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Many test-takers do not carefully answer every test question; instead they sometimes
quickly answer without thoughtful consideration (rapid guessing, RG). Researchers have
not modeled RG when assessing student learning with cognitive diagnostic models
(CDMs) to personalize feedback on a set of fine-grained skills (or attributes). Therefore,
this study proposes to enhance cognitive diagnosis by modeling RG via an advanced
CDM with item response and response time. This study tests the parameter recovery
of this new CDM with a series of simulations via Markov chain Monte Carlo methods in
JAGS. Also, this study tests the degree to which the standard and proposed CDMs fit
the student response data for the Programme for International Student Assessment
(PISA) 2015 computer-based mathematics test. This new CDM outperformed the
simpler CDM that ignored RG; the new CDM showed less bias and greater precision
for both item and person estimates, and greater classification accuracy of test results.
Meanwhile, the empirical study showed different levels of student RG across test items
and confirmed the findings in the simulations.

Keywords: response time, rapid guessing, G-DINA model, DINA model, DINO model

INTRODUCTION

Cognitive diagnostic models (CDMs) assess whether test-takers have the skills needed to answer test
questions (attributes), so that their test results can give them diagnostic feedback on their strengths
and weaknesses in these attributes (Rupp et al., 2010). Specifically, a CDM analysis determines
whether a person shows mastery (vs. non-mastery) of a set of fine-grained attributes (latent class).
Teachers, clinicians and other users of test scores can use such specific information on each student
or client to adapt and improve their instructions/interventions more effectively, compared to a
simple, summative score.

However, some test-taking behaviors can distort current CDM results and thereby jeopardize the
validity of their assessments. Recently, researchers have proposed different approaches to account
for test-taking behaviors when assessing test-taker performance and item characteristics. In this
study, we focus on two frequently-observed test-taking behaviors during actual tests: solution
attempt and rapid guessing (RG; Wise and Kong, 2005). In a solution attempt, test-takers carefully
try to find answers to test questions. By contrast, RG refers to test-takers quickly answering
test questions without thoughtful consideration (e.g., Wise and DeMars, 2006). For instance,
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Meyer (2010) integrated a two-class mixture Rasch model (Rost,
1990) to classify a test-taker as either making a solution attempt
or RG, but not allowing different behaviors by the same person
during a test. To address this limitation, Wang and Xu (2015)
proposed a model with a latent indicator to allow each test-
taker to engage in either a solution attempt or RG on each item.
Furthermore, the indicator can depend on either a test-taker’s RG
propensity or on an item-level feature (Wang et al., 2018). As RGs
are typically much shorter than solution attempts, CDMs can use
a test-taker’s reaction time (RT) to each test question to properly
model RGs and distinguish them from solution attempts (but not
necessarily pre-knowledge answers, e.g., Wang et al., 2018). As no
published study has proposed and tested a CDM that models RG,
we do so in this study.

This study proposes a new framework of CDMs to recognize
different test-taking behaviors by using RT and item responses
simultaneously. This new class of CDMs: (1) models two test-
taking behaviors (RG vs. solution attempt) for each item-person
concurrence, (2) allows multiple switch points between RG and
solution attempts among the items for each test-taker, (3) thereby
yields person and item estimates with greater accuracy, and (4)
generalizes to available CDMs, RT functions and other kinds of
dissimilar behaviors.

The generalized DINA model (G-DINA, de la Torre,
2011) conceptualizes and shows the utility of this framework.
Specifically, the two special cases of the G-DINA model, the
deterministic input, noisy “and” gate (DINA) model (Junker
and Sijtsma, 2001) and its counterpart, the deterministic input,
noisy “or” gate (DINO) model (Templin and Henson, 2006)
are simple to compute, estimate, and interpret, so they serve as
illustrations. Nevertheless, researchers can extend this approach
to other CDMs, especially G-DINA-liked formulation CDMs,
such as the general diagnostic model (GDM; von Davier, 2005)
and the linear logistic model (Maris, 1999).

After we present the functions for describing RT and item
response, we specify the new model. Next, our simulation
study illustrates the new model’s performance, followed by its
application to real data. Lastly, we discuss the implications of
this study for identifying test-taking behaviors and improving the
estimation accuracy of both person and item parameters.

A NEW CDM FRAMEWORK

The new model requires distinct functions to separately specify
two fundamentals for an item, RT and item response, while
two main facets, person and item, affect the observed RT and
item response. This section describes the adopted RT and item
response functions, before specifying the new model.

The Lognormal RT Model
As cognitive test data typically resemble a lognormal distribution
more closely than a normal distribution, we use a lognormal
function to characterize RT (van der Linden, 2006, 2007). Let
RTij be the observed RT of person i (i = 1, 2, . . ., I) to item j
(j = 1, 2, . . ., J). In the lognormal function, the two parameters of
person speed and time intensity, respectively, represent the two

facts, person and item, as follows,

log
(
RTij

)
∼ N(βj − τi, 1/κ2

j ) (1)

where τi indicates the average speed of test-taker i on a test
(person speed); βj indicates the mean time that the population
needs to resolve item j (time intensity); and κ2

j indicates
the dispersion of the logarithmized RT distribution (time
discrimination parameter) of item j.

The G-DINA Model
The G-DINA model loosens some restrictions of the DINA model
and its saturated form is equivalent to other general CDMs via
link functions (de la Torre, 2011). Hence, the G-DINA model
can (a) present different CDMs with similar formulations via
various constraints and (b) substantially reduce the number of
latent classes for an item – especially for models with more than
five attributes. The original G-DINA model with identity link can
be expressed as

P
(
α∗ij

)
= δj0 +

K∗j∑
k=1

δjkαik +

K∗j∑
k′=k+1

K∗j −1∑
k=1

δjkk′αikαik′ · · · + δj12···K∗j

K∗j∏
k=1

αik (2)

For test-taker i, the reduced attribute vector α∗ij has the required
attributes for item j. The intercept for item j, δj0 represents the
probability of a correct response without the required attributes
(baseline probability). The main effect δjk reflects the extent to
which mastery of a single attribute αk changes the probability
of a correct response. The interaction effect δjkk′ indicates the
extent to which mastery of both attributes αk and αk′ changes the
probability of a correct response. The interaction effect δj12···K∗j
reflects the extent to which mastery of all the required attributes
α1, α2, · · · , and αK∗j changes the probability of a correct response.

Like most CDMs, the G-DINA model requires a J × K
Q-matrix (Tatsuoka, 1983), in which K knowledge attributes are

required to correctly answer J items. K∗j =
K∑

k=1
qjk is the number

of required attributes for item j, where qjk = 1 if the correct
response to item j requires attribute k; and 0 otherwise. As the
number of required attributes for item j is smaller than that of
the all attribute vectors (K∗j < K), the G-DINA model can reduce

the number of required latent classes (2K
∗
j < 2K) for an item.

To illustrate the G-DINA-like formulations, we use two common
cases: the DINA and DINO.

The DINA Model
In the non-compensatory DINA, individuals are classified into
one of two latent classes for an item: (a) the attribute vectors
have all of an item’s required attributes (mastery) or (b) the
attribute vectors are missing at least one of the item’s required
attributes (non-mastery). The two latent classes’ corresponding
probabilities for a correct response entail that (a) mastery
individuals do not slip, or (b) non-mastery individuals guess
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correctly (Junker and Sijtsma, 2001). Thus, the DINA model can
be re-formed by setting to zero, all G-DINA model parameters
except δj0 and δj12···K∗j

P
(
α∗ij

)
= δj0 + δj12···K∗j

K∗j∏
k=1

αik (3)

In Eq. 3, δj0 = gj is the probability of a correct response to item j
for a non-mastery test-taker i, where gj is the guessing parameter
for item j; δj0 + δj12···K∗j = 1− sj is the probability of a correct
response to item j for a mastery test-taker i, where sj is the
slipping parameter for item j. In the DINA, a mastery test-taker
with all the required attributes (K∗j ) for item j generally answers
it correctly and other test-takers generally answer it incorrectly.
Like the DINA, Eq. 3 shows that except for the attribute vector
α∗j = 1K∗j (in which 1K∗j is a vector of ones with length K∗j ), other

latent classes (2K
∗
j − 1) have the same probability of correctly

answering item j. As shown in Eq. 3, this probability increases
only after mastering all the required attributes. Under the DINA
model assumption (Junker and Sijtsma, 2001), the G-DINA has
two parameters per item (see Eq. 3).

The DINO Model
Unlike the non-compensatory DINA, the compensatory DINO
only entails at least one of the required attributes to answer an
item, so the parameters in G-DINA are set to

δjk = (−1) δjk′k′′ = · · · = (−1)K
∗
j +1

δj1,2,··· ,K∗j (4)

where k = 1, · · · ,K∗j , k
′

= 1, 2, · · ·K∗j − 1, and k
′′

>

k
′

, · · · ,K∗j . The orders of the interactions vary the alternating
sign, and the quantities of the main effects and interactions have
the same value.

P
(
α∗ij

)
= δj0 + δjkαik. (5)

For a test-taker i with at least one of the required attributes, the
probability of answering item j without slipping (s

′

j) is δj0 + δjk =

1− s
′

j. Likewise, for a test-taker i with none of the required
attributes, the probability of correctly answering item j is the
guessing parameter, δj0 = g

′

j . Unlike the DINA, all latent classes
except for the attribute vector α∗j = 0K∗j (a vector of zeros and of
length K∗j ) have the same probability of correctly answering item
j. Like the DINA, the DINO only needs two parameters for an
item (Eq. 5, Templin and Henson, 2006).

To use both information of RT and item response, two
functions must be specified. Hence, RT-GDINA, RT-DINA
and RT-DINO jointly model RT and item response with
the lognormal distribution (Eq. 1) and G-DINA, DINA and
DINO, respectively.

New Class of CDMs
We introduce a new class of G-DINA to account for varying test-
taking behaviors. RT (RTij) and item response (Yij) are modeled
individually. As test-takers can switch between RG and solution

behaviors, like Wang and Xu (2015), a latent indicator (ξ) is
employed, where if test-taker i tries to solve item j, ξij = 1 (0
otherwise; RG is specified in this study). Incorporating this latent
indicator into the lognormal RT model extends Eqs 1–6{

log
(
RTij

)
∼ N

(
βj − τi, 1/κ2

j

)
, if ξij = 1;

log
(
RTij

)
∼ N

(
β0, 1/κ2

0
)
, if ξij = 0.

(6)

indicates that the logarithmized RT is normally distributed as
Eq. 1 if test-taker i solves item j from solution attempt (ξij = 1),
and it is normally distributed with mean time intensity β0 and
time discrimination κ2

0 if test-taker i responds to item j with a RG
(ξij = 0). For a RG on item j by test-taker i, RT is constant.

Likewise, adding ξij to the G-DINA yields

P
(
α∗ij

)
= ξij

(
δj0 +

K∗j∑
k=1

δjkαik +

K∗j∑
k′=k+1

K∗j −1∑
k=1

δjkk′αikαik′ · · · + δj12···K∗j

K∗j∏
k=1

αik

)
+
(
1− ξij

)
δ∗j (7)

The G-DINA model is the underlying model for a solution
attempt on item j by test-taker i (ξij = 1). We assume that a
RG on item j by test-taker i (ξij = 0) yields δ∗j . For simplicity,
like Wise and DeMars (2006), we assume that test-taker i has
the same probability of correctly answering item j both by RG
and by guessing with none of the required attributes (δ∗j = δj0),
that is, guessing randomly for all options. Hence, Eq. 7 can be
re-written as

P
(
α∗ij

)
= δj0 + ξij

( K∗j∑
k=1

δjkαik +

K∗j∑
k′=k+1

K∗j −1∑
k=1

δjkk′αikαik′ · · · + δj12···K∗j

K∗j∏
k=1

αik

)
(8)

The latent indicator ξij in Eqs 6–8 is a binary result of test-taker i
on item j’s behavior (solution attempt vs. RG). It can be modeled
by a Bernoulli distribution with πj, the marginal probability of
the solution attempt. Using the DINA and DINO to identify RGs
and solution attempts, Eqs 3 and 5 are re-written, respectively, as
Eqs 8 and 9.

P
(
α∗ij

)
= δj0 + ξijδj12···K∗j

K∗j∏
k=1

αik (9)

P
(
α∗ij

)
= δj0 + ξijδjkαik (10)

If test-taker i tries to solve item j (ξij = 1), Eqs 6, 8–10
reduce, respectively, to Eqs 1–3, and 5. Thus, the lognormal,
G-DINA, DINA, and DINO are special cases of our proposed
new CDM framework. Likewise, jointly modeling RT and
item response with a latent indicator via Eqs 6 and 8–10
are, respectively, represented as RT-GDINA-RG, RT-DINA-RG
and RT-DINO-RG.
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To illustrate this approach, we combine the lognormal
RT distribution and the easy-to-understand DINA and DINO
models, with the latent indicator ξ (RT-DINA-RG, RT-DINO-
RG) and without it (RT-DINA, RT-DINO). We estimate
their parameters via the Bayesian method with the Markov
chain Monte Carlo (MCMC) algorithm in the freeware JAGS
(Plummer, 2017). For the JAGS code and the priors for the
estimated parameters of the RT-DINA-RG and RT-DINO-RG
models (see Appendix).

SIMULATION STUDY 1: PARAMETER
RECOVERY OF RT-DINA-RG

Design
In simulation study 1, we evaluated the parameter recovery of
the RT-DINA-RG for a test of 30 dichotomous items measuring
five non-compensatory attributes. See the artificial Q-matrix in
Table 1. The guessing (gj) and slipping (sj) parameters were
randomly generated, respectively, from the uniform distributions
of U(0.05, 0.3) and U(0.05, 0.2), which reflect a high quality
test. This data-generating procedure for the 30 simulated items

TABLE 1 | Specified Q-matrix and item parameters in simulation 1.

Item q1 q2 q3 q4 q5 πj

1 1 0 0 0 0 0.9

2 0 1 0 0 0 0.9

3 0 0 1 0 0 0.9

4 0 0 0 1 0 0.9

5 0 0 0 0 1 0.9

6 1 0 0 0 0 0.8

7 0 1 0 0 0 0.8

8 0 0 1 0 0 0.8

9 0 0 0 1 0 0.8

10 0 0 0 0 1 0.8

11 1 1 0 0 0 0.9

12 1 0 1 0 0 0.9

13 1 0 0 1 0 0.9

14 1 0 0 0 1 0.9

15 0 1 1 0 0 0.9

16 0 1 0 1 0 0.8

17 0 1 0 0 1 0.8

18 0 0 1 1 0 0.8

19 0 0 1 0 1 0.8

20 0 0 0 1 1 0.8

21 1 1 1 0 0 0.9

22 1 1 0 1 0 0.9

23 1 1 0 0 1 0.9

24 1 0 1 1 0 0.9

25 1 0 1 0 1 0.9

26 1 0 0 1 1 0.8

27 0 1 1 1 0 0.8

28 0 1 1 0 1 0.8

29 0 1 0 1 1 0.8

30 0 0 1 1 1 0.8

yielded item discrimination indices (IDI) that ranged from
0.51 to 0.88, indicating a test with high measurement quality
(Lee et al., 2012).

We manipulated two conditions. In the RG condition, the
marginal probability of RG (1− πj) was set for items at two
levels: 0.1 and 0.2 (Wang et al., 2018). To describe the dynamic
latent indicator of person i on item j in the RG condition, the
ξ-parameter was generated from a Bernoulli distribution with
probability either of 0.8 or 0.9. In the RT-DINA-RG, mean
item time intensity (β0) and item discrimination (κ0) were (a)
set, respectively, at 2 and 1.6 for rapid guessers (ξij = 0) and
(b) generated, respectively, from U(2, 4) and U(0.15, 2) for
normal test-takers (ξij = 1). In non-RG condition, RG never
occurs, and the RT-DINA served as the data-generating model,
yielding parameters similar to the RT-DINA-RG. Mean item
time intensity and item discrimination can be generated to
accommodate various test situations (e.g., Man et al., 2018), but
they do not affect the use of the proposed model. Therefore, we
leave this interesting topic for further study.

We simulated 1,000 test-takers across conditions, and each
test-taker had generated five latent attributes with positive
correlations, following Henson and Douglas (2005) procedure.
Specifically, we randomly generated 1,000 vectors with five
values, αi = (αi1, αi2, αi3, αi4, αi5)

′

, i = 1, 2, . . ., 1,000,
from a multivariate normal distribution with no interaction,
MVN(0.5, 6) with 6 diagonal elements of 1.0 and others of
0.5. A cut-off value of 0.253 (z0.6) indicated mastery of the
attribute (if αik > 0.253, αik = 1; otherwise, αik = 0), yielding
∼60% mean mastery of each attribute, which generally ranged
from easy to moderate. The person speed parameter (τi) was
generated from N(0, 0.32). Each condition was replicated 100
times from an R script.

Both the RT-DINA and RT-DINA-RG were fit to these data
to test three hypotheses: (1) with some RG, the RT-DINA-
RG efficiently recovers item and person estimates; (2) ignoring
RG via the RT-DINA yields biased item parameter estimates,
less accurate classification of attribute mastery, and less reliable
person speed estimates; and (3) with no RG, the RT-DINA-RG
performs as well as the RT-DINA. To evaluate the recovery of
item parameters, the bias and root mean squared error (RMSE)
were computed as dependent variables:

Bias
(
ν̂
)
=

100∑
r=1

(
ν̂r − ν

)
/100 (11)

RMSE
(
ν̂
)
=

√√√√ 100∑
r=1

(
ν̂r − ν

)2
/100 (12)

where ν and ν̂r indicate respectively, true and estimated values
in the r-th replication of an item parameter. We examined
test-takers’ true and estimated latent classes to evaluate the
classification accuracy of each attribute. The reliability of the
person speed parameter was computed as:

Reliability
(
τ̂
)
= Correlation

(
τ̂, τ

)2 (13)
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FIGURE 1 | Parameter recovery for the RT-DINA and RT-DINA-RG under the RG condition in simulation 1.

Results
In the RG condition, the RT-DINA-RG generally yielded
unbiased parameter estimates, whereas the RT-DINA
overestimated the slipping parameters and underestimated
the item intensity, guessing, and time discrimination parameters
(see Figure 1). Greater RG increased the severities of slipping
overestimation and time intensity underestimation. For test-
takers without the required attributes, RG did not influence
the success rate, so ignoring RG did not substantially influence
estimation of the guessing parameters. Across five attributes and

100 replications, mean classification accuracy was higher for the
RT-DINA-RG than the RT-DINA (0.936> 0.924), suggesting that
ignoring RG reduces the accuracy of attribute classification. Also,
the RT-DINA-RG outperformed the RT-DINA on reliability of
the person speed parameter (M: 0.66> 0.57).

In the non-RG condition, both RT-DINA and RT-DINA-
RG recovered the parameters well (see Figure 2). The bias and
RMSE for the π-parameter in the RT-DINA-RG were nearly
zero. Also, both models yielded practically identical classification
accuracy (M = 96.6%) and reliability of person speed parameter
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FIGURE 2 | Parameter recovery for the RT-DINA and RT-DINA-RG under the non-RG condition in simulation 1.

(M = 0.76) across 100 replications. Hence, overfitting the RT-
DINA-RG to data without RG showed no significant harm. In
brief, the simulation results supported our three hypotheses.

SIMULATION STUDY 2: PARAMETER
RECOVERY OF RT-DINO-RG

Design
Study 2 simulated compensatory attributes and analyzed
parameter recovery by the RT-DINO and RT-DINO-RG. The
item responses and RTs were generated for (a) the RG condition
with the RT-DINO-RG and (b) the non-RG condition with
the RT-DINO. The parameters, data generation and evaluation

criteria were the same as those in simulation study 1. Paralleling
study 1, we test three hypotheses: (1) with some RG, the RT-
DINO-RG efficiently recovers item and person estimates; (2)
ignoring RG via the RT-DINO yields biased item parameter
estimates and less accurate classification of attribute mastery;
and (3) with no RG, the RT-DINO-RG performs as well as
the RT-DINO.

Results
The study 2 results resemble the study 1 results (see Figure 3).
In the RG condition, the RT-DINO-RG recovered the
parameters well, whereas the RT-DINO overestimated the
slipping parameters and underestimated the item intensity,
guessing, and time discrimination parameters. Greater RG
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FIGURE 3 | Parameter recovery for the RT-DINO and RT-DINO-RG under the RG condition in simulation 2.

increased the severities of slipping overestimation and time
intensity underestimation. The RT-DINO-RG outperformed the
RT-DINO on both mean classification accuracy (0.946 > 0.922)
across five attributes and reliability of the person speed parameter
(M: 0.64> 0.57).

In the non-RG condition, both RT-DINO and RT-DINO-RG
recovered the item parameters well (see Figure 4). The bias and
RMSE for π-parameter in the RT-DINO-RG model were very
small. Also, both models had practically identical classification
accuracy (M = 98.4%) and reliability of person speed parameter
(M = 0.71) across replications. In sum, these simulation results
supported our three hypotheses.

REAL DATA ANALYSIS

To illustrate a RT-GDINA-RG application, we analyzed a PISA
2015 mathematics test with 22 questions. After screening
out students with missing responses, we analyzed 5,158
students’ responses. The PISA 2015 mathematics assessment
framework (OECD, 2017a,b) and the released computer-based
mathematics items’ log-file databases covered eight attributes:
change and relationships (α1), quantity (α2), space and shape
(α3), uncertainty (α4), occupational (α5), societal (α6), scientific
(α7), and personal (α8). The Q-matrix for the mathematics test
shows two cognitive attributes for each item (see Table 2). We fit
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FIGURE 4 | Parameter recovery for the RT-DINO and RT-DINO-RG under the non-RG condition in simulation 2.

the four CDM models (RT-DINA, RT-DINO, RT-DINA-RG, RT-
DINO-RG) to these data. Superior models have lower deviance
information criteria (DIC; Spiegelhalter et al., 2002).

The results indicate both compensatory attributes and RG.
DICs showed that the compensatory models outperformed
the non-compensatory ones (RT-DINO < RT-DINA:
1,351,697 < 1,433,173; and RT-DINO-RG < RT-DINA-RG:
1,327,068 < 1,360,978) suggesting that the eight attributes’
relationships were more compensatory than non-compensatory.
Also, the RG models outperformed the simpler models
(RT-DINO-RG < RT-DINO: 1,327,068 < 1,351,697; and RT-
DINA-RG < RT-DINA: 1,360,978 < 1,433,173), showing
substantial RG. As the data indicated both compensatory

attributes and RG, the RT-DINO-RG showed the best fit.
Hence, we examine the RT-DINO and RT-DINO-RG results
in greater detail.

Like study 2, the RT-DINO estimated higher slipping
parameters and lower guessing parameters, compared to the RT-
DINO-RG (slipping: MRT-DINO > MRT-DINO-RG: 0.27 > 0.22;
guessing: MRT-DINO < MRT-DINO-RG: 0.28 < 0.30). Also, the
mean discrimination power of RT-DINO-RG exceeded that of
RT-DINO (IDIM(RT-DINO-RG) > IDIM(RT-DINO): 0.47 > 0.45).
Ranging from 0.74 to 0.99, RT-DINO-RG’s RG estimates
(π) moderately correlated (r = 0.49) with the difference
in the slipping parameters of RT-DINO and RT-DINO-RG
(see Figure 5), supporting the simulation study 2 finding of
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TABLE 2 | Specified Q-matrix for the real data.

Item Label q1 q2 q3 q4 q5 q6 q7 q8

1 CM033Q01S 0 0 1 0 0 0 0 1

2 CM474Q01S 0 1 0 0 0 0 0 1

3 DM155Q02C 1 0 0 0 0 0 1 0

4 CM155Q01S 1 0 0 0 0 0 1 0

5 DM155Q03C 1 0 0 0 0 0 1 0

6 CM155Q04S 1 0 0 0 0 0 1 0

7 CM411Q01S 0 1 0 0 0 1 0 0

8 CM411Q02S 0 0 0 1 0 1 0 0

9 CM803Q01S 0 0 0 1 1 0 0 0

10 CM442Q02S 0 1 0 0 0 1 0 0

11 DM462Q01C 0 0 1 0 0 0 1 0

12 CM034Q01S 0 0 1 0 1 0 0 0

13 CM305Q01S 0 0 1 0 0 1 0 0

14 CM496Q01S 0 1 0 0 0 1 0 0

15 CM496Q02S 0 1 0 0 0 1 0 0

16 CM423Q01S 0 0 0 1 0 0 0 1

17 DM406Q01C 0 0 1 0 0 1 0 0

18 DM406Q02C 0 0 1 0 0 1 0 0

19 CM603Q01S 0 1 0 0 0 0 1 0

20 CM571Q01S 1 0 0 0 0 0 1 0

21 CM564Q01S 0 1 0 0 0 1 0 0

22 CM564Q02S 0 0 0 1 0 1 0 0

FIGURE 5 | Relationship between π-parameter in the RT-DINO-RG and the
difference in the slipping parameters between the RT-DINO the RT-DINO-RG
models. Numbers are item identifiers; πEst is RG estimates; and SRT-DINO –
SRT-DINO-RG is the difference in the slipping parameters of RT-DINO and
RT-DINO-RG.

overestimated slipping parameters when ignoring RGs. Also, the
πs of items 1–11 were generally lower than those of items 12–
22. If these items appeared on the test in this sequence (item
position information was not publicly available), these π results

FIGURE 6 | Probability density function of RT for the RT-DINO-RG.

suggest that test-taker accuracy depended on their completion
speed (speededness).

The RT-DINO-RG also uses response time to recognizes RGs
and solution attempts, showing estimated mean time intensity
(β0) of 3.21 and time discrimination (κ0) of 0.70. The various
probability density functions of response time for RGs and
solution attempts in the RT-DINO-RG (see Figure 6) suggest that
students used varied answering strategies to spend more time on
some items and less time on others (including RGs). The RT-
DINO and RT-DINO-RG did not consistently classify mastery
of the eight attributes [Cohen’s κ ranged from 0.48 (quantity)
to 0.98 (occupational), see Table 3]. Notably, few students
had knowledge of the third attribute (space and shape). The
simulation studies suggest that the RT-DINO-RG classifications
are more reliable than the RT-DINO ones.

DISCUSSION

CDMs assess whether test-takers have the needed skills
(attributes) to answer each test question and give suitable
diagnostic feedback, but they have not adequately modeled RG
vs. solution attempts with reaction times. Hence, this study

TABLE 3 | Mastery of attributes for the RT-DINO and RT-DINO-RG.

Attributes

α1 α2 α3 α4 α5 α6 α7 α8

RT-DINO 0.090 0.381 0.057 0.133 0.173 0.235 0.366 0.349

RT-DINO-RG 0.234 0.359 0.036 0.151 0.168 0.166 0.254 0.361

Cohen’s k 0.483 0.861 0.644 0.899 0.975 0.762 0.721 0.885
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developed a new class of CDMs based on the G-DINA model (de
la Torre, 2011), namely RT-GDINA-RG, with a latent indicator
to jointly utilize both item responses and RTs to model RG and
solution attempts to enhance cognitive diagnosis. We propose
two models based on the DINA and DINO models, namely
RT-DINA-RG and RT-DINO-RG.

The RT-DINA-RG and RT-DINO-RG were evaluated
via (a) simulation studies with Markov chain Monte
Carlo methods in JAGS and (b) real data analysis by
analyzing the PISA 2015 computer-based mathematics
test. Complementing Wang and Xu (2015) person-level
manipulation of RG, this study manipulated RG at the item
level (Wang et al., 2018). The simulation results and real data
analysis showed that the RT-DINA-RG and RT-DINO-RG
recovered parameters well and assessed test-takers’ diagnostic
results more accurately. In contrast, ignoring RGs by fitting
simpler models yielded biased parameters, less reliable
person speed parameter, and less classification accuracy of
test results.

Hence, this study extends research showing how analyses
of RT improves cognitive assessments of test-takers (e.g.,
van der Linden, 2008; Lee and Chen, 2011; Wang and Xu,
2015). When test-takers rapidly guess, the RT-GDINA-RG yields
greater accuracies in person parameters, item parameters, and
cognitive results. Therefore, researchers or users should use
the RT-GDINA-RG to depict a data if RGs might occur. The
choice of RT-GDINA-RG model (i.e., RT-DINA-RG or RT-
DINO-RG) depends on the nature of the test items. If a
test item’s needed underlying constructs can compensate for
one another, then RT-DINO-RG is suitable. If the underlying
constructs cannot compensate for one another, then RT-DINA-
RG is suitable.

Moreover, the person and item parameters of the RT-GDINA-
RG were assumed to be, respectively, independent in this
study. As attributes and item parameters of a CDM are often
related in practice, we capture the relations between them with
correlational structures (e.g., van der Linden, 2007). Note that the
commonly-used multivariate normal distribution to specify the
relations among person parameters is not feasible for the discrete
feature of attributes in CDMs. Following Zhan et al. (2018),
one can address this problem by using a higher-order latent
trait to link the correlated attributes (de la Torre and Douglas,
2004), and then assuming that the person parameters (i.e., the
higher-order latent trait and person speed) follow a bivariate
normal distribution.

In addition, this study assumes the same probability of
correctly answering an item by a RG as by guessing with none
of the required attributes for the sake of simplicity. Such a
naïve assumption can be further explored as in Wang and
Xu (2015). Further, the RT-GDINA-RG distinguishes between
solution attempt and RG for cognitive diagnosis via a latent
indicator. In addition to RG, RT-GDINA-RG can be easily
extended to adapt diverse test-taking behaviors and various
tests’ requirements. For example, we can extend CDMs to
include other test-taking behaviors such as prior knowledge/pre-
knowledge (Wang et al., 2018; Man et al., 2019) or nonresponses

(Ulitzsch et al., 2019) if and only if the probabilities of a correct
response from different latent indicators (or classes) can be
clearly defined. In a high-stakes test, individuals often use pre-
knowledge to correctly answer items with extremely short RT
(unlike solution attempts with relatively long RT and unlike
RGs with often wrong answers and short RT). Furthermore, we
can adapt the functions for depicting RT and item response
to the testing contexts, such as linear transformation (Wang
et al., 2013), a gamma distribution to depict RT for mental
rotation items (Maris, 1993), etc. (De Boeck and Jeon, 2019).
Also, the item response function can be replaced by other
CDMs, such as the GDM (von Davier, 2005) or the linear
logistic model (Maris, 1999). Future studies can investigate
these approaches.

In addition, ignoring RGs can harm the development and
application of cognitive assessments (for both high- and low-
stakes tests), distort test results, or invalidate inferences. For
example, greater precision of test parameters via the RT-
GDINA-RG ensures the quality of item bank construction and
assembly of tests, especially for large-scale assessments. Their
greater precision also reduces the number of necessary test
items to accurately assess a test-taker’s domain knowledge,
thereby enabling more subdomains to be assessed. The RT-
GDINA-RG results regarding time can also inform designers
of timed tests regarding the time needed for different solution
approaches to a test question. For example, for a timed test,
items have frequent RG might because test-takers perceive
that they lack sufficient time to attempt a solution. Thus,
such information can provide the users of test scores to set a
suitable time (e.g., increasing the response time) for completing
the test. In addition, greater accuracy in the estimation of
test scores increases users’ confidence in the results and their
subsequent inferences.

When using RT-GDINA-RG to estimate more precise person
and item parameters during RG, Q-matrix is an essential
component in CDM contexts. An identifiable Q-matrix ensures
the consistency of a CDM estimation. In this study, the
simulation studies used an identifiable Q-matrix (Xu and Zhang,
2016; Xu, 2017), and the real data analysis adopted a partially
identifiable Q-matrix (Gu and Xu, 2020). To enable consistent
CDM estimation, checking the identifiability of the Q-matrix in
advance is crucial. Besides, for ease of use, a tutorial to introduce
the RT-GDINA-RG in JAGS can be developed in future work (cf.
Curtis, 2010; Zhan et al., 2019).
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APPENDIX

JAGS Code for the RT-DINA-RG and RT-DINO-RG Models
###################
### RT-DINA-RG###
###################
RT-DINA-RG.model
{

for (i in 1:N) {
for (k in 1:5) { # five attributes

alpha[i,k]∼ dbern(ap[k])}
tau[i]∼ dnorm(0, Inv_sigma2)
for (j in 1:J) {

xi[i,j]∼ dbern(pii[j]) # 0 = RG, 1 = normal
eta[i,j]< -

pow(alpha[i,1],Q[j,1])∗pow(alpha[i,2],Q[j,2])∗pow(alpha[i,3],Q[j,3])∗p
ow(alpha[i,4],Q[j,4])∗pow(alpha[i,5],Q[j,5])

prob[i,j]< - pow(1-slip[j],eta[i,j]∗xi[i,j])∗pow(guess[j],1-eta[i,j]∗xi[i,j])
r[i,j]∼ dbern(prob[i,j])
rt.mu[i,j]< - (1-xi[i,j])∗beta.0+ xi[i,j]∗(beta[j] - tau[i])
rt_kappa[i,j]< - (1-xi[i,j])∗kappa2.0+ xi[i,j]∗kappa2[j]
RT[i,j]∼ dlnorm(rt.mu[i,j], rt_kappa[i,j])}}

# Priors
for (k in 1:5) {

ap[k]∼ dunif(0, 1)}
for (j in 1:J) {

pii[j]∼ dunif(0, 1)
slip[j]∼ dunif(0, 0.5)
guess[j]∼ dunif(0, 0.5)
beta[j]∼ dnorm(3, 0.1)
kappa2[j]∼ dgamma(0.1, 0.1)
kappa[j]< - sqrt(kappa2[j])}

Inv_sigma2∼ dgamma(0.1, 0.1)
sigma< - 1/sqrt(Inv_sigma2)
beta.0∼ dnorm(0, 0.1) %_% I(,min(beta))
kappa2.0∼ dgamma(0.1, 0.1)
kappa.0< - sqrt(kappa2.0)}

###################
### RT-DINO-RG###
###################
RT-DINO-RG.model
{

for (i in 1:N) {
for (k in 1:5) { # five alphaibutes

alpha[i,k]∼ dbern(ap[k])}
tau[i]∼ dnorm(0, Inv_sigma2)
for (j in 1:J) {

xi[i,j]∼ dbern(pii[j]) # 0 = RG, 1 = normal
eta[i,j]< - 1-pow(1-alpha[i,1],Q[j,1])∗pow(1-alpha[i,2],Q[j,2])∗pow(1-

alpha[i,3],Q[j,3])∗pow(1-alpha[i,4],Q[j,4])∗pow(1-
alpha[i,5],Q[j,5])

prob[i,j]< - pow(1-slip[j],eta[i,j]∗xi[i,j])∗pow(guess[j],1-eta[i,j]∗xi[i,j])
r[i,j]∼ dbern(prob[i,j])
rt.mu[i,j]< - (1-xi[i,j])∗beta.0+ xi[i,j]∗(beta[j] - tau[i])
rt_kappa[i,j]< - (1-xi[i,j])∗kappa2.0+ xi[i,j]∗kappa2[j]
RT[i,j]∼ dlnorm(rt.mu[i,j], rt_kappa[i,j])}}
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# Priors
for (k in 1:5) {

ap[k]∼ dunif(0, 1)}
for (j in 1:J) {

pii[j]∼ dunif(0, 1)
slip[j]∼ dunif(0, 0.5)
guess[j]∼ dunif(0, 0.5)
beta[j]∼ dnorm(3, 0.1)
kappa2[j]∼ dgamma(0.1, 0.1)
kappa[j]< - sqrt(kappa2[j])}

Inv_sigma2∼ dgamma(0.1, 0.1)
sigma< - 1/sqrt(Inv_sigma2)
beta.0∼ dnorm(0, 0.1) %_% I(,min(beta))
kappa2.0∼ dgamma(0.1, 0.1)

kappa.0< - sqrt(kappa2.0)}
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