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Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various
metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and
particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach
and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially
when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive
computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative
framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms.
This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO

optimization.

1. Introduction

Many real-world problems can be reduced to scenarios that
have a single aim or objective. However, it is difficult in
some instances to incorporate all the aspects of the problem
into a single objective function. Thus, a good way to go
about incorporating multiple aspects is by defining multiple
objectives and including them into the problem formulation.
A mathematical representation of a multiobjective (MO)
problem is as follows:

Max / l;'/llelg F (x,)

€]
. _ [%ug(x) =0 h(x,) <0,
subject to X = { uelll], ke [LP] ’

where the indexes u and k denote the individual decision
variables and the objective functions, g(x,) and h(x,) are
the equality and inequality constraints, / is the maximum
number of decision variables, and p is the maximum number
of objective functions.

In recent times, many concerns have been raised when
dealing with emerging technologies in industrial and engi-
neering optimization which present themselves in a mul-
tiobjective (MO) setting [1-5]. Some of the issues are lack
of computational power, insufficient computational tech-
niques, and poor quality of obtained solution. Strategies in
MO optimization can be rudimentarily classified into three
groups. The first group is methods that use the concept
of Pareto optimality to trace the nondominated solutions
at the Pareto curve, for instance, in Strength Pareto Evo-
lutionary Algorithm (SPEA) by Zitzler and Thiele [6] and
Nondominated Sorting Genetic Algorithm II (NSGA-II) by
Deb et al. [7]. The second class of techniques are known
as the weighted (or scalarization) techniques. During the
application of these methods, the objective functions are
aggregated into a single weighted function which is then
solved for various scalar (weight) values. Some well-known
scalarization techniques include the weighted sum method
[8] and normal-boundary intersection method (NBI) [9].
Using these techniques, the scalars (or weights) are used to
consign relative tradeoffs to the objectives by the aggregation
procedure. Hence, alternative near-optimal solution options
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are generated for various values of the scalars. The third
group of techniques is the decomposition approaches. These
approaches solve MO problems by simplifying the original
problem into neighbouring subproblems. Among notable
techniques which involve decomposition formulations are
the MO evolutionary algorithm based on decomposition
(MOEA/D) [10] and genetic algorithm with decomposition
procedures [11].

In MO optimization problems, determining the most
efficient solution set can be a very daunting process. Many
varieties of concepts (such as diversity and convergence)
have been proposed in the past [12]. These ideas were then
used as indicators to evaluate solution sets produced by the
optimization algorithm [12]. Such evaluations were then used
to benchmark the algorithm’s performance. These concepts
unfortunately could not absolutely state and rank the superi-
ority of solution sets produced by an algorithm against other
such sets by other algorithms. Besides, the size of the Pareto
frontiers is often directly proportional to the problem size.
Since many industrial problems involve continuous functions
(objectives), the Pareto frontiers obtained are infinite. Hence,
such solutions are computationally impossible. The goal in
such scenarios is usually to obtain a good approximation of
the Pareto frontier.

The only concept that can be used generally for the overall
ranking of solution sets is the idea of “Pareto dominance”
[13]. The hypervolume indicator (HVTI) [13] is a set measure
reflecting the volume enclosed by a Pareto front approxima-
tion and a reference set (see [14-16]). The HVI guarantees
strict monotonicity regarding Pareto dominance [17,18]. This
makes the ranking of solution sets and hence algorithms pos-
sible for any given MO problem. Nevertheless, other forms
of metrics have also been developed and widely employed for
benchmarking solution quality in MO optimization problems
such as the convergence metric [19], diversity metric [20], and
the HVI [21].

Over the past years, metaheuristic techniques have been
applied with increasing frequency to industrial MO opti-
mization problems. Some of the most effective metaheuristic
techniques are the ones that spring from evolutionary and
swarms approaches. One such evolutionary approach is
the genetic algorithm (GA), introduced by Holland in the
nineties [22]. GAs belongs to the group of stochastic search
methods such as simulated annealing [23] and some forms of
branch and bound. While most stochastic search techniques
operate on a distinct solution for a particular problem, GAs
operates on a population of solutions. In recent times, GAs
have been widely applied in industrial scenarios (see [24-
26]). Differential evolution (DE) is also a population-based
evolutionary algorithm that has been derived from genetic
algorithms (GA) [22]. DE was developed in the nineties
by Storn and Price [27]. DE has been used extensively to
solve problems which are nondifferentiable, noncontinuous,
nonlinear, noisy, flat, multidimensional, and having many
local minima, constraints, or high degree of stochasticity.
Lately, DE has been applied to a variety of areas including
optimization problems in chemical and process engineering
[28-30].
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One of the most popular swarm-based optimization
approaches is the particle swarm optimization (PSO) algo-
rithm. This optimization method was developed based on the
movement and intelligence of swarms. PSO was developed
by Kennedy and Eberhart [31] in 1995. Lately, PSO has
been applied to a variety of areas including optimization
problems in engineering [32] as well as economic dispatch
problems. Another famed swarm approach is the gravi-
tational search algorithm (GSA). This method introduced
recently by Rashedi et al. [33] is currently among the most
applied metaheuristic techniques in industrial optimization.
GSA belongs to the group of swarm-based stochastic search
methods (such as particle swarm optimization (PSO) [31]
and cuckoo search algorithm (CSA) [34]). GSA operates
on a population of solutions based on Newtonian law of
gravity and mass interactions. This algorithm regards agents
as objects consisting of different masses. In recent times, GSA
has been broadly applied in many industrial settings (see
[35]).

In a nutshell, currently MO optimization is done with
the aid of metaheuristic algorithms, scalarization techniques,
and nondominated Pareto optimal solution tracing. Besides,
metric analysis is also employed to gauge the quality of the
solutions obtained by any given algorithm. This paper aims
to propose a philosophical framework that uses the infor-
mation from metric analysis to generate high-performance
and computationally efficient algorithms that produce high-
quality solutions for MO optimization problems.

This paper is organized as follows: Section 2 provides a
brief review on some previous works on industrial appli-
cations of MO optimization techniques, while Section 3
presents an overview on some current issues arising in MO
optimization and the proposed methodology for MO opti-
mization. Section 4 includes some mathematical foundations
with regard to the definitions and assumptions used in the
proposed framework. Section 5 provides some numerical
experiments performed by the application of the proposed
framework. Finally, this paper ends with some concluding
remarks.

2. MO Techniques in Real-World Application

This section provides a review on various research works
on the applications of MO optimization techniques ranging
from general industrial applications and power systems to
chemical processes. Over the past years, MO optimization has
been introduced and applied into many real-world industrial
scale problems. Some of these developments are presented in
Table 1.

From previous research works presented in Table 1, it can
be clearly seen that MO optimization has gradually spread
towards many industrial applications. However, it can also be
observed that in most cases only biobjective MO problem is
considered. This may be due to fact that MO optimization is
a new and upcoming field and only in recent times (with the
aid of modern computational power) has this field spread its
horizons into real-world industrial applications.
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TaBLE 1: Developments of MO optimization in industrial applications.

Reference

Application

Technique

Aguirre et al., 2004 [50]

Reddy and Kumar, 2007 [51]

Kusiak et al., 2010 [55]

Van Sickel et al., 2008 [56]
Heo et al., 2006 [57]

Song and Kusiak, 2010 [58]

Gunda and Acharjee, 2011 [59]
King et al., 2005 [60]

Kehinde et al., 2010 [61]
El-Wahed et al., 2008 [63]

Abido, 2003 [64]

Ganesan et al., 2011 [65]

Sankararao and Gupta., 2007
[66]
Rajesh et al., 2000 [67]

Behroozsarand et al., 2009 [68]

A field programmable transistor array
(FPTA)

“Truss design (Palli, et al., 1999 [52])”
“I-beam design (Yang et al., 2002 [53])”
“Welded beam design (Deb et al., 2000
[54])”

HVAC

Control optimization for power plant
Control optimization for fuel power plant
Temporal process optimization

Economic/environmental dispatch problem
Power generation

Economic/environmental dispatch
Economic/environmental dispatch

Economic/environmental dispatch

Mould systems materials engineering
Industrial fluidized-bed catalytic cracking
unit

Steam reformer performance optimization
Optimization of an industrial autothermal

Inverted shrinkable Pareto archived evolution
strategy (ISPAES)

MO particle swarm optimization (MOPSO)

MOPSO
Multiobjective evolutionary programming
(MOEP) and MOPSO

PSO variants

Hybrid data mining (DM) and evolutionary
strategy algorithm

Pareto frontier DE (PFDE)
NSGA-II

Hybrid convergence accelerator and the
NSGA-II (Adra et al., 2009 [62])

Hybrid ant colony optimization (ACO) and the
modified SIMPLEX method

Hybrid NSGA hierarchy clustering algorithm
and the fuzzy theory

Hybrid NBI and GA

Jumping gene MOSA or MOSA-Jg
Hybrid NSGA

NSGA-II

reformer

Martinsa and Costa., 2010 [36]
process

Salari et al., 2008 [37] reactor

Fiandaca and Fraga, 2009 [38] adsorption

Optimization of a benzene production
Optimization of an ethane thermal cracking

Design optimization of pressure-swing

MO simulated annealing (MOSA)
NSGA-II

Multiobjective GA (MOGA)

3. Proposed Framework

In the last ten to fifteen years, many industrial processes are
seen from the MO optimization standpoint. In most cases,
these processes are modelled with two or less objectives (see
[36-38]). In such cases, other objectives are assumed to be a
constant or treated as constraints. This is due to the lack of
computational techniques and means of analysis for solving
problems involving more than two objectives.

Subsequently many methods for Pareto frontier construc-
tion have been proposed in the past (see [4, 9]). However,
very few studies have been conducted on the effects of
convergence/diversity of the solution set (with respect to the
problem’s objective space) on the degree of Pareto dominance
produced by any given MO algorithm.

Another issue is the philosophy of hybridization. Algo-
rithm hybridization is a good approach to enhance the
performance of any given algorithm (see [39, 40]). However,
due to the increase in algorithmic complexity, this approach
causes the algorithm to be computationally expensive and
inefficient [39-41]. Besides, the improvement of the solution
quality is not guaranteed by employing this approach.

Over the past years, performance metrics have been used
to gauge the quality of solution sets produced by algorithms
for MO problems [42, 43]. These metrics reflect the algo-
rithm’s capabilities/performance in solving a MO problem.
Different performance metrics measure different aspect of the
algorithm’s capabilities, for instance, convergence, diversity,
uniformity, and degree of dominance of solution spread (in a
MO setting).

Hence, performance metrics have been used extensively
in gauging solution quality. However, is it possible to further
improve or modify an algorithm based on the assessment
results produced by the performance metrics on a particular
solution set? Secondly, if such a modification is possible,
how does one go about using this information produced
by the performance metrics? Assuming the answer to the
first question is yes, then to answer the second question the
information produced by the performance metrics need to be
identified and classified. For this classification, the Hierarchy
Axiom is postulated. Nevertheless, to increase the strength of
this axiom an attempt is made to construct it from the “No
Free Lunch (NFL) Theorems [44]”.



As observed in the NFL Theorems [44], algorithm
performances are very problem-dependent. These theorems
indicate that over a large set of problems, the average
performance of any pair of algorithms across all possible
problems is identical. In simpler terms, if some algorithm’s
performance is better than another algorithm over some set
of optimization problems, then the reverse must be true over
the set of all other optimization problems. Therefore, the
performance of a given algorithm is closely dependent on the
“structure of the problem” tackled by it.

To keep things clear, let this “structure of the problem”
be defined as “problem morphology” Assuming that in MO
scenarios, the problem morphology can be attained by ana-
lyzing the solution sets produced by a given algorithm. The
results of this analysis can be obtained by the performance
metrics. Thus, it can be stated that the results produced
by performance metrics could be used to characterise and
understand the problem morphology.

It is crucial to note that the definition of problem
morphology introduced here is not the same as problem
characteristics. Problem characteristic in an optimization
context usually means the degree nonlinearity, the degree of
nonconvexity, number of constraints, number of variables,
and so forth. for a given problem. This sort of problem
characteristics is commonly determined by observations
done on the optimization problem formulation. “Problem
morphology” on the other hand is used in this work to
define the information which is numerically attained (results
from the performance metrics) for the solution set of a
given MO optimization problem. Hence, this distinguishes
the “problem characteristics” from “problem morphology”
Although we have now established some logical connection
between the problem morphology and the results produced
by the performance metric, one question remains. How do we
classify and use the information of the problem morphology
to improve our algorithms? To attempt to answer this ques-
tion, we now develop a formal postulate of the Hierarchical
Axiom. In this argument, let us limit the number of metrics to
three; say the convergence, diversity metrics, and the HVL It
is understood that the HVI gives us the degree of dominance
of the solution sets, which in other words is our ultimate
goal. The convergence and diversity metrics produces results
that may be considered secondary to our ultimate goal. Since
the results produced by all these metrics are from the same
solution set, hence they must be connected in some unknown
mathematical sense. Hence, our ultimate goal (solution set
dominance) is influenced by the diversity and convergence
metrics in an unknown manner. This unknown relationship
would vary from problem to problem. This is due to the fact
that the problem morphology also varies depending on the
problem. This work proposes that by analysing the problem
morphology by using the Hierarchy Axiom as a stepping
point, this unknown relationship may be known.

The hierarchy of priorities such that the degree of diver-
sity and convergence of the solution sets directly influence the
degree of dominance (measured by the HVI) is postulated. A
hierarchical diagram representing this assumption is shown
in Figure 1.
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FIGURE 1: Hierarchy Axiom.

The summary of the ideas proposed thus far is that,
performance metrics does not only measure the algorithm’s
performance, but due to the NFL theorems, they also measure
the structure of the objective space. Thus, it can be said that
performance metrics also describes the problem morphology
of any given MO problem.

Since algorithms and problems are connected as
described by the NFL theorems, the method to measure
the problem morphology (namely, similar to measuring the
algorithm’s performance) is done by analyzing the solution set
produced by any particular algorithm when tackling an MO
optimization problem. Therefore, by testing a solution sets
produced by a series of algorithms on a given MO problem
using performance metrics, the problem morphology may be
ascertained. In this work, the problem morphology includes
the degree of convergence and diversity of the solution sets
that depict the approximate Pareto frontier. As in most MO
problems, the primary or critical solution quality here is
defined by the degree of dominance of each solution set
[15, 45]. Therefore, the primary solution quality is dependent
on the problem morphology. Thus, it can be stated that
the degree of dominance measured by the HVI is heavily
influenced by the diversity and the convergence property of
the solution set measured by the respective metrics. Based
on these arguments, the following hypothesis is put forward.
Since an algorithm’s performance is problem-dependent,
this performance is closely dependent on the morphology
of the problem tackled by it. Performance metrics does
not only measure the performance of any given algorithm;
they inadvertently also measure the problem morphology.
Therefore, by understanding the problem morphology,
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________________________
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FIGURE 2: Proposed framework.

suitable adjustments or augmentations can be made to the
algorithm to enhance the algorithm’s capabilities.

In the spirit of this philosophy, a framework of a solution
method is proposed in this work to obtain the approximate
Pareto frontier for MO problems. Figure 2 shows the overall
framework of the solution method.

First, a given problem is solved by using a series of
metaheuristic methods. The degree of diversity, convergence,
and HVT values is measured for all the approximate Pareto
frontiers using performance metrics. Under the “Hierarchical
Axiom,” the degree of convergence and diversity influences
the degree of dominance. Thus, the influence of the conver-
gence and the diversity metric values with respect to the HVI
values of the approximate Pareto frontiers is analyzed. Next,
the algorithm with the highest HVI value is identified. This
algorithm is then improved based on the analysis done on
the degree of convergence and diversity and their influence
on the degree of dominance.

At this juncture, the concept of “surgery on algorithms”
is further explained by employing an example. By obtaining
the results that describe the problem morphology, the char-
acteristic of the solution set (by implication, the characteristic
of the algorithm) can be known. For instance, consider a
scenario where a particular problem was tested with two
algorithms, say Algorithms A and B. Algorithm A has
produced a higher HVI value as compared to Algorithm B. In
the sense of problem morphology, the solution set produced
by Algorithm A is less diverse but more convergent compared
to Algorithm B (see Table 2).

Hence, from the problem morphology standpoint, it
can be stated that the degree of convergence influences the
degree of dominance of the solution sets. This is due to the
fact that Algorithm A is more dominant than B and has a
higher degree of convergence. It is known from the Hierarchy
Axiom that the problem morphology influences the degree
of dominance. Therefore, it is possible to increase the degree



TaBLE 2: Comparison of solution sets produced by Algorithms A
and B.

Algorithm Diversity Convergence HVI
A Low High High
B High Low Low

TaBLE 3: Comparison of solution sets produced by Algorithms A
and C.

Algorithm Diversity Convergence HVI
A Low High High
C Low Higher Higher

of convergence of the solution sets hence directly affecting
the degree dominance of those solutions by augmenting
or modifying the algorithms. This kind of augmentation is
defined in this work as “surgery on algorithms” By perform-
ing surgery on Algorithm A, a new algorithm (say Algorithm
C) would be generated that produces more convergent and
more dominant solutions (see Table 3).

Since it has already been established (from Table 1), the
convergence property is the one that influences the degree of
dominance; the degree of diversity of Algorithms A and C is
irrelevant and thus neglected.

It should be noted that the surgery on algorithms
procedure is proposed in conjunction with the complete
framework of the analysis of problem morphology and its
consequent arguments and axioms. As opposed to hybridiza-
tion, surgery on algorithms merely removes, adds, or mod-
ifies components in the algorithm based on the problem
morphology. Therefore, the complexity of the algorithm does
not increase radically and hence maintains its computational
efficiency to a certain degree. However, hybridization often
merges two whole algorithms into one. By doing so the
complexity of the algorithms undergoes radical increment
and this affects the computational efficiency of hybrid
algorithms. Besides, by hybridizing algorithms, there is no
guarantee that the hybrid algorithm produced may outweigh
the results of its predecessors in their original form. These
are the problems that may be addressed by employing the
philosophical framework proposed in this work.

4. Mathematical Constructs

In this section, some definitions and axioms are presented
in formalized mathematical forms. These forms are the
foundation for the proposed framework put forth in this

paper.

Definition 1 (preliminaries). Let A’ be a MO algorithm, and
let M be a MO problem. The set y; is defined as a set of
decision variables to the problem M. The algorithm, A/,

operates on the set y; and generates a set x; € P/ such that

J

x; is a set of optimal points that construct the Pareto frontier

P’:

Al (y e M) — (x] € P), )
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where i € [1,m] denotes the number of optimal points and m
is the maximal number of optimal points. The index j € [1, 7]
denotes the individual solution set produced by algorithm
j(A;) and n is the maximum number of algorithms applied.

Definition 2 (metrics). The convergence and diversity metrics
behave as an operator that maps the points in the solution
sets, x{ €ePltoa positive-definite real-valued scalar, d.dl e
R".Let Y be the convergence metric, and let & be the diversity
metric such that

Y (x eP) — (d eRY),

o . (3)
8:(xl e P) — (& e "),

for each j € [1,n] and for all i € [1,m].

Definition 3 (hypervolume indicator). The hypervolume
indicator (HVI) denoted Hyp maps the points in the solution
sets, x] € P/, to a positive-definite real-valued scalar, dom’ €

R* where dom’ is the degree of dominance. This mapping is
given as follows:

Hyp : (xf € Pj) — (domj € 91+)
(4)
for each j e [1,n] Vie [1,m].

The assumptions used for the metrics are the convergence,
diversity, and dominance axioms. These statements are pro-
vided as follows.

Axiom 1 (convergence). Let P/ and P7*! be two solution sets.
If and only if ¢/ > /"1, then the solution set P/ is more
convergent than P/*'. If and only if ¢/ > ¢/*', then the
solution set P/*! is more convergent than P/,

Axiom 2 (diversity). Let P/ and P7*! be two solution sets. If
and only if d’ > d’*!, then the solution set P/ is more diverse
than P!, If and only if &/ > d’*', then the solution set P/*!
is more diverse than P’.

Axiom 3 (dominance). Let P/ and P/*! be two solution sets.
Ifand only if dom’ > dom’*!, then the solution set P/ is more
dominant than P/*!_ Ifand onlyifd’ > d’*', then the solution
set P! is more dominant than P/,

Axiom 4 (hierarchy). For any problem M, let P/ be some
solution sets produced by a mapping by A’. Then, the values
¢/ and d’ influence the values dom’ and not vice versa.

The problem morphology is then defined as follows.

Definition 4 (problem morphology). For any problem M, let
P/ be some solution sets produced by a mapping by A’. Then,
the known values ¢/,d’, and dom’ € R* and their possible
relationships are described as the “problem morphology”

Proposition 5 (morphological relations). For any problem
M, let P! be some solution sets produced by a mapping by A’.
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) >
X: € P] — C]
Hyp
B \ g
d; ﬁ dom/

FIGURE 3: Graph representation of the morphological relations.

Then the mappings by the metric operators, )., 8, and Hyp can
be described as in the graph diagram in Figure 3.

Thus, the unknown relations, f and g, describe the
relationship between the degree of diversity and convergence
with respect to the degree of dominance. The following
relationships between the relations and the operators may be
obtained as follows:

fcé:goZ:HYp. (5)

Axiom 5 (numerical axiom). For any given problem M, the
solution set P/ is produced numerically by some algorithm,
Al. Thus, the performance of an algorithm, A/, varies
depending on the problem M. Therefore, f and g themselves
which describe the problem morphology vary from problem
to problem and cannot be obtained analytically. By impli-
cation, the problem morphology itself can only be obtained
numerically by executing some algorithm A’ on a problem,
M, and getting some solution set P’.

Axiom 6 (diversity and convergence mechanism). For any
MO optimization problem M, the solution set, P, is pro-
duced numerically by some algorithm, A’. The solution set,
P/, produced by A’ has diversity and convergence values that
can be computed using the ) and § operators. There exist
components 7 and & such that when incorporated into some

algorithm, A7, these components increase the diversity and
convergence values of its solutions.

Proposition 6 (surgery). Let an algorithm, A/, be applied
to some problem, M. The Y, S, and Hyp operators are
applied to obtain the problem morphology. From the problem
morphology, the relations f and g are established and two
scenarios arise.

(1) The higher the value of ¢/, the higher the degree of
dominance, dom’.
For some problem, M, let the problem morphology be
identified such that ¢/ oc dom’. Then let A7 : (y, €
M) — (x] € P/). Applying the operators Y, 8, and
Hyp, the values ¢/, &/, and dom’ € R* are obtained. If
and only if an algorithm, AJ®E : (y, € M) — (x]"' €
P*Y, is applied and if and only if for each j € [1,n]
and foralli € [1L,m], Y : (" € Py — (™ €
R*) and Hyp : (xf1 e PI'Yy & (dom’™ € RY)
is obtained, then ¢/*' > ¢/ and dom’™" > dom’. The

process of incorporating & into Al to develop the new
algorithm A’ ® & is defined as surgery on the algorithm
Al

(2) The higher the value of d’, the higher the degree of
dominance, dom’.

Let M be some problem, and let the problem morphol-
ogy be identified such that d/ oc dom’. Let AV : (y; €
M) — (x] € P)). Applying the operators ¥, 8, and
Hyp, the values ¢/, &/, and dom’ € R* are obtained. If
and only if an algorithm, A’ ®1 : (y, € M) — (3chr1
P*Y), is applied and if and only if for each j € [1,n]
and foralli € [1,m], 8 : (x/'" € PNy — (4" ¢
R*) and Hyp : (xf')r1 e PI*Yy & (dom!™ € RY)
is obtained, then d’*' > d’ and dpm’ur1 > dom’. The
process of incorporating n into A’ to develop the new
algorithm A’ ® 1 is defined as surgery on the algorithm
Al

Therefore, if any of these scenarios arises, then the components
n and & may be incorporated into the algorithm, A’, to obtain

solutions with higher degree of dominance, dom’, as mentioned
above.

5. Numerical Experiments

The ideas proposed in this work were implemented to four
industrial applications. The four applications were

(I) MO optimization of extraction process of bioactive
compounds from Gardenia (Deep and Katiyar, 2010)
[46];

(II) MO optimization of bioethanol production during
cold enzyme starch hydrolysis (Bao et al., 2011) [47];

(IIT) MO optimization of synthesis gas production process
(Mohanty, 2006) [48];

(IV) MO optimization of pretreatment strategy for
bioethanol production from rice husk (Banerjee et
al., 2009) [49].

The MO problem presented in Deep and Katiyar, (2010)
[46] (Application I) involves the optimization of the yields
of certain chemical products which are extracted from the
Gardenia jasminoides Ellis (J.E.) fruit. Chemical products
such as crocins, geniposide, and the phenolic compounds
(bioactive) are widely used in the food industry as natural
food colorants (dyes). The phenolic compounds in Gardenia
J.E. also have high antioxidant capabilities which make this
fruit valuable for medicinal uses. This MO optimization
model was for the extraction process of bioactive compounds
from the Gardenia J.E. with respect to the constraints.
The MO optimization model was developed to maximize
the yield of three bioactive compound: crocin (in mg/g
dry powder), geniposide (in mg/g dry powder), and total
phenolic compounds (in mg/g dry powder) with respect to
process parameters which are the concentration of ethanol



TABLE 4: The HVI, convergence, and diversity values produced by
HoPSO.
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TABLE 6: The HVI, convergence, and diversity values produced by
CPSO.

Convergence metric Diversity metric Convergence metric Diversity metric
HVI HVI

value value value value
PSO 643878 0.3779 0.35714 PSO 131142 0.11455 0.14286
HoPSO 647080 0.06766 0.10714 CPSO 143857 0.38192 0.28571

TaBLE 5: The HVI, convergence, and diversity values produced by
HoDE.

Convergence metric Diversity metric
HVI

value value
DE 176652 0.0776 0.03571
HoDE 206586 0.05074 0.10714

in %, the extraction temperature in °C and the extraction time
in minutes.

In Application II, the MO optimization of bioethanol
production from cold enzyme starch hydrolysis is considered.
The MO optimization of the fermentation process parameters
is crucial for the successful production of ethanol from
starch in an efficient and economical way. In Bao et al., 2011
[47], response surface methodology (RSM) was employed
to model and optimize the cold enzyme starch hydrolysis
conditions. In this application, the normalized objective
functions are the predicted biomass in x108 cells/mL, ethanol
concentration in weight %, and starch utilization ratio in
%. These objectives are to be maximized by selecting the
optimal reaction parameters which are the amount of alpha-
amylase (IU per g starch), the amount of glucoamylase (IU
per g starch), the liquefaction temperature (°C), and the
liquefaction time (in minutes).

As for Application III, the MO optimization of the
noncatalytic combined reforming process was performed. A
MO model was developed in Mohanty, 2006 [48], for the
production of syngas/synthesis gas (CO + H,) by combined
reforming. In combined reforming, two techniques which
are Partial Oxidation of Methane Method (noncatalytic)
and Steam Reforming (catalytic) are combined. The MO
optimization model was developed based on responses from
an experimental reactor setup. The normalized objective
functions are the methane conversion in (%), carbon monox-
ide selectivity in (%), and hydrogen to carbon monoxide ratio
as presented in Mohanty, 2006 [48]. These objectives were
optimized with respect to the process parameters which are
the oxygen to methane ratio (gmol/gmol), the hourly space
velocity (h™), and the reaction temperature (°C).

Finally the optimization of the pretreatment strategy for
ethanol production from rice husk was used as Application
IV. The pretreatment technique optimized in the work of
Banerjee et al., 2009 [49], is the “Wet Air Oxidation” tech-
nique. This technique consumes very low amounts of fuel
and its low in terms of operation costs. This method is a
potentially effective pretreatment technique for fractionat-
ing lignocellulose into a solubilised hemicellulose fraction
and a solid cellulose rich fraction with minimum inhibitor
formation. In Banerjee et al, 2009 [49], the data from

TaBLE 7: The HVI, convergence, and diversity values produced by
CDE.

Convergence metric Diversity metric
HVI

value value
DE 1180123 0.04465 0.17857
CDE 1922933 0.02243 0.28571

experiments were used to build a MO optimization model
through multiple regression analysis. The objective functions
which are cellulose yield in (%), lignin removal in (%), and
hemicelluloses solubilisation in (%) were modelled in Baner-
jee et al., 2009 [49], with respect to the process parameters
which were the reaction temperature (°C), the air pressure
(MPa), and the reaction time (in minutes).

For Applications I and II, the proposed framework was
carried out and surgery was performed on the PSO and DE
algorithms, respectively. This was done by embedding the
Hopfield component that enhances the convergence capa-
bilities of the PSO and DE algorithms. The new algorithms
generated are the HoPSO and HoDE. These results of the new
algorithms are then compared with the original algorithm.
The results comprising of the HVI, convergence, and diversity
values of the entire Pareto frontier obtained by the methods
are shown in Tables 4 and 5.

The Pareto frontier constructed by the HoPSO and the
HoDE algorithms in Applications I and II are shown in
Figures 4 and 5.

As for Application III and IV, the proposed framework
was also implemented and surgery was carried out on
the PSO and DE algorithms, respectively. This was done
by embedding the chaotic component that enhances the
diversity capabilities of the PSO and DE algorithms. The
new algorithms generated are the CPSO and CDE. The
computational results comprising of the HVI, convergence
and diversity values of the entire Pareto frontier obtained by
these methods are shown in Tables 6 and 7.

The Pareto frontier constructed by the CPSO and the
CDE algorithms in Applications III and IV are shown in
Figures 6 and 7.

In Figures 4-7, it can be observed that the new algorithms
developed using the concept of surgery are more dominant
as compared with their original counterparts (higher HVI
value). Hence, these numerical experiments prove that the
concept of SOA framework is effective in developing algo-
rithms that produce highly dominant solutions for Pareto
frontier construction.
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FIGURE 4: The Pareto frontiers of the HPSO algorithm.
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FIGURE 7: The Pareto frontiers of the CDE algorithm.

6. Conclusions and New Perspectives

In this work, we have provided an overview of the prevalent
methods applied in MO optimization. Besides, we have also
discussed some current research issues faced in this area.
Based on the ideas proposed, one of the ways forward in MO
optimization is to develop a general framework/procedure to
solve three-objective (or more) problems. Besides, proceed-
ing in this line of thought, new directions are revealed for
studies involving the effects of convergence/diversity of the
solution set on the degree of Pareto dominance produced
by any given MO algorithm. These insights pave a new
path to our understanding of structures and constructions of
objective spaces.

By these studies, an alternative or an enhancement to
the hybridization approach (the proposed idea of “surgery”)
which produces algorithms which are computationally less
intensive, robust, effective, and capable of generating high-
quality solutions could be developed. Extensive analysis and
comparative works of solutions produced by these algorithms
with standard algorithms could be carried out. By these
comparisons, the strengths and drawbacks of the proposed
framework may be studied in more detail. Most importantly,
despite solving MO problems efficiently, the views presented
in this work also points to an angle of inquiry that would
increase our understanding of the nature of MO problems.
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