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Human cytomegalovirus is an opportunistic double-stranded DNA virus with one of the
largest viral genomes known. The 235 kB genome is divided in a unique long (UL)
and a unique short (US) region which are flanked by terminal and internal repeats. The
expression of HCMV genes is highly complex and involves the production of protein coding
transcripts, polyadenylated long non-coding RNAs, polyadenylated anti-sense transcripts
and a variety of non-polyadenylated RNAs such as microRNAs. Although the function of
many of these transcripts is unknown, they are suggested to play a direct or regulatory
role in the delicately orchestrated processes that ensure HCMV replication and life-long
persistence. This review focuses on annotating the complete viral genome based on three
sources of information. First, previous reviews were used as a template for the functional
keywords to ensure continuity; second, the Uniprot database was used to further enrich
the functional database; and finally, the literature was manually curated for novel functions
of HCMV gene products. Novel discoveries were discussed in light of the viral life cycle.
This functional annotation highlights still poorly understood regions of the genome but
more importantly it can give insight in functional clusters and/or may be helpful in the
analysis of future transcriptomics and proteomics studies.
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INTRODUCTION
Human cytomegalovirus (HCMV) is a common opportunistic
pathogen with a worldwide prevalence of 45–100% depending on
age, location, gender and socio-economic status (Cannon et al.,
2010). Initial infection is followed by life-long persistence char-
acterized by periodical reactivation episodes. Whereas in healthy
individuals, initial infection and reactivation of the virus usually
does not result in morbidity (Boeckh and Geballe, 2011); the virus
can cause devastating complications in neonates and immune-
compromised patients such as birth defects, systemic failure and
rejection of the transplanted organ (Griffiths, 2006; Pass et al.,
2006; Kenneson and Cannon, 2007; Crough and Khanna, 2009).

HCMV is a double-stranded DNA virus and with a genome
length of 235 kB it has the largest genome of the Herpesvirus
family. The genome contains a unique long (UL) and a unique
short (US) region each flanked by terminal (TRL and TRS), and
internal (IRL and IRS) inverted repeats (Murphy and Shenk,
2008). The genetic map of clinical strain Merlin was thought to
contain 165 protein coding genes (Dolan et al., 2004). A later
study identified an additional four new protein coding tran-
scripts, i.e., RL8A, RL9A, UL150A, and US33A. In this study, it
had already been suggested that more ORFs could exist which
code for small proteins (Gatherer et al., 2011). A recent study con-
firmed this hypothesis and revealed a previously unprecedented
complexity of HCMV gene expression when they identified an
additional 604 protein coding ORFs, most of which were very
short and located upstream of longer ORFs (Stern-Ginossar et al.,
2012). In addition to protein coding genes, HCMV also produces
polyadenylated non-coding RNAs. A first type of non-coding

RNAs are the abundantly produced long non-coding RNA2.7,
RNA1.2, RNA4.9, and RNA5.0 which do not overlap with protein
coding regions. Secondly, non-coding RNAs are produced anti-
sense of protein coding regions (Zhang et al., 2007; Gatherer et al.,
2011). Finally, HCMV also codes for non-poly-adenylated RNAs,
e.g., micro-RNAs which play a regulatory role (Dhuruvasan et al.,
2011).

Expression of HCMV genes in permissive cell types proceeds
in a temporal cascade initiated with the expression of immediate-
early genes followed by the production of early, early-late and
late transcripts (Wathen and Stinski, 1982; Stinski et al., 1983;
Stenberg et al., 1985). In cell types that support the establishment
of latency, such as CD14+ monocytes and CD34+ progenitor
cells, an alternative transcription program is followed in which
a limited set of transcripts sustains the latent state of the virus
(Bevan et al., 1991; Beisser et al., 2001; Goodrum et al., 2002;
Jenkins et al., 2004; Cheung et al., 2006; Goodrum et al., 2007;
Reeves and Sinclair, 2009; Poole et al., 2013).

In a large scale study Dunn et al. (2003) identified 45 core
gene products of which 78% are essential for growth in fibrob-
lasts and appear to be conserved amongst all Herpesviruses, the
remaining essential proteins are either HCMV or β-Herpesvirus
specific. Equally interesting was the observation of 117 proteins
which were dispensable for growth in fibroblasts. In addition,
several genes appeared to be involved in viral growth suppres-
sion. UL9, UL20a, UL23, or US30 gene deletion resulted in
enhanced growth in fibroblasts whereas similar observations were
done for the UL10 and UL16 gene in endothelial cells and for
the US16 and US19 gene in HMVECs. Although this appears
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counterproductive for viral replication, it was suggested that they
may be part of a mechanism to prevent massive cellular damage
and host death and/or to be involved in suppressing lytic infec-
tions to facilitate the establishment of latency. Largely confirming
the gene deletion analysis of Dunn et al. (2003); Yu et al. (2003)
performed random transposon mutations in HCMV and iden-
tified 41 essential, 88 non-essential, and 27 augmenting ORFs
(Yu et al., 2003). However, at the time, the function of many
of these genes was still unknown. Several of these gene prod-
ucts were later on functionally annotated by Mocarski (2007)
in a comparative study between HCMV, HHV-6 and HHV-7
(Mocarski, 2007). This overview of HCMV gene functions dates
from 2007 and in the meantime numerous gene products were
investigated since. In addition, some gene products were impli-
cated in new viral processes. For example, UL32 (pp150) was
described to be involved in maturation during the lytic cycle
(Aucoin et al., 2006). However, recently, a role for this gene
product was also delineated in gene expression regulation and
modulation of the host cell cycle (Bogdanow et al., 2013). In
addition, numerous genes with a previously unknown function
were investigated and are now attributed with a role in the viral
life cycle. In this review, we provide an updated, non-exhaustive
functional annotation of the HCMV genome based on cura-
tion of the literature, previous reviews and the Uniprot database
(Supplementary Table 1).

METHODOLOGY
The functional annotation presented here is based on three dif-
ferent sources of information. First, the functional keywords pub-
lished in Dunn et al. (2003) and Mocarski (2007) were included
for each gene. Second, the ontology “biological process” found in
Uniprot (Apweiler et al., 2004; Boutet et al., 2007) for each gene
was used, even predicted annotations. If this information was not
available, the ontology “cellular component” was used, the latter
was intended to provide additional information on gene prod-
ucts, e.g., on the presence of a certain protein in the tegument
or virion. Only reviewed Uniprot entries were included in the
data presented here and, unless otherwise stated, the entry for the
clinical strain Merlin was used. Finally, literature was manually
searched using Pubmed (http://www.ncbi.nlm.nih.gov/pubmed,
searches performed in December 2013) to fill in functional anno-
tations discovered since the last overview in 2007. For each gene,
the following searches were performed in Pubmed: “gene name
and cytomegalovirus” and “gene name and HCMV.” Functional
annotations were based on the information found in the title
and/or abstract of retrieved publications. Each unique function
was summarized in a keyword as others have done before (Dunn
et al., 2003; Mocarski, 2007). Additionally, the time-kinetics of
each gene product and whether or not the ORF is dispensable
for growth in fibroblasts is provided based on a gene deletion
study by Dunn et al. (2003); and a study using random transposon
mutations in HCMV genes by Yu et al. (2003).

In addition to previous reviews (Dunn et al., 2003; Mocarski,
2007), we also included functional annotations for RL5A, RL8A,
RL9A, UL1, UL37, UL81ast, UL118, UL131A, UL145 and all
four lncRNAs. Recently, several genes (RL3, RL5, RL7, RL8,
UL41, UL49.5, UL58, UL60, UL63, UL66, UL106, UL107, UL125,

UL126, UL131, UL137, UL143, UL151, US4, US5, and US35)
were shown not to code for proteins, these genes were omitted
from this functional annotation (Davison et al., 2013).

FUNCTIONAL ANNOTATION OF HCMV GENES DURING THE
LYTIC VIRAL LIFE CYCLE
Since the publications of Dunn et al. (2003) and Mocarski (2007),
the functions of several genes have been unraveled. The aim of the
section below is to review these novel functions in the context of
the viral life cycle.

HCMV can infect a variety of cell types including, but not lim-
ited to, fibroblasts, endothelial cells, epithelial cells and cells of
the myeloid lineage (Sinzger et al., 1999; Arrode and Davrinche,
2003; Durose et al., 2012; O’Connor and Shenk, 2012; Bayer et al.,
2013). Depending on the cell type, the virus enters the cell by
membrane fusion or by pH-mediated endocytosis. The former
process is found in fibroblasts and mediated by the gH/gL/gO pro-
tein complex; the latter means of entry is typical for epithelial and
endothelial cells and requires the gH/gL/UL128/UL130/UL131
pentameric complex (Wang and Shenk, 2005; Ryckman et al.,
2008). Different proteins have been attributed a role in cell
tropism or cell-specific replication before (Dunn et al., 2003;
Mocarski, 2007). Recently, it was shown that the UL128-UL131A
cluster rapidly mutates in fibroblasts and UL128 gene muta-
tions appear to serve as a means to optimize viral replication
in fibroblasts (Stanton et al., 2010). Based on mutational stud-
ies, UL131A was also found to be important for endothelial
tropism as part of the pentameric entry complex (Schuessler
et al., 2012). Besides the UL128-UL131 locus, US16 and UL78
(Mocarski, 2007; Bronzini et al., 2012; O’Connor and Shenk,
2012) and possibly RL4-RL5, RL13, UL1, UL39, UL83, UL109,
UL110, UL111A, UL132, UL148, and US22 are involved in epithe-
lial tropism (Stanton et al., 2010; Womack, 2011; Shikhagaie et al.,
2012).

Following entry, a temporal cascade starts resulting in expres-
sion of immediate early (IE), early (E) and late (L) HCMV
proteins (Supplementary Table 1). There is a general consensus
that the production of IE1 and IE2, assisted by several additional
proteins, initiates the viral replication (Colberg-Poley, 1996). In
addition, US24 was suggested to play an important role in the
progression of the cascade as the replication cycle of US24-
deficient viruses is blocked after the viral DNA reaches the nucleus
and before immediate-early mRNAs are transcribed (Feng et al.,
2006).

During the progression of HCMV replication, the virus tightly
modulates its own gene expression at various times during the
temporal cascade. A good example of a complex regulatory mech-
anism which includes both viral and cellular factors is the control
of the major immediate-early promotor (MIEP). The activity or
repression of the MIEP is dependent on its association with active
or inactive chromatin and thus with acetylated and demethylated
histones or deacetylated and methylated histones, respectively
(Reeves, 2011). Furthermore, the MIEP contains motifs for the
binding of cellular and viral activating (e.g., CREB, NFkB, AP-
1) and/or repressive transcription factors (e.g., SBP, modulator
recognition factor, PDX1, YY1, methylated DNA-binding protein,
GFI-1, ERF) (Meier and Stinski, 1996; Stinski and Meier, 2007).
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Two additional viral products, i.e., pp71 (UL82), a tegument
protein; and pp65 (UL83), mostly known for its properties as an
immune modulator, were found to transactivate or regulate the
MIEP (Homer et al., 1999; Hofmann et al., 2002; Cristea et al.,
2010; Arcangeletti et al., 2011; Tomtishen, 2012). Other proteins
such as UL97, products of the UL28-UL29 locus and US28 medi-
ate the MIEP via cellular transcription factors (i.e., US28), via
HDACs (UL97 and UL28-UL29) or via modulation of the host
(UL32/pp150) (Mitchell et al., 2009; Wen et al., 2009; Terhune
et al., 2010; Bigley et al., 2013; Bogdanow et al., 2013). Also US3
gene expression is tightly regulated. The US3 gene is an auxillary
IE gene which retains the MHC-I heavy chain proteins in the ER
and works as an immunomodulator. The US3 gene is activated by
pp71, IE1, IE2 and TRS1 while repression is mediated by UL34
(Biegalke, 1999; Mocarski, 2007). In addition, UL37.1/UL38 and
UL84 inhibited IE1 and IE2-mediated US3 expression (Biegalke,
1999). Later in the viral life cycle during late gene expression,
UL79, UL87 UL91, UL92, and UL95 were recently found to be
involved in the accumulation of late genes (Isomura et al., 2011;
Perng et al., 2011; Omoto and Mocarski, 2013, 2014).

During late stages of infection, the virus ensures that viral
DNA replication is established (Tandon and Mocarski, 2012).
Recently, UL36, UL49, UL80, UL100, UL117, and TRS1 have been
attributed an essential role in DNA replication (Smith and Pari,
1995a; Krzyzaniak et al., 2007; Nguyen et al., 2008; Qian et al.,
2008; Marshall et al., 2009; Zhang et al., 2010; Wang et al., 2013a)
while the importance of UL112-UL113 and UL84 during DNA
replication was further delineated (Colletti et al., 2007; Gao and
Pari, 2009; Kagele et al., 2009; Kim and Ahn, 2010; Strang et al.,
2012). In addition, UL76 was found to modulate the expression
of the essential protein UL77 possibly as part of a mechanism
to modulate UL77 levels required for efficient viral replication
(Dunn et al., 2003; Isomura et al., 2010). Interestingly, UL55
and UL76 were identified to inhibit DNA replication suggesting
that these viral factors are likely key proteins to fine-tune the
replication process (Wang et al., 2004; Xiaofei et al., 2012).

Upon the creation of new genomes, the DNA is packaged in
newly formed capsids. Based on predictions, UL80.5 and UL93
may be involved in capsid formation (Apweiler et al., 2004;
Loveland et al., 2007) whilst the role of UL51 in packaging of the
genome was confirmed. Interestingly, also the neighboring gene
UL52 was attributed a role in genome packaging (Mocarski, 2007;
Borst et al., 2008, 2013). After the encapsidation of the DNA, the
immature virion is transported from the nucleus to the cytoplasm
to undergo maturation processes such as primary and secondary
envelopment (Tandon and Mocarski, 2012). Recently, the protein
products of the UL133-UL138 region were found to be impor-
tant for the formation of the cytoplasmic assembly complex, more
specifically in endothelial cells (Bughio et al., 2013). Further,
UL96 has been found to stabilize pp150-associated nucleocapsids
during translocation from the nucleus to the cytoplasm (Tandon
and Mocarski, 2011) and UL32/pp150 preserves the integrity of
the immature virion during maturation events. Also, UL32/pp150
enables the proper assemby of the tegument layers during the final
phase of maturation (Aucoin et al., 2006). Additional mutation
or deletion studies showed crucial roles for UL71, UL74, UL94,
and US17 in the final stages of secondary envelopment (Jiang

et al., 2008; Schauflinger et al., 2011; Meissner et al., 2012; Phillips
and Bresnahan, 2012; Gurczynski et al., 2014). US28 was pre-
dicted, based on homology, to also have a role in maturation;
however, further research will need to validate this hypothesis.
UL89 suppression using shRNA leads to a defect in viral particle
formation although a specific mechanism has not been identified
(Thoma and Bogner, 2010). Finally, UL74, US17, and UL103 were
attributed a role in the egress of newly formed virions (Jiang et al.,
2008; Thoma and Bogner, 2010; Ahlqvist and Mocarski, 2011).

Throughout the life cycle, viral proteins which regulate cel-
lular trafficking are integral in the viral replication cycle. Upon
membrane fusion, the capsid is released in the cytoplasm and
transported to the nuclear pore to release the viral DNA in the
nucleus. After replication, new capsids are transported to the
cytoplasm to acquire a host-derived membrane before virion
release (Fulcher and Jans, 2011; Henaff et al., 2012). As part of
this process, a role in directing capsids to the final sites of envelop-
ment has been proposed for UL32/pp150 (Kalejta, 2008). Whilst
UL52 has been proposed to be involved in capsid transport, UL50
and UL53 have been confirmed as factors responsible for nuclear
egress for which they recruit UL97 (Mocarski, 2007; Sharma et al.,
2014).

The composition of the virion depends on the nature of
the starting cell line and methods of culturing and purification
(Gibson, 2008b). However, it consists of highly conserved pro-
teins categorized into virion capsid components, tegument and
envelope proteins (Dunn et al., 2003; Mocarski, 2007; Gibson,
2008a; Kalejta, 2008; Tomtishen, 2012). Several new virion pro-
teins have been identified recently, some still with an unknown
function. The UL1 protein, a late protein, is now determined
to be an envelope protein and was found at assembly sites in
the presence of other viral structural proteins (Shikhagaie et al.,
2012). Analysis of the UL1 sequence positions the gene in the
RL11 family which also includes RL5A, RL6, RL11, RL12, RL13,
and UL4-UL14 genes (Mocarski, 2007; Shikhagaie et al., 2012).
Interestingly, but not surprising, as the UL1 gene is thought to
originate from a RL11-RL13 gene duplication, is that the RL13
gene product has also been described as a new glycosylated enve-
lope protein (Stanton et al., 2010). Although not experimentally
verified, Uniprot suggests (prediction based on similarity) that
also RL12 and UL29 may be a part of the virion (Apweiler et al.,
2004). Finally UL26 has been attributed a role in virion stability
(Kalejta, 2008).

The progression of the viral life cycle also depends on the capa-
bility of the virus to modulate host cell processes such as cellular
gene expression and apoptosis to its advantage. Recently, US27
was identified as a modulator of cellular gene expression (Arnolds
et al., 2013) whilst UL28-UL29, UL38, UL79 and RNA2.7 were
found to control apoptosis (Reeves et al., 2007; Terhune et al.,
2007; Moorman et al., 2008; Siew et al., 2009; Xuan et al., 2009;
Qian et al., 2011; Fliss and Brune, 2012; Costa et al., 2013; Savaryn
et al., 2013).

NOVEL FUNCTIONAL ANNOTATIONS OF HCMV GENES
EXPRESSED DURING LATENCY
As all herpesviruses, HCMV establishes latency but HCMV
specifically resides in myeloid cells such as CD34+ progenitor
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cells and CD14+ monocytes (Taylor-Wiedeman et al., 1991;
Mendelson et al., 1996; Sindre et al., 1996; Bolovan-Fritts et al.,
1999). Upon differentiation stimuli, latent virus can reactivate
and re-enter the lytic life cycle resulting in the production of
infectious virions (Soderberg-Naucler et al., 1997; Zhuravskaya
et al., 1997; Hahn et al., 1998; Soderberg-Naucler et al., 2001;
Goodrum et al., 2002; Reeves et al., 2005; Huang et al., 2012).
During latency, HCMV remains present as an episome and pro-
duces a limited set of transcripts (Bolovan-Fritts et al., 1999;
Goodrum et al., 2002; Bego et al., 2005; Cheung et al., 2006;
Goodrum et al., 2007; Petrucelli et al., 2009; Avdic et al., 2011;
Bego et al., 2011; Keyes et al., 2012; Poole et al., 2013; Rossetto
et al., 2013).

After the identification of the first putative latency transcripts
(Kondo and Mocarski, 1995; Kondo et al., 1996), several large
scale studies have been set up to elucidate the latency-associated
transcriptome. Upon infection of non-permissive cells, tran-
scripts from 65 different loci have been observed which, over time,
lead to robust expression of a discrete set of transcripts (Goodrum
et al., 2002; Cheung et al., 2006; Rossetto et al., 2013). Noteworthy
is that several of these identified transcripts, i.e., RL3, RL5, RL7,
UL41, UL66, and UL131 were recently described not to code for
proteins (Davison et al., 2013). Of the remaining transcripts, 30
were found in only one study by Goodrum et al. (2002), whilst
UL28, UL37, UL50, UL52, UL95, UL114, UL123, UL126A, US27,
RNA2.7, and RNA4.9 were found uniquely in another by Rossetto
et al. (2013). Further studies also pinpointed UL82/pp71 and
UL128 as possible latency-associated transcripts (LATs) (Cheung
et al., 2006; Penkert and Kalejta, 2012).

A number of transcripts were found in more than one study,
i.e., RL7, UL3, UL67, UL68, UL84, UL87, UL108, UL110, UL133,
UL135, US28 (Beisser et al., 2002; Goodrum et al., 2002; Cheung
et al., 2006; Keyes et al., 2012; Rossetto et al., 2013) but thus far
only UL81ast/LUNA (Goodrum et al., 2002; Bego et al., 2005,
2011; Keyes et al., 2012; Rossetto et al., 2013), UL111A (Cheung
et al., 2006; Avdic et al., 2011; Rossetto et al., 2013), UL138
(Goodrum et al., 2002, 2007; Petrucelli et al., 2009; Rossetto et al.,
2013) and, depending on the virus used and the presence of
GATA transcription binding sites, UL144 (Poole et al., 2013) were
extensively characterized as LATs. Further research will show the
validity of other potential LATs and dive deeper into the actual
function of these transcripts and possibly their gene products
during HCMV latency.

NEW GENES INVOLVED IN IMMUNOMODULATION
HCMV modulates both the host’s innate and adaptive immu-
nity though various pathways (Jackson et al., 2011; Noriega
et al., 2012a). In fact, in our functional annotation, 14 HCMV
gene products were attributed a new role, or a proposed role,
in immunomodulation whilst the involvement of 19 genes
in immunomodulation were further expanded or confirmed
(Supplementary Table 1).

HCMV is well known to interfere with antigen presentation
on MHC-I molecules thereby evading T-cell and NK-regulated
immunity (Jackson et al., 2011; Noriega et al., 2012a). Since
the last reviews (Dunn et al., 2003; Mocarski, 2007), the roles
of HCMV products in modulation of MHC-I expression (US2,

US3, US10, US11, UL82/pp71), interference in antigen presten-
tation (US6) or their debilitating capacity on T-cell or NK cell
recognition and function (UL16, UL18, UL141, UL142, US2)
were further characterized (Wiertz et al., 1996; Cosman et al.,
2001; Odeberg et al., 2003; Wills et al., 2005; Oresic et al., 2006;
Dugan and Hewitt, 2008; Kim et al., 2008; Oresic and Tortorella,
2008; Ashiru et al., 2009; Muller et al., 2010; Park et al., 2010;
Prod’homme et al., 2010; Noriega et al., 2012b; Penkert and
Kalejta, 2012; Hesse et al., 2013; Smith et al., 2013). In addition,
several gene products have a new role in immunomodulation.
UL37.3 was found to be an MHC-I-like molecule encoded by
the virus (Wyrwicz and Rychlewski, 2008; Revilleza et al., 2011).
Alternatively, UL49.5 was found to influence MHC-I recogni-
tion by T-cells while UL11 caused functional paralysis of T-cells
(Oosten et al., 2007; Gabaev et al., 2011).

HCMV also expresses an array of cytokine- and chemokine-
like molecules (McSharry et al., 2012). The involvement of
UL144, UL146, UL147, and US28 in cytokine- and chemokine-
mediated processes was already reported before; but several
groups further delineated their function (Poole et al., 2008;
Stropes et al., 2009; Luttichau, 2010). Also, it was shown that
UL33 and UL78 form heteromers with CCR5 and CXCR4
chemokine receptors resulting in a predominantly negative effect
on CCR5 and CXCR4 functions and expression; without alter-
ing the chemokine binding properties of both receptors (Tadagaki
et al., 2012). Alternatively, UL7 was found to be involved in
modulating cytokine expression in DCs and myleoid cell lines.
Through a SLAM domain UL7 can also mediate cellular adhesion
to monocyte-derived DCs (Engel et al., 2011). In addition, UL22A
has been suggested to play a role in infected DCs (Raftery et al.,
2009). Further, UL128 has been shown to modulate cytokine
expression to induce PBMC proliferation (Zheng et al., 2012).
Also US17 was recently implicated in modulation of host path-
ways by controlling the virion so that it elicits a balanced immune
response (Gurczynski et al., 2014). For UL138 an apparently
contradictory role has been described. UL138, a known LAT
(Goodrum et al., 2007), upregulates TNFR surface expression
and potentiates the action of TNFα, two processes much asso-
ciated with pro-inflammatory responses (Chu, 2013). However,
TNFα has been attributed reactivating properties and thus it
is postulated that UL138 may sensitize latently infected cells to
TNFα-mediated reactivation of HCMV. Finally UL139 is pro-
posed to have an immunomodulatory role due to its homology to
CD24 whilst RL12 and RL13 are likely involved in limiting host
antibodies through their IgG binding capacity (Qi et al., 2006;
Cortese et al., 2012). Other genes such as US7, US9 and TRS have
been predicted to be involved in immunomodulation (Apweiler
et al., 2004).

CONCLUSION
The large genome of HCMV is expressed in a complex and tightly
regulated temporal cascade. Numerous protein products of the
virus are cis- and trans-acting factors which modulate viral and
cellular gene expression thereby ensuring maximal efficiency of
the viral replication whilst carefully minimalizing disruptive cel-
lular processes such as apoptosis and immune defense. In this
review, we focussed on updating the functional annotation of
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the complete HCMV genome. Functional annotations such as
the one presented here, and previously published annotations
(Dunn et al., 2003; Mocarski, 2007), can be an aid in tran-
scriptome or proteomics studies. This functional annotation is
useful to look at gene clusters with similar functions, to per-
form functional pathway analysis or may suggest future research
goals to investigate if neighboring genes with an unknown func-
tion possibly fit the same annotation as the rest of the cluster.
Continues efforts of various groups have provided a functional
annotation of most of the HCMV gene products. However, the
representation of several functional categories stand out. First
of all, the large number of genes associated with latency is
striking. While only four LATs have been extensively charac-
terized, many more transcripts were found in high-throughput
studies. The challenge lies in identifying protein products for
these transcripts and to determine their true role during HCMV
latency and reactivation. In addition, most of the recent find-
ings reveal that many HCMV gene products are involved in
immunomodulation. This is not unusual for a virus which per-
sists for life but only now we are beginning to understand the
true complexity of the various cellular pathways HCMV modu-
lates. Further research is vital to compose the complete picture
of all immunomodulatory pathways which HCMV uses to enable
lytic and latent infection. It is interesting in this regard to inves-
tigate gene clusters, e.g., UL141-UL148 in which some genes
products have been attributed a function in immunomodula-
tion, e.g., UL141, UL142, UL144, UL146, UL147 whilst oth-
ers (UL145, UL148, UL149, and UL150) have an unknown
function. Future studies investigating these regions will pro-
vide information if currently unknown genes also play a role in
immunomodulation.

The current table is based on the gene map of genomics
and transcriptomics studies (Dunn et al., 2003; Gatherer et al.,
2011). However, recently it was revealed that the coding capac-
ity of HCMV is far greater than originally assumed. Stern-
Ginossar et al. (2012) reported no less than 751 translated
ORFs and 53 novel proteins originating from ORFs not over-
lapping the known ORFs. As currently the function of these
genes and proteins is unknown, further reductionist stud-
ies are required to determine their role in the viral life
cycle.
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