2 and JNK [107].

RELMs and cancers
The RELM family is strongly associated with the occur-
rence and progression of cancers. The expressions of 
RELMα and RELMβ are related to the clinicopathological 
parameters and prognosis of gastric cancer. The up-reg-
ulation of RELMα in gastric cancer tissues is positively 
correlated with tumor size, clinical stage and promotes 
gastric cancer through angiogenesis [108]. Silencing 
of RELMα expression significantly inhibits prolifera-
tion, migration and invasion in gastric cancer cells, and 
prevents NF-κB activation and attenuates VEGF and 
MMP-9 expressions [109]. In addition, RELMβ has been 
found to be absent in the normal gastric mucosa and 
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aberrantly expressed in a majority of human gastric can-
cer tissues, with expression restricted to the cytoplasm 
of cancer cells and goblet cells of intestinal metaplasia 
[109]. RELMβ is positively correlated with tumor differ-
entiation in gastric cancer and negatively associated with 
lymph node metastasis, tumor infiltration, and hepara-
nase expression, independent of age, gender, tumor loca-
tion and size, tumor-node metastasis stages, and Ki-67 
expression [109]. Furthermore, patients with positive 
RELMβ expression has markedly longer overall survival 
than those with negative expression [109]. Studies have 
shown that RELMβ is abundantly expressed in gastric 
carcinoma cells, and over-expression of RELMβ can pro-
mote the invasion and migration of gastric carcinoma 
cells via facilitating EMT, as evidenced by EMT-related 
proteins, such as up-regulation of N-cadherin, Snail, 
Vimentin and down-regulation of E-cadherin [110]. Per-
sistent infection with the Gram-negative bacterial patho-
gen Helicobacter pylori (H. pylori) induces chronic gastric 
inflammation, which is the most critical risk factor for 
the development of adenocarcinoma. H. pylori-induced 
RELMβ is also involved in the pathogenesis of gastric 
cancer [111, 112]. It has been found that higher expres-
sion of RELMβ is observed in H. pylori-positive intesti-
nal metaplasia, dysplasia, intestinal-type and diffuse-type 
gastric cancers, whereas elimination of H. pylori signifi-
cantly attenuate RELMβ expression in intestinal meta-
plasia [113]. The development of goblet cells, a feature 
of intestinal metaplasia in Barrett’s esophagus (BE), is a 
sentinel event leading to an increased risk of adenocar-
cinoma, which is an incidence 30 to 125 times that of 
the general population [105, 114]. RELMβ expression is 
restricted to goblet cells in the metaplastic epithelium of 
the distal esophagus in patients with BE, not in gastric-
type mucosa or squamous epithelium, and is enhanced 
in dysplasia, which can be used as a potential biomarker 
for the accurate diagnosis of BE. Moreover, the expres-
sion of CDX-2 is mainly localized to the goblet cells of 
intestine metaplasia, and is positively correlated with 
RELMβ expression, indicating that CDX-2 may regulate 
the expression of RELMβ in BE [116].

The intestinal epithelium is a key interface between the 
gut luminal contents and the human internal environ-
ment, which responds to the luminal environment and 
internal stimuli by producing proteins that are secreted 
at both the apical and basolateral sides [117]. RELMβ is 
positively associated with smoking and negatively associ-
ated with physical activity, both of which are risk factors 
for colon cancer, suggesting that RELMβ may be partici-
pated in regulating the effects of these two lifestyle fac-
tors on risk of colon cancers [118]. It has been shown that 
RELMβ is over-expressed in most human colon cancer 
tissues, and the expression is restricted to goblet cells in 

the colonic epithelium [117]. However, the mean post-
operative survival time of RELMβ-positive patients is 
obviously longer than that of RELMβ-negative patients 
[117]. Moreover, RELMβ expression is remarkably cor-
related with the expression of the transcription factor 
caudal-type homeobox protein 2 (CDX-2), but not with 
that of proliferative index Ki-67 [117]. RELMβ positivity 
in colon cancer is associated with histological grade of 
differentiation and lymph node metastasis, but not with 
age, gender, tumor location and size, tumor infiltration, 
Dukes’ stage, venous invasion, and liver metastasis [117]. 
These indicate that RELMβ expression is correlated with 
clinicopathological parameters and prognosis of colon 
cancers [117].

RELMs and other diseases
RELMα may play a regulatory role in insulin-resistance-
mediated gallbladder dyskinesia. RELMα enhances insu-
lin resistance and reduces optimal gallbladder tension 
in response to acetylcholine in C57BL/6  J lean non-dia-
betic mice, but does not affect gallbladder response to 
neuropeptide Y or cholecystokinin [119]. Furthermore, 
RELMβ is a potential novel target for non-alcoholic stea-
tohepatitis (NASH) therapy. The expression of RELMβ 
is obviously induced in colon and liver kupffer cells by 
methionine-choline deficient (MCD) diet feeding [120]. 
RELMβ deficiency attenuates the development of MCD 
diet-induced NASH by suppressing lipid accumulation, 
inflammation, and liver fibrosis [120]. Furthermore, 
RELMβ deficiency decreases serum LPS concentrations 
and inflammatory cytokine productions (TNF-α, IL-1β, 
and IL-6) in response to LPS by downregulating toll-like 
receptor 4 (TLR4) signaling in the liver [120]. Lactoba-
cillus (L. gasseri and L. reuteri) are increased in RELMβ-
deficient mice following MCD diet feeding, which may 
be involved in the protection from impaired gut perme-
ability [120]. Moreover, RELMβ is secreted by the inner 
enamel epithelium and localized at the lower edge of 
the dentin surface facing the Hertwig’s epithelial root 
sheath (HERS) and dental follicle in rats, which might be 
involved in cementogenesis [121].

Therefore, RELMα and RELMβ have variable effects 
during the development of multiple diseases (Fig. 3).

Conclusions
In the RELM family, RELMα, RELMβ, and RELMγ are 
distributed in different tissues and cells, which have 
distinct biological functions including inflammatory 
response, cell proliferation, glucose metabolism, and 
body barriers, etc., and are involved in the regulation of 
different diseases such as lung diseases, intestinal dis-
eases, cardiovascular diseases, and tumors and so on. To 
date, there are numerous studies on RELMα and RELMβ, 
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while RELMγ is relatively less. RELMs can mediate vari-
ous signaling pathways, forming a complex network 
that regulates multiple physiology and pathology. How-
ever, due to the different effects of RELMs in mediating 
the occurrence and development of multiple diseases, 
the advantages and disadvantages of RELMs cannot 
be simply defined. RELMα participates in pulmonary 
hypertension but attenuates intestinal parasite infection. 
Additionally, RELMβ promotes gastric cancer develop-
ment but inhibits bacterial infection in the gut. An in-
depth understanding of the role of RELMs is essential 
for sorting out their related signaling pathways, revealing 

the molecular regulation of related diseases, and find-
ing clinical treatments for the diseases. Therefore, the 
RELM family has potential value in clinical application, 
which can treat the associated diseases, and can be used 
as a marker to indicate the type and degree of diseases. 
However, the current studies on the RELMs field are still 
weak, and the functional effects remain controversial. 
The exploration of RELMs receptors and direct target 
proteins is required to be strengthened, which contrib-
utes to elucidating more biological functions of RELMs 
and discovering valuable insights into the pathogenesis of 
related diseases. How to develop drugs targeting RELMs 

Fig. 3 RELMα and RELMβ participate in various diseases
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will be helpful for the clinical treatment of diseases. More 
hidden physiological and pathological effects and under-
lying mechanisms of RELMs need to be further inves-
tigated. It is worth noting that RELMα and RELMγ are 
absent in the human body, whether the reason can be 
explored using the theory of species evolution to explain 
the relationship between RELMs and humans or other 
species. The current studies mainly focus on RELMα 
and RELMβ, while research on RELMγ needs to be fur-
ther developed. Therefore, this review provides a thor-
ough understanding of the physiological and pathological 
functions and mechanisms of RELMs, opens a door for 
the prevention and treatment of inflammation-related 
diseases, cardiovascular diseases, cancers, etc., and also 
contributes to the direction for the future development 
of RELMs.
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