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ABSTRACT

DNA methylation is an epigenetic mechanism known
to affect gene expression and aberrant DNA methy-
lation patterns have been described in cancer. How-
ever, only a small fraction of differential methylation
events target genes with a defined role in cancer,
raising the question of how aberrant DNA methyla-
tion contributes to carcinogenesis. As recently a link
has been suggested between methylation patterns
arising in ageing and those arising in cancer, we
asked which aberrations are unique to cancer and
which are the product of normal ageing processes.
We therefore compared the methylation patterns be-
tween ageing and cancer in multiple tissues. We ob-
served that hypermethylation preferentially occurs
in regulatory elements, while hypomethylation is as-
sociated with structural features of the chromatin.
Specifically, we observed consistent hypomethyla-
tion of late-replicating, lamina-associated domains.
The extent of hypomethylation was stronger in can-
cer, but in both ageing and cancer it was proportional
to the replication timing of the region and the cell divi-
sion rate of the tissue. Moreover, cancer patients who
displayed more hypomethylation in late-replicating,
lamina-associated domains had higher expression
of cell division genes. These findings suggest that
different cell division rates contribute to tissue- and
cancer type-specific DNA methylation profiles.

INTRODUCTION

Genes encoding epigenetic modifiers are frequently mutated
in cancer patients (1–4) and the resulting epigenetic aberra-

tions complement genetic aberrations during carcinogene-
sis. Genome-wide epigenetic aberrations displayed by ma-
lignant cells include differential DNA methylation, changes
in histone post-translational modifications, and abnormal-
ities in chromatin structure (1,5). Modern techniques al-
low studying these epigenetic aberrations on a genome-wide
scale. Specifically, differential DNA methylation in cancer
has been studied extensively and is the epigenetic mecha-
nism for which the most data are available. The extent and
consistency of DNA methylation patterns in certain can-
cer types (such as prostate cancer) suggest that differential
DNA methylation could be as important for carcinogenesis
as genetic aberrations (6,7).

Systematic evaluation of the DNA methylation landscape
in different cancer types has revealed several common fea-
tures. In tumour samples, methylation is generally lost (hy-
pomethylation) over wide stretches of the genome and se-
lectively gained (hypermethylation) in promoter regions of
specific genes (8). This has been thought to have func-
tional implications. Specifically, transcriptional silencing of
tumour suppressor genes by hypermethylation of their pro-
moters has been observed in cancer and initially proposed
as one of the main epigenetic contributors to carcinogene-
sis (9). Complementarily, promoters of genes beneficial for
cancer development have been shown to be hypomethy-
lated (10,11), although the link between hypomethylation
and restored gene expression is generally debated (12,13).
Cancer-associated DNA hypomethylation has been linked
to late-replicating structural elements of the chromatin such
as lamina-associated domains (LADs) and long stretches of
histone H3 lysine 9 dimethylation (LOCKs), suggesting it is
rather influenced by chromatin organization (14–16). How-
ever, the mechanisms behind hypomethylation of these re-
gions are poorly understood (17). In addition to these com-
mon methylation patterns observed in multiple types of can-
cer, tissue-specific patterns of methylation exist as well (18).
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In conclusion, defining causes and consequences of aber-
rant methylation in cancer development is not straightfor-
ward, complicating interpretation of available data.

The aberrant methylation landscape in cancer shares
common features with that in ageing (19,20). Ageing is a
complex process that involves the decline of multiple phys-
iological functions over time and is often accompanied by
changes in DNA methylation (21). The revolutionary work
of Horvath has shown that it is possible to predict chrono-
logical age based on methylation values measured at 353
sites, suggesting a certain directionality to the process (22).
An overlap has been found between sites that become grad-
ually hypermethylated during ageing and sites that are hy-
permethylated in colon cancer (23). Recently, Cedar and
colleagues have proposed a model in which the accumula-
tion of methylation events that occur during ageing makes
cells more vulnerable to tumour-initiating mutations (20). A
direct comparison between ageing-associated methylation
events and cancer-associated methylation events may help
elucidate the mechanisms behind these two processes.

In our study, we wanted to better describe the patterns of
differential DNA methylation that are established in can-
cer and determine how much these patterns differed be-
tween cancer types. We first determined which genes were
affected by differential methylation in cancer, but only a
small number of these genes had been previously linked to
carcinogenesis. We then wondered what could drive methy-
lation in cancer rather than selection for changing the activ-
ity of cancer genes. To address this question, we compared
regions that became differentially methylated in cancer to
regions that became differentially methylated during age-
ing in the corresponding normal tissue (Figure 1). In ad-
dition, we compared tissues between each other with re-
spect to their changes in cancer and in ageing. To our sur-
prise, most changes in methylation that we observed in age-
ing did not overlap with those in cancer for most of the
tissues we tested. Nevertheless, by accounting for ageing-
related methylation changes, we were able to find several
structural features of the chromatin that were either specifi-
cally or more strongly associated with cancer-related methy-
lation changes. Specifically, the loss of methylation in late-
replicating, lamina-associated domains was more promi-
nent in cancer and was associated with cell division rates.
We ruled out the possibility of our observations being the
result of a population-level effect only. However, how ex-
actly replication timing and genome structural rearrange-
ments in cancer each contribute to the observed hypomethy-
lation remains to be determined. Our findings provide in-
sights into tissue-specific methylation in cancer and provide
another link between the intrinsic nature of different cell
types and their propensity for carcinogenesis.

MATERIALS AND METHODS

Methylation data collection

We downloaded TCGA level 3 data generated using the
Illumina Infinium HumanMethylation450 BeadChip array
from the FireBrowse portal (March 2017). The cohort list
consisted of bladder urothelial carcinoma (BLCA) (24),
breast invasive carcinoma (BRCA) (25), colon adenocar-
cinoma (COAD) (26), esophageal carcinoma (ESCA) (27),

glioma (GBMLGG) (28,29), head and neck squamous cell
carcinoma (HNSC) (30), the pan-kidney cohort (KIPAN)
(31–33) liver hepatocellular carcinoma (LIHC) (34), lung
adenocarcinoma (LUAD) (35), lung squamous cell carci-
noma (LUSC) (36), pancreatic adenocarcinoma (PAAD)
(37), prostate adenocarcinoma (PRAD) (38), skin cuta-
neous melanoma (SKCM) (39), thyroid carcinoma (THCA)
(40), and uterine corpus endometrial carcinoma (UCEC)
(41).

To increase the number of samples from normal tis-
sue, we downloaded additional datasets from the Gene
Expression Omnibus. These were GSE32146 (colon) (42),
GSE40360 (brain, frontal lobe) (43), GSE49149 (pancreas)
(44), GSE51954 (skin) (45), GSE61107 (brain, frontal cor-
tex) (46), GSE77954 (colon) (47), GSE88890 (brain, cor-
tex) (48), GSE89702 (brain, cerebellum) (49), GSE89703
(brain, hippocampus) (49), GSE89705 (brain, striatum)
(49), GSE90124 (skin) (50).

Finally, we considered other phenotypes that share sim-
ilar features with cancer. To look at phenotypes which dis-
play abnormalities in nuclear envelope structure, we down-
loaded data from senescent cells (GSE56719, GSE69046
(51)) and patients with progeria (GSE42865 (52)). To study
fast-dividing cells during normal human development, we
downloaded data from foetal tissue (GSE31848 (53)).

Methylation data preparation

From all downloaded data, we removed probes that were
defined by TCGA as aligning to multiple sites in the
genome, overlapping with common SNPs within 10 bp from
the CpG site, or being located within 15 bp from a repet-
itive element. In addition, we removed probes that were
shown to cross-hybridize to sex chromosomes (54). If re-
quired, methylation values were converted to beta-values
using the lumi package (55). If applicable, beta-values were
corrected for potential batch effects using the sva package
(56). We did not observe major differences in the final results
for the gene-level linear models that depended on whether
the batch effect correction was performed before or after
calculating the methylation per gene.

Before proceeding with further analyses, we excluded the
possibility of copy number aberrations confounding the
beta-values obtained from tumour samples (57). We down-
loaded TCGA level 3 data generated on the Genome-Wide
Human SNP Array 6.0 from the FireBrowse portal (March
2017). In patients who had both copy number aberration
and methylation data available, we calculated the correla-
tions between the copy number aberration signal and the
difference in methylation between cancer and adjacent nor-
mal tissue. We were unable to find a consistent pattern
across patients and tissues. Thus, we believe that our beta-
values were not influenced by copy number aberrations that
occur during cancer.

Linear regression model creation

Probes were annotated using the IlluminaHumanMethy-
lation450kanno.ilmn12.hg19 package (58). Four different
types of the gene level linear regression models were gener-
ated using probes located in different regions of the genome,
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Figure 1. Generation of linear regression models of ageing and cancer. Publicly available data generated on methylation arrays is used to create two types
of linear regression models. In the ageing models, the change of methylation levels with respect to age is studied. In the cancer models, the change of
methylation levels in tumours versus patient-matched normal tissue is studied. Models are generated for every probe on the array. The results from the
models are then compared between different tissues and between ageing and cancer within the same tissue.

namely in the first exon, in the 5′ UTR, within 200 base pairs
from the gene’s transcription start site (TSS200), and within
1500 bp from the gene’s transcription start site (TSS1500).
If multiple probes mapped to a single gene, the mean beta-
value of these probes was used as the beta-value of the
gene. Gene level linear regression models were generated
for 14 588 genes (first exon), 13 463 genes (5′ UTR), 16 545
genes (TSS200) or 19 715 genes (TSS1500). Probe level lin-
ear regression models were generated for 378 471 probes.

For the cancer linear regression models, we determined
the change in beta-value in the tumour when compared to
normal tissue. In cohorts where at least 15 samples from
patient-matched adjacent normal tissue were available, the
patient identification number was included as a variable in
the models. For the ageing linear regression models, we de-
termined the change in beta-value as a function of age. Only
samples from normal tissue were used. To ensure linearity
of age-related methylation changes, ages were transformed
as defined previously (22):

i f age ≤ 20
{

new.age = log
(

age+1
21

)}

else
{

new.age = age − 20
21

}

The total number of samples used in the cancer and age-
ing linear regression models can be found in Table 1. The
complete list of samples used can be found in Supplemen-
tary Table S1.

For selecting differentially methylated genes in ageing, we
applied a cut-off of 0.05 on the P-value adjusted for false
discovery rate. For selecting differentially methylated genes
in cancer, we used a cut-off of 0.05 on the P-value adjusted

Table 1. Number of samples used in generated linear models for extended
set of tissues (asterisk indicates tissues with <25 samples from normal tis-
sue available on the TCGA).

Cohort Ageing Cancer

BLCA* 21 434
BRCA 89 162
COAD 58 96
ESCA* 16 202
GBMLGG* 122 685
HNSC 50 96
KIPAN 205 400
LIHC 48 92
LUAD 26 58
LUSC 39 78
PAAD* 39 388
PRAD 46 94
SKCM* 357 475
THCA 56 110
UCEC 41 64

for false discovery rate and an additional cut-off of 0.1 on
the absolute slope. The additional slope cut-off was applied
as otherwise more than half of the genes in several cancer
types were designated as differentially methylated, making
functional interpretation of the results difficult.

For the senescence linear regression model, methylation
in cells defined to be in deep senescence was compared to
methylation in cells defined to be from early passages. The
original data were generated in two separate experiments.
We included the experiment number as an additional vari-
able in the linear model. For the progeria linear regres-
sion model, methylation in patients with premature ageing
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syndromes (Hutchinson-Gilford Progeria or Werner syn-
drome) was compared to methylation in lymphoblastoid
cell lines. For the normal human development linear regres-
sion model, methylation in foetal tissues was compared to
methylation in the corresponding adult tissues. Due to the
small number of samples, linear regression analysis was per-
formed using the package limma (59).

Correlation with expression data

We downloaded TCGA level 3 normalized RNA-Seq data
for 10 of the previously mentioned cohorts (BRCA, COAD,
HNSC, KIPAN, LIHC, LUAD, LUSC, PRAD, THCA,
UCEC) from the FireBrowse portal (May 2017). RSEM
values calculated per gene were logarithmically trans-
formed. For every patient, the difference between expres-
sion values in cancer samples and their matched normal
samples was calculated. Similarly, the difference between
beta-values in cancer samples and their matched normal
samples was calculated. For the correlations, we considered
only genes that were significantly affected by methylation
changes in cancer.

Analysis of paralogs

The table containing human paralogs was obtained from
Ensembl via BioMart (May 2017) (60). For every gene,
we counted the number of paralog pairs it occurred in. A
Mann–Whitney U test was used to compare average methy-
lation values.

Analysis of tumour suppressors and oncogenes

The list of tumour suppressor genes and oncogenes was
obtained from the Cancer Gene Census in the COSMIC
database (July 2017) (61). We only considered genes labelled
as tsg or tsg/fusion for tumour suppressors and oncogene
or oncogene/fusion for oncogenes. Genes labelled as both
tumour suppressors and oncogenes were not considered.

Genomic region categories

We defined genomic region categories as the position of
a probe with respect to annotated genes. Probes were as-
signed the following categories: within 1500 base pairs from
the transcription start site (TSS1500), within 200 base pairs
from the transcription start site (TSS200), 5′ untranslated
region (5′ UTR), first exon (1stExon), gene body (Body),
3′ untranslated region (3′ UTR), enhancer and intergenic.
We considered separately the 6605 probes located in regions
defined as Human Enhancers by the FANTOM5 Enhancer
Atlas (62) because enhancers have previously been shown to
be targeted by aberrant methylation in cancer in a manner
different from other intergenic regions (63,64).

Chromatin feature mapping

Data on histone marks and chromatin states were down-
loaded from the NIH Roadmap Epigenomics Mapping
Consortium (April 2017) (65). The mapping between
TCGA cohorts and Roadmap Epigenomics tissues is pro-
vided in Table 2. To assign chromatin states to probes, we

downloaded the expanded 18-state chromHMM model and
mapped probes based on their locations in the genome (66).
To assign histone marks to probes, we downloaded the
genome-wide signal coverage tracks for all marks that were
available for each tissue. We calculated the average –log10(P-
value) of the signal over a window of 300 bp surrounding
each probe. As advised by the data source, a threshold of 2
was used to assign a histone mark as present for a specific
probe. For kidney, two annotation files were available for
each histone mark. Therefore, we assigned histone marks
as present when at least one of the signals was higher than
the threshold.

Definition of lamina-associated domains

For lamina-associated domains, we used the genomic coor-
dinates defined for the Tig-3, human embryonic stem cell
(HESC), and HT1080 cell lines (67,68). In HT1080, two ex-
periments were performed using Lamin A and Lamin B1
for mapping lamina-associated domains. These are further
referred to as HT1080A and HT1080B. Coordinates were
translated to the hg19 genome build using liftOver (69). Re-
gions that overlapped between all four definitions were la-
belled as constitutive LADs.

Replication timing probe assignment

Percentage-normalized signal RepliSeq data from the der-
mal fibroblast cell line BJ (originally generated in (70)) were
downloaded from the UCSC Genome Browser. For every
stage of the cell cycle, we determined the average signal over
a window of 100 bp surrounding the probes. Probes were as-
signed to a specific stage of the cell cycle either when the de-
termined signal exceeded 30 or when the determined signal
was higher than that from the other stages of the cell cycle.
When using RepliSeq data from BG02es, IMR90, MCF7
and HepG2, we obtained a similar assignment, with over
90% of probes being assigned to the same stage of the cell
cycle. As a result, we proceeded with only the BJ cell line for
the enrichment analysis.

Enrichment analysis

For the enrichment analysis, probes were sorted by slope
and the 75700 most hypermethylated or most hypomethy-
lated probes (∼20% of all probes) were selected. The cut-
off of 20% was chosen as it resulted in moderate effect
sizes that were more consistent across different cohorts than
those obtained using lower thresholds. Probes were not se-
lected based on a P-value cut-off because this occasion-
ally resulted in small numbers of probes overlapping with
certain chromatin features, inflating the resulting odds ra-
tios. Fisher’s exact test was performed to determine whether
these probes were enriched in a specific category when com-
pared to the rest of the probes on the array. To gain better
insight into non-physiological patterns of methylation, the
probes affected in cancer were directly compared to probes
affected in ageing.

Mitotic index

The mitotic index reflects the fraction of dividing cells in
a population. Previously, it was shown that the mitotic in-
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Table 2. Mapping between cohorts in TCGA, tissues in the NIH Roadmap Epigenomics Mapping Consortium, and tissues in GTEx

TCGA Roadmap Epigenomics Consortium GTEx

BLCA Bladder
BRCA E028 – breast variant human mammary epithelial cells (vHMEC) Breast – Mammary Tissue
COAD E075 – colonic mucosa Colon – Transverse
ESCA Esophagus – Mucosa
GBMLGG Brain – Cortex
HNSC Minor Salivary Gland
KIPAN Adult kidney (unconsolidated epigenome) Kidney – Cortex
LIHC E066 – liver Liver
LUAD E096 – lung Lung
LUSC Lung
PAAD Pancreas
PRAD Prostate
SKCM Skin – Sun Exposed (Lower Leg)
THCA Thyroid
UCEC Uterus

dex is proportional to the average mRNA expression over a
set of 9 genes: CDKN3, ILF2, KDELR2, RFC4, TOP2A,
MCM3, KPNA2, CKS2 and CDC2 (71). For calculating
the mitotic index in cancer, we used RSEM expression val-
ues from cancer samples in the TCGA. For calculating the
mitotic index in normal tissue, we used RPKM expression
values from GTEx (72). The matching between TCGA co-
horts and tissues is provided in Table 2. To make the result-
ing mitotic indexes comparable, we created a linear regres-
sion model that described the association between GTEx
and TCGA expression values using all expression data from
the two databases. We then transformed the normal tissue
mitotic indexes using the slope and intercept obtained from
the linear regression model:

MItrans f ormed = MIoriginal − 3.893238
0.008834

To calculate the correlations with the results from the
LAD enrichment analysis, we took the log10 of the mitotic
indexes.

DNA methylation and hypoxia

Because changes in DNA methylation in cancer have pre-
viously been linked to hypoxia (73), we wanted to exclude
that our observations could be confounded by the degree of
hypoxia in the tumour. Therefore, we calculated a hypoxia
score for each tumour type by averaging over the TCGA
expression values of 26 hypoxia marker genes: ALDOA,
ANGPTL4, ANLN, BNC1, C20orf20, CA9, CDKN3,
COL4A6, DCBLD1, ENO1, FAM83B, FOSL1, GNAI1,
HIG2, KCTD11, KRT17, LDHA, MPRS17, P4HA1,
PGAM1, PGK1, SDC1, SLC16A1, SLC2A1, TPI1 and
VEGFA (74). We next tested whether the hypoxia score
would correlate with the enrichment of hypomethylation in
LADs and did not detect a significant correlation (r = 0.33,
r2 = 0.11, P-value = 0.22; Pearson correlation).

Validation with bisulphite sequencing

To validate the results obtained using array data, we
downloaded bisulphite sequencing data for three pa-
tients from whom an adjacent normal tissue sample

was available––TCGA-A7-A0CE (BRCA), TCGA-AA-
3518 (COAD), TCGA-AX-A1CI (UCEC). As there was
only one sample per cohort, the difference in methylation
between the tumour and the normal sample for each mea-
sured CpG site was used instead of the output of the linear
regression model. For the enrichment analysis, 20% of the
measured CpG sites were used.

Model of methylation transfer during cell division

The observed hypomethylation could be a result of a pop-
ulation level effect in which dividing cells contribute to
low methylation values because of a delay in maintenance
methylation on their newly-synthesized DNA strands. We
therefore created a model of methylation information trans-
fer based on the most conservative assumptions we could
make in favour of this explanation. Our simple model did
not account for possible technical variation in the signal
measured for different probes, however, it would lead to
the highest possible expected values of hypomethylation en-
richment. As a proof by contradiction, obtaining a higher
value of hypomethylation enrichment from experimental
data would indicate that the hypomethylation observed in
this specific case is unlikely to be the result of a popula-
tion level effect only. We defined the following rules for our
model:

1) In non-dividing cells, levels of methylation are constant.
2) In dividing cells, methylation in regions that are methy-

lated early is transferred to the new strand immediately
upon division. Therefore, these regions retain 100% of
their initial methylation.

3) In dividing cells, methylation in regions that are methy-
lated late is transferred to the new strand in the last pos-
sible moment of division. Therefore, these regions retain
50% of their initial methylation.

Let L be the fraction of the probes located in late methy-
lated regions. Let U be the fraction of unmethylated probes.
For a non-dividing cell, the contingency table would there-
fore be:
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For a dividing cell, the contingency table would therefore
be:

LATE

Let D be the fraction of cells in the population that
are currently undergoing division. Both dividing and non-
dividing cells contribute to the final contingency table pro-
portionally to their fraction:

Which simplifies to:

The resulting expected odds ratio would therefore be:

ODDS = LATE U NMETHYLATED
E ARLY U NMETHYLATED ÷ LATE METHYLATED

E ARLY METHYLATED

= LATE U NMETHYLATED × E ARLY METHYLATED
E ARLY U NMETHYLATED × LATE METHYLATED

= L × (0.5D−0.5DU+U) × (1− U)× (1−L)
U × (1−L) × (1−0.5D) × (1−U) × L

= 0.5D−0.5DU+U
U−0.5DU

RESULTS

Differential methylation in cancer correlates weakly with ex-
pression and affects few known cancer genes

DNA methylation has been initially believed to contribute
to cancer development through modifying the expression of
specific cancer driver genes (9,75). To identify differentially
methylated genes, we generated a linear regression model
for each gene using the average level of methylation from
all probes located either in its first exon, or its 5′ UTR, or
its TSS200 region, or its TSS1500 region. Linear regres-
sion models were generated for a collection of 10 tissues
that had at least 25 samples from normal tissue in their
TCGA cohorts, namely breast (BRCA), colon (COAD),
head and neck squamous cells (HNSC), kidney (KIPAN),
liver (LIHC), lung (LUAD), lung squamous cells (LUSC),
prostate (PRAD), thyroid (THCA) and uterus (UCEC). We
noticed that the number of genes significantly affected by
hypermethylation or hypomethylation (P-value adjusted for
false discovery rate < 0.05, absolute slope > 0.1) differed
between tissues (Figure 2A, Supplementary Table S2).

We then asked whether the differential methylation of
these genes was complemented by changes in their expres-
sion levels. We calculated differential expression between
cancer and normal tissues based on RNA-Seq data from
the corresponding patients. Differentially hypermethylated
genes showed a tendency for lower expression (Supplemen-
tary Figure S1A). The negative correlation between differ-
ential hypermethylation and differential expression was sig-
nificant in all tissues (P-values < 10−9; Pearson correlation).
By contrast, differentially hypomethylated genes showed no
consistent pattern of expression across tissues. The correla-
tions between differential hypomethylation and differential
expression were significant in all tissues (P-values < 0.05)
excluding head and neck squamous cells in the TSS1500 re-
gion (Supplementary Figure S1A). All correlations between
differential expression and differential hypo and hyperme-

thylation were weak, most absolute correlation coefficients
not exceeding 0.20 and only three of the absolute correla-
tion coefficients exceeding 0.30.

Having observed that hypermethylation is associated
with lower gene expression in a weak but consistent man-
ner across tissues, we asked whether we can identify traces
of selection acting on methylation during cancer develop-
ment. To answer this question, we compared TSS1500 re-
gion methylation levels in genes with and without paralogs.
Paralogs provide functional redundancy, and less genes
with paralogs were shown to be essential than genes with-
out paralogs (76,77). We thus reasoned that genes with
paralogs would be under weaker selection pressure against
high methylation levels because genes from the same family
could perform their function if expression was lost. Indeed,
we observed a lower extent of hypermethylation in genes
without paralogs than in genes with up to five paralogs. This
difference was significant in all tissues (P-values < 0.016;
Mann–Whitney U test) excluding uterus (Figure 2B). This
finding suggested that gain of methylation is constrained in
the absence of functional redundancy. This was in agree-
ment with our previous observation that genes without par-
alogs are more strongly protected from damaging point mu-
tations during cancer progression (78). By contrast, genes
without paralogs were generally more hypomethylated than
genes with a few paralogs (Figure 2B). This association was
statistically significant for all tissues aside from breast, kid-
ney and thyroid (P-values < 0.022; Mann–Whitney U test),
although the interpretation of this association with respect
to functional selection is difficult.

Finally, we determined to what extent do these methy-
lation events target cancer genes––tumour suppressors and
oncogenes that were previously defined based on their point
mutation profile. Differentially methylated cancer genes ac-
counted for a minority of methylation events that occur
during cancer development (Figure 2A, Supplementary Ta-
ble S2). The majority of tumour suppressors and onco-
genes were not differentially methylated (Figure 2C, Supple-
mentary Figure S1B). Affected tumour suppressors did not
display a preference for hypermethylation or hypomethyla-
tion (P-value ≥ 0.08; t-test), but affected oncogenes were
preferentially hypermethylated (P-values < 0.0006; t-test).
We concluded that differential methylation can target can-
cer genes, but these gene methylation events account for a
small fraction of differential methylation that occurs during
cancer development. We therefore aimed to better under-
stand which other genes and genomic regions become dif-
ferentially methylated during cancer development and what
could be their contribution to carcinogenesis.

Tissues differ in their overlap of methylation events that occur
in cancer and ageing

DNA methylation events in ageing have previously been
suggested to precede cancer development (20,23). We there-
fore asked whether the methylation patterns we observed
in cancer overlapped with methylation patterns established
during ageing. To answer this question, we generated linear
models of ageing using the average level of TSS1500 region
methylation in normal tissue. We then compared the overlap
between differentially methylated genes in ageing (P-value
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Figure 2. Differential methylation of gene TSS1500 regions in cancer. (A) Total number of differentially methylated genes, number of differentially methy-
lated tumour suppressors (TSGs), and number of differentially methylated oncogenes in every tissue. (B) Comparison of all linear regression model slopes
between genes without paralogs and genes with one to five paralogs. Asterisks indicate significance (Mann–Whitney U test): *P-value < 0.05, **P-value <

0.01, ***P-value < 0.001. (C) Percentage of previously annotated 139 tumour suppressors (TSGs) and 175 oncogenes affected by differential methylation.

adjusted for false discovery rate < 0.05) and cancer (P-value
adjusted for false discovery rate < 0.05, absolute slope >
0.1) in each tissue (Figure 3A). In four of the tissues (colon,
kidney, liver and thyroid), the overlap between the two gene
sets was significantly higher than expected by chance.

We next expanded our focus from methylation in the
TSS1500 region of a gene to methylation in the whole
genome by generating new linear regression models for each
probe on the array. We then looked at correlations between
slopes from all ageing and all cancer linear regression mod-

els to quantify the overall similarity of DNA methylation
trajectories in these two processes for each tissue (Figure
3B). All correlations were significant (Pearson correlation;
P-values < 10−226) excluding liver (Pearson correlation; P-
value = 0.34). Only colon displayed a high correlation be-
tween the cancer and ageing models (0.57). Several tissues
showed intermediate correlations between 0.30 and 0.40
(head and neck squamous cells, kidney, and lung squamous
cells). Other tissues either displayed much lower or no corre-
lation between the two groups of events. In thyroid and liver,
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Figure 3. Differences and similarities of differential methylation across the whole genome in ageing and cancer in different tissues. (A) Overlap of genes that
are differentially methylated in their TSS1500 region in ageing (green) and cancer (purple). P-value indicates significance of the overlap when compared
to the overlap between 1000 random gene selections of the same size. (B) Within tissue correlations of slopes output from the probe-level linear regression
models of ageing and cancer. All correlations are significant excluding LIHC (Pearson correlation; P-value: 0.34). (C) Inter-tissue correlations of slopes
output by the linear regression model of ageing. All correlations are significant (P-values < 10−5; Pearson correlation). (D) Inter-tissue correlations of
slopes output by the linear regression model of cancer. All correlations are significant (P-values = 0; Pearson correlation).

the discrepancy between gene-level and probe-level overlap
between cancer and ageing could have been the result of
not accounting for direction of differential methylation in
the gene-level test. Our findings suggest that in most tis-
sues methylation changes that occur during ageing do not
strongly overlap with those that occur during cancer devel-
opment.

Having observed that some tissues had more similar
DNA methylation changes in ageing and cancer than other
tissues, we next wanted to separately compare these changes
in ageing and in cancer between tissues. We determined the
overlap in all ageing-associated methylation events across
all tissues and all cancer-associated methylation events
across all tissues in our collection. No consistent pattern
appeared when comparing ageing-associated events in dif-
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ferent tissues, although all correlations were significant (P-
values < 10−5; Pearson correlation) (Figure 3C). All cancer-
associated events, however, significantly positively corre-
lated across tissues (P-values = 0; Pearson correlation) (Fig-
ure 3D). Cancer-associated events also generally correlated
between patients within the same cohort (Supplementary
Figure S2). Patients from the THCA cohort displayed less
concordance than those from other cohorts, which could ex-
plain the low numbers of differentially methylated genes ob-
served in this cohort. Taken together, the results suggested
a cancer-specific methylation pattern that was common for
multiple tissues.

Hypermethylation is associated with regulatory regions and
hypomethylation is associated with structural features of the
chromatin

We next asked if there are any particular genomic and epige-
nomic features associated with differential methylation in
cancer versus ageing to better understand the surprising
differences that we observed between cancer and ageing.
First, we annotated probes with respect to their location
relative to genes. Probes were divided into the following cat-
egories: within 1500 base pairs from the transcription start
site (TSS1500), within 200 base pairs from the transcription
start site (TSS200), 5′ untranslated region (5′ UTR), first
exon (1stExon), gene body (Body), 3′ untranslated region
(3′ UTR), intergenic, and enhancers, which we separated
from other intergenic regions due to their potential effect
on gene expression. We then compared the enrichment of
hypermethylated or hypomethylated probes in each of these
categories between cancer and ageing. Although there was
no consistent pattern across all cohorts, hypermethylation
in cancer was significantly enriched in enhancer regions for
all cohorts excluding COAD and THCA, in the 5′ untrans-
lated region in five cohorts, and in the first exon in five co-
horts (Figure 4A, for all P-values see Supplementary Ta-
ble S3). Hypomethylation in cancer was predominantly en-
riched in intergenic regions (Figure 4B, for all P-values see
Supplementary Table S3).

Because only a small fraction of methylation events in
cancer were associated with differential gene expression, we
asked whether the observed methylation patterns could be
influenced by factors other than functional selection on the
gene level. To answer our question, we looked for asso-
ciations between hypermethylation, hypomethylation, and
various features of the structural and spatial organization
of chromatin. We obtained data on chromatin state an-
notations for three cohorts (COAD, LIHC, and LUAD)
and histone mark locations for five of the cohorts (BRCA,
COAD, KIPAN, LIHC and LUAD). In addition, we con-
sidered lamina-associated domains––large stretches of tran-
scriptionally repressed and generally hypermethylated chro-
matin that are located close to the inner face of the nuclear
envelope––the nuclear lamina (67).

Cancer-associated hypermethylation predominantly oc-
curred in regulatory regions that could potentially affect
gene expression (Figure 4C, for all P-values see Supplemen-
tary Table S4). In line with our previous observations, re-
gions flanking the transcription start site were more hyper-
methylated in cancer than in ageing. Multiple types of en-

hancers were strongly hypermethylated in cancer. To deter-
mine whether we would also observe differential expression
of genes regulated by differentially methylated enhancers,
we mapped probes indicated to be in enhancers to tran-
scription starts sites using the FANTOM5 definition. We
could not find a correlation between the methylation of
these probes and expression of the corresponding genes. Fi-
nally, we observed an association between cancer-associated
hypermethylation, H3K27me3 and repressed Polycomb.

By contrast, cancer-associated hypomethylation predom-
inantly occurred in transcriptionally inactive stretches of
the chromatin (Figure 4D, for all P-values see Supple-
mentary Table S4). Specifically, we observed stronger hy-
pomethylation in cancer for repetitive regions, heterochro-
matin and its associated histone mark H3K9me3, and
LADs, suggesting hypomethylation is at least partially as-
sociated with chromatin or nuclear structure. In conclu-
sion, hypermethylation and hypomethylation were associ-
ated with different features of chromatin organization and
might therefore be linked to cancer development in different
ways.

Increase of hypomethylation in LADs is linked to the late
replication of these regions and faster cell division rates

We further investigated the possible contribution of chro-
matin structure to hypomethylation in cancer by focusing
on LADs. We compared the level of hypomethylation in
LADs determined for multiple cell lines and constitutive
LADs, which we defined as genomic regions that over-
lapped between LADs in all the cell lines. The enrichment of
hypomethylation in constitutive LADs was higher in cancer
when compared to that in ageing (Figure 5A). LADs deter-
mined for individual cell lines displayed the same pattern
(Supplementary Figure S3A). In three cancer patients (one
from the BRCA, one from the COAD, and one from the
UCEC cohort) from whom bisulphite sequencing data were
available, we also confirmed enrichment of hypomethyla-
tion in LADs (Supplementary Figure S3B).

Because LADs have been shown to overlap with late-
replicating regions (14,70), we asked whether we would ob-
serve an association between hypomethylation and replica-
tion timing. To answer this question, we used RepliSeq data
to sort probes by the cell cycle stage in which their region
was replicated. Between 31% and 66% of probes that were
previously assigned to LADs were assigned to the S4 and
G2 stages (depending on the LAD definition), with an ad-
ditional 21% to 32% assigned to the S3 stage. In cancer, the
enrichment of hypomethylated probes gradually increased
from early- to late-replicating regions (Figure 5B, top). A
similar trend was observed during ageing; however, it was
weak (Figure 5B, bottom). The clear association between
replication time point and degree of hypomethylation sug-
gested that the temporal organization of replication con-
tributed to the methylation pattern observed in cancer.

We next wondered whether fast-dividing cells that un-
dergo more rounds of replication would therefore be more
hypomethylated in LADs. To test whether cell division rates
and loss of methylation in LADs were associated, we ap-
proximated the subpopulation of dividing cells in our tis-
sues using an expression-based estimate of the mitotic in-
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Figure 4. Association of differential methylation to genomic functional categories and chromatin features. In all graphs, the y-axis depicts the log2 of the en-
richment of differentially methylated probes in cancer versus that in ageing. (A) Association between differential hypermethylation and genomic functional
categories. (B) Association between differential hypomethylation and genomic functional categories. (C) Association between differential hypermethylation
and chromatin features. RoadMap Epigenomics data were not available for H3K9ac in BRCA and LUAD, H3K27ac in BRCA, and H3K27me3 in KIPAN.
(D) Association between differential hypomethylation and chromatin features. RoadMap Epigenomics data were not available for H3K9ac in BRCA and
LUAD, H3K27ac in BRCA, and H3K27me3 in KIPAN. Chromatin states: 1 TssA – active transcription start site, 2 TssFlnk – region flanking transcrip-
tion start site, 3 TssFlnkU – region flanking transcription start site upstream, 4 TssFlnkD – region flanking transcription start site downstream, 5 Tx –
strong transcription, 6 TxWk – weak transcription, 7 EnhG1 – genic enhancer type 1, 8 EnhG2 – genic enhancer type 2, 9 EnhA1 – active enhancer type
1, 10 EnhA2 – active enhancer type 2, 11 EnhWk – weak enhancer, 12 ZNF/Rpts – zinc finger genes and repeats, 13 Het – heterochromatin, 14 TssBiv
– bivalent/poised transcription start site, 15 EnhBiv – bivalent enhancer, 16 ReprPC – repressed Polycomb, 17 ReprPCWk – weak repressed PolyComb,
18 Quies – quiescent chromatin (no histone marks are present).

dex. To have a broader distribution of mitotic indices, we
generated linear regression models for five additional tissues
where at least 15 samples from normal tissue were available.
Namely, these were bladder (BLCA), esophagus (ESCA),
brain (GBMLGG), pancreas (PAAD), and skin (SKCM).
The enrichment of hypomethylation in constitutive LADs
in cancer positively correlated with the mitotic index (r =
0.66, P-value = 0.007; Pearson correlation) (Figure 5C). We

next asked whether we would also observe such a correla-
tion using data from normal tissues. Mitotic indexes calcu-
lated for normal tissues varied slightly more than those for
tumours (range 2.64–3.28 versus 3.13–3.54, standard devi-
ation 0.159 versus 0.148). The enrichment of hypomethyla-
tion in constitutive LADs during ageing correlated stronger
with normal tissue mitotic indexes (r = 0.76, P-value =
0.001; Pearson correlation) (Figure 5D). As an additional
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Figure 5. Differential methylation in lamina-associated domains. (A) Enrichment of hypomethylated probes in constitutive lamina-associated domains. The
log2 of the odds ratio from Fisher’s exact test is plotted for various conditions. Purple bars correspond to output from the linear regression models of cancer.
Green corresponds to output from the linear regression models of ageing. Grey corresponds to probes output from the linear regression model of senescence
and progeria. (B) Enrichment of hypomethylated probes depending on the replication timing of genomic regions in cancer (top) and ageing (bottom). The
log2 of the odds ratio from Fisher’s exact test is plotted per cell cycle stage. (C) Enrichment of hypomethylation in constitutive LADs (log2 of the odds
ratio) in cancer versus estimated mitotic index in tumour samples (r = 0.66, P-value = 0.007; Pearson correlation). (D) Enrichment of hypomethylation
in constitutive LADs (log2 of the odds ratio) in ageing versus estimated mitotic index in normal tissue (r = 0.76, P-value = 0.001; Pearson correlation).
Correspondence between normal tissue labels and cohorts in the TCGA are the following: BLADDER – BLCA, BRAIN – GBMLGG, BREAST -BRCA,
COLON – COAD, ESOPHAGUS – ESCA, HEAD - HNSC, KIDNEY – KIPAN, LIVER – LIHC, LUNG (LUAD) – LUAD, LUNG (LUSC) – LUSC,
PANCREAS – PAAD, PROSTATE – PRAD, SKIN – SKCM, THYROID – THCA, UTERUS – UCEC.

confirmation, we calculated the correlation between the ex-
pression of Ki67, a well-known proliferation marker (79)
and the enrichment of LAD hypomethylation in cancer and
ageing. Even though this correlation was weaker and not
significant in cancer (r = 0.42, P = 0.11; Pearson correla-
tion), the correlation in ageing and normal tissues slightly
increased (r = 0.78, P = 0.0006; Pearson correlation) when
compared to the mitotic index. To ensure that the correla-
tions with the mitotic index were specific to LADs, we did
1000 permutations of probes assigned to LADs and calcu-
lated the enrichment of hypomethylation and its correlation
with mitotic index. Our test showed that both obtained cor-
relations were significant––the P-value was equal to 0.023

for cancer cells and 0.002 for normal tissues (Supplemen-
tary Figure S4).

To better understand whether LAD hypomethylation
would be associated with differential activity of specific
genes, we asked if there were any genes that correlated in
their expression with the enrichment of hypomethylation in
LADs over individuals. In patients from whom methylation
data was available from both the tumour and adjacent nor-
mal tissue, we calculated the difference in beta-values be-
tween the two samples. These values were used as input to
calculate the enrichment of hypomethylation in LADs. We
compared the calculated enrichment to the patient’s abso-
lute expression of genes in the tumour. The analysis was per-
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formed for cancer types which contained more than 10 pa-
tients with both methylation and expression data. Namely,
these were: BRCA, COAD, HNSC, KIPAN, LIHC, LUAD,
LUSC, PRAD and THCA. We performed a GSEA (80)
to identify pathways enriched among genes whose expres-
sion was correlated with the degree of hypomethylation in
LADs in patients. In multiple cancer types, we found sev-
eral pathways related to cell division that were significantly
enriched among the highly correlated genes (e.g. ‘protein lo-
calization to kinetochore’ in COAD, KIPAN and PRAD
and ‘DNA strand elongation involved in DNA replication’
in COAD, KIPAN, PRAD, LIHC and THCA). The enrich-
ment of both GO terms was independent of each other as
no genes were annotated with both terms. Moreover, these
genes were not enriched in LAD regions, excluding the pos-
sibility of LADs directly contributing to the observed ex-
pression values. We concluded that the association between
the extent of LAD hypomethylation and the expression of
genes participating in cell division within the same cancer
type could be a proxy for variation in cell division rates.

Having observed an association between LAD hy-
pomethylation and cell division rates, we wondered if we
would also observe LAD hypomethylation in embryonic
cells, which are naturally fast-dividing. To test this, we com-
pared the level of methylation in LADs between various
foetal tissues and their corresponding adult tissues (adrenal
gland, brain, heart, lung, spleen, and stomach) under the
assumption that foetal tissues divide faster than their adult
counterparts. Excluding the adrenal gland, hypomethyla-
tion of LADs and late-replicating regions was generally
stronger in foetal tissues, although the enrichment was gen-
erally weaker than that observed in cancer (Supplementary
Table S5).

Mechanisms of DNA methylation loss

We could think of three scenarios to explain the loss of
methylation in LADs in cancer (Figure 6A). In the lam-
ina damage scenario, LADs no longer become associated
with the nuclear lamina following dissolution of the nu-
clear envelope and large structural rearrangements of the
genome (Figure 6A, left). Because the nuclear envelope pro-
vides an environment for the maintenance of the hyperme-
thylated state of the chromatin (81), the disruption of LAD
connection to the nuclear envelope leads to their eventual
hypomethylation. In the replication timing effect scenario,
methylation maintenance in the late-replicating regions of
the genome is less efficient than that in early-replicating re-
gions of the genome (82). For example, this could be due
to lack of recruitment of the required methylation mainte-
nance machinery (83). As the cell undergoes multiple divi-
sions, late-replicating regions gradually become less methy-
lated (Figure 6A, centre). Finally, our observed methylation
levels could have been the result of a population level effect.
When the number of dividing cells in a population is high,
the proportion of newly-synthesized unmethylated DNA is
also higher. Regions that become methylated later in the
course of the cell cycle do not yet have methylation infor-
mation transferred to the new strand. Under the assump-
tion that LADs are some of these late methylated regions,
the hypomethylation in LADs could be a reflection of the

higher proportion of dividing cells in a population (Figure
6A, right).

We aimed to rule out the last of the three scenarios by cre-
ating a mathematical model of methylation transfer based
on strongly conservative estimates in favour of this scenario
(see Methods, Supplementary Figure S5). As the enrich-
ment analysis was performed using a fifth of the probes,
we set the fraction of hypomethylated probes to 20% in the
model. We assumed a mitotic index of 40%, which is consid-
ered an upper bound for cell division rate in several cancers
(84,85). The maximum expected log2(odds ratio) that could
be obtained with these parameters was ∼1.17. In eight tis-
sues (BRCA, COAD, HNSC, LIHC, LUAD, LUSC, PRAD
and UCEC), the observed LAD hypomethylation enrich-
ment was higher for the HT1080A, HT1080B1 and consti-
tutive LAD definitions (Figure 5A, Supplementary Figure
S3). In BRCA and LIHC, this was also true for the TIG-3
LAD definition (Supplementary Figure S3). Moreover, we
observed a chromosome-specific extent of methylation loss
both in the array and the bisulphite sequencing data (Sup-
plementary Figure S6). Although there was some disagree-
ment between the two platforms, this could be the result of
looking at the average hypomethylation over the whole co-
hort versus hypomethylation in an individual patient. Taken
together, our observations suggest that, at least for certain
cancer types, the observed hypomethylation of LADs could
not be the result of only a population level effect.

We then directly compared hypomethylation in LADs
and in late replicating regions to determine whether the
lamina damage or the replication timing scenario would
be more likely. We pooled probes assigned to the S4 and
G2 stages in the RepliSeq data and treated these as late-
replicating region probes. The enrichment of hypomethy-
lation in late-replicating regions in cancer was comparable
to the values found for different definitions of LADs (Sup-
plementary Figure S7A). Probes that overlapped between
LADs and late-replicating regions displayed the most hy-
pomethylation, while probes located exclusively in LADs
or late-replicating regions displayed less but still significant
levels of hypomethylation (Supplementary Figure S7B).

To further investigate the association between loss of
methylation and structural reorganisation of the genome
with respect to the nuclear lamina, we looked at two other
phenotypes that were characterized by such rearrange-
ments. Senescence, the state of irreversible cell cycle arrest,
has been previously shown to be accompanied by degrada-
tion of lamin B1 and loss of nuclear envelope integrity (86–
88). Progeria, a premature aging disorder, is known to be
caused by a mutation in lamin A. As a result, a truncated
version of lamin A is expressed, which disrupts proper con-
nection of the genome to the nuclear lamina (89). In both
phenotypes, we observed enrichment of hypomethylation
in LADs, although it was not as strong as in cancer (Fig-
ure 5A, Supplementary Figure S5A). These observations
appeared to be in favour of the lamina damage scenario,
however, methylation of late-replicating regions in senescent
cells has also been shown to be affected by the replication
timing effect (83). As a result, we were unable to distinguish
the two scenarios with currently available data and perhaps
a combination of the two is what results in the observed hy-
pomethylation.
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Figure 6. Mechanisms of DNA methylation loss in LADs. (A) Three proposed scenarios of methylation loss in LADs in cancer. In the lamina damage
scenario, hypomethylation of LADs follows detachment of these regions of the genome of the nuclear lamina. In the replication timing effect scenario,
methylation in late-replicating regions is gradually lost over the course of multiple cell divisions. In the population level effect scenario, the observed
hypomethylation reflects a larger proportion of dividing cells in a population. In these dividing cells, methylation information has not been transferred to
all regions of the newly-synthesized DNA strands yet. (B) Concordance of direction of differentially methylated probes across tissues. The percentage of
hypermethylated or hypomethylated probes is plotted against the number of tissues in which these probes are hypermethylated or hypomethylated. Slopes
used for determining hypermethylation and hypomethylation were taken from the linear regression model of cancer. (C) Pairwise tissue correlations of
probes outside LADs versus those of probes inside LADs. Every point corresponds to one pairwise tissue comparison. The correlation coefficient of slopes
from probes located outside of LADs is plotted against the correlation coefficient of slopes from probes located in LADs. Slopes used for calculating the
correlations were taken from the linear regression model of cancer.

Having observed an association between hypomethyla-
tion in cancer, structural reorganisation of the genome,
replication timing and cell division rates, we went back to
the original output from our cancer linear regression mod-
els. We observed that hypomethylated probes were more
consistently affected across different tissues than hyperme-
thylated probes (P-value = 0; Mann–Whitney U test) (Fig-
ure 6B). In addition, pairwise differential methylation cor-
relations between different tissues in cancer were higher for
probes located in constitutive LADs compared to probes
located outside LADs (Figure 6C). Based on our observa-
tions, we propose that cancer-associated hypomethylation
at least partially arises due to rearrangements in the chro-

matin structure. Moreover, considering ∼30% of the hy-
pomethylated probes were located in LADs according to at
least one LAD definition, these rearrangements contribute
to the similarity across tissues and cancer types and are as-
sociated to the differences in cell division rates of healthy
tissues and cancer cells.

DISCUSSION

In our study, we focused on aberrant methylation dur-
ing cancer and determined methylation patterns that were
shared between several cancer types. Our observations sug-
gested that functional selection for changes in methylation
of cancer genes could only be associated with a small frac-
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tion of the methylation events in cancer. We therefore stud-
ied methylation patterns established during ageing in nor-
mal tissues to try to explain aberrant methylation in can-
cer. After comparing changes in methylation that occur in
ageing and cancer, we found a smaller overlap than we ex-
pected. To better understand the observed differences in
methylation changes during ageing and cancer, we deter-
mined which chromatin features could influence the estab-
lished methylation landscapes. Hypermethylation was as-
sociated with regions flanking the transcription start site,
enhancers, and regions targeted by the Polycomb complex,
suggesting it affects gene expression. Hypomethylation was
associated with heterochromatin, repetitive regions, and
LADs.

We further investigated the hypomethylation of LADs
in ageing and cancer. We observed that regions that were
replicated later were more hypomethylated, this effect being
more pronounced in cancer than in ageing. Additionally,
the extent of hypomethylation in LADs correlated with our
estimate of cell division rates. Finally, genes associated with
cell division were upregulated in patients displaying more
hypomethylation in LADs. We excluded that this associa-
tion between hypomethylation in LADs and cell division
was simply the result of a higher proportion of dividing cells
in a population. Taken together, our results suggested that
the aberrant methylation landscape in cancer is partially the
result of structural reorganisation of the genome with re-
spect to the nuclear lamina that is enhanced by the fast di-
vision rates of cancer cells. Therefore, the functional inter-
pretation of such DNA methylation events should be done
with caution.

Although the majority of previously annotated cancer
genes were not affected by differential methylation, onco-
genes were significantly more hypermethylated across the
tissues we tested. This finding was in contrast to our ex-
pectations. We reasoned that other factors of gene expres-
sion regulation could come into play to ensure the expres-
sion of these oncogenes in the tumour. Another possible ex-
planation for our observations could be the mutually exclu-
sive nature of oncogenes, with hypermethylation used as a
mechanism to prevent expression of certain combinations
of oncogenes.

A finding that contrasted our expectations was the low
correlation between ageing-associated events and cancer-
associated events. Previously, a strong association between
the two has been suggested (20,23). Studies where this as-
sociation was observed, however, heavily focused on methy-
lation in colon, the tissue in which we observed the highest
similarity between cancer and ageing. A study investigating
the relationship between ageing and cancer in breast tissue
found a selection of sites that where common between the
two (90). This selection, however, contained slightly more
than 10% of all differentially methylated regions in ageing.
Thus, we propose that although ageing and cancer share
common features in the methylation landscape, only a mi-
nority of methylation events that occur during ageing over-
lap with those that occur during cancer development.

We observed an overlap in methylation patterns estab-
lished in cancer in multiple tissues. Tissue-independent
methylation patterns of cancer have previously been ob-
served using smaller selections of CpG sites (91–93). More

recently, a larger scale study used probes of the 450k array
located in the vicinity of genes and also showed high cor-
relation in cancer methylation patterns that were common
between different tissue types (94).

Our associations between differentially methylated re-
gions in cancer and chromatin features help to better under-
stand previous observations. The prevalence of hyperme-
thylation in gene promoter regions and regions targeted by
the Polycomb complex has also been found by others before
us (95,96). In addition, multiple enhancer types have been
found to be hypermethylated, including bivalent enhancers.
Bivalent enhancers are frequently located upstream of de-
velopmental genes (97). Hypermethylation of these regions
may be an aspect of the cell reusing developmental pro-
grams during progression towards a malignant state (98).

By contrast, we found that hypomethylation in cancer
was not as strongly associated with chromatin states poten-
tially affecting gene expression. In line with our findings,
repetitive regions were previously shown to lose methylation
in cancer (99,100). The same was true for heterochromatin
and H3K9me3 (15), which were previously linked to ele-
vated mutation rates and copy number aberrations in cancer
(101,102). Finally, hypomethylation has been shown to af-
fect long stretches of the genome which coincide with LADs
and late-replicating regions (16,103). We have shown that
this trend holds true in a variety of cancer and healthy tis-
sues, that this trend is stronger in cancer than in ageing, and
that a fraction of the differences between tissues and cancer
types are related to particular cell division rates.

We have chosen to focus on the association between hy-
pomethylation and LADs in cancer as it supported the
idea of aberrant methylation being influenced by changes in
chromatin structure (15). We proposed three possible sce-
narios by which hypomethylation in LADs could be es-
tablished during cancer development. We excluded the sce-
nario in which this hypomethylation could be the result of
a higher proportion of dividing cells within a population.
It has been previously shown that population effects are in-
sufficient to explain differences in the level of methylation
observed in early-replicating regions and late-replicating re-
gions (104,105). Moreover, these differences are not pro-
nounced in early passage cells (104), and thus appear to be
the result of methylation loss accumulation over multiple
cell cycles.

Our findings suggest that hypomethylation in LADs
is both the result of the structural reorganisation of the
genome with respect to the nuclear lamina and the coinci-
dence of LADs with late-replicating regions. Fast dividing
cells in normal embryonic development showed a stronger
loss of methylation in LADs when compared to the corre-
sponding adult tissues, suggesting that this effect was re-
versible. Although we hypothesize that LAD hypomethyla-
tion is the consequence of structural rearrangements of the
genome and the replication timing effect, we cannot exclude
the possibility of this hypomethylation acting as a facilita-
tor for structural reorganisation of the genome and faster
cell division.

We were not able to determine whether the replica-
tion timing effect or the structural rearrangements of the
genome played a stronger role in LAD hypomethylation.
In cells approaching senescence, DNMT1, the maintenance
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methyltransferase, has been shown to fail to localize at late-
replicating regions (83). Similarly, a less efficient recruit-
ment of DNMT1 to late-replicating regions combined with
the many cell divisions undergone by the cancer cell could
result in a major loss of methylation in these regions. How-
ever, although DNMT1 is responsible for most of the main-
tenance methylation, other methyltransferases assist with
maintenance after recruitment to specific chromatin states
(106). Thus, the observed hypomethylation could have been
preceded by histone mark aberrations. In particular, the
H3K9me3 mark coincides with LADs and heterochromatin
(17), and investigating its distribution in cancer could pro-
vide mechanistic insight into whether methyltransferases
are indeed efficiently recruited to these areas. Finally, al-
though we propose that hypomethylation of LADs mainly
occurs as the result of a passive demethylation process, there
is a possibility that active demethylation mechanisms also
come into play.

A drawback of our study was that we were not able to
obtain tissue-specific data on late-replicating regions and
LADs. Although a subset of genomic regions is constitu-
tively late-replicating and located in lamina-associated do-
mains, different cell types noticeably vary in their replica-
tion timing program (70) and facultative LADs exist (17).
The differences in replication timing are in fact significant
enough to identify cell types (107). Moreover, cancer cells
display abnormalities in the replication timing program
when compared to normal cells of the same type (108) and
are known to undergo rearrangements in genome-nuclear
lamina interactions. In our data, however, we did not ob-
serve many differences between using replication timing
data from BJ, BG02es, IMR90, MCF-7 or HepG2 to as-
sign probes to cell cycle stages. The overlap between probe
assignment to different LAD definitions was lower, espe-
cially between HESCs and other cell lines. In future studies,
we therefore advise simultaneous measurement of methy-
lation, lamina-associated domains, and late-replicating re-
gions within the same cell type to gain a better mechanistic
understanding of the underlying processes.

In addition, we ruled out some but not all factors that
could confound our observations. Specifically, we excluded
that copy number variations contributed to the variation in
methylation and that LAD hypomethylation was associated
with the hypoxia levels of the tumour. However, we did not
check for some other potential confounders such as tumour
heterogeneity due to lack of immediate tests.

In conclusion, we associated the amount of hypomethy-
lation in LADs to cell division both on the level of different
tissues and cancer types and the level of individuals within
the same cancer type. The number of stem cell divisions has
previously been shown to correlate with lifetime risk of can-
cer (109,110). Based on this observation, the ‘bad luck’ hy-
pothesis of cancer aetiology has been proposed. According
to this hypothesis, faster dividing cells accumulate more mu-
tations due to random errors in DNA replication, thus hav-
ing a higher chance of malignant transformation. The hy-
pothesis has been met with controversy as it reduces the ef-
fect of environmental factors on cancer development (111).

Our observations suggest that the ‘bad luck’ hypothesis
has an epigenetic component to it as well. Recently, the av-
erage levels of CpG island methylation in a tissue have also

been shown to correlate with the tissue’s risk to develop can-
cer (112). In our study, we observed increased hypomethy-
lation of LADs in faster dividing cells. Overall hypomethy-
lation is often linked to increased genome instability (113–
115). Therefore, methylation changes could also contribute
to the accumulation of mutations in faster dividing cells
prior to cancer development. In addition, our results sug-
gest that cell division rates affect the degree of similarity
of the methylation landscapes in healthy tissues and can-
cer. In fast-dividing tissues such as lung and colon, ageing-
associated changes in the DNA methylome correlate more
with those that occur during cancer development. However,
other factors such as the availability and efficiency of DNA
repair and methylation maintenance machinery could also
influence this similarity, which may be why we do not ob-
serve a direct association for all tissues. Up until now, sup-
porters and opponents of the ‘bad luck’ hypothesis have fo-
cused on the contribution of genetic factors to carcinogen-
esis. We would like to emphasize the importance of investi-
gating the contribution of epigenetic factors to carcinogen-
esis as well.
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