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Abstract

Background: Traditional clustering approaches for gene expression data are not well adapted to address the complexity and
heterogeneity of tumors, where small sets of genes may be aberrantly co-expressed in specific subsets of tumors.
Biclustering algorithms that perform local clustering on subsets of genes and conditions help address this problem. We
propose a graph-based Tunable Biclustering Algorithm (TuBA) based on a novel pairwise proximity measure, examining the
relationship of samples at the extremes of genes’ expression profiles to identify similarly altered signatures. Results: TuBA’s
predictions are consistent in 3,940 breast invasive carcinoma samples from 3 independent sources, using different
technologies for measuring gene expression (RNA sequencing and Microarray). More than 60% of biclusters identified
independently in each dataset had significant agreement in their gene sets, as well as similar clinical implications.
Approximately 50% of biclusters were enriched in the estrogen receptor−negative/HER2-negative (or basal-like) subtype,
while >50% were associated with transcriptionally active copy number changes. Biclusters representing gene co-expression
patterns in stromal tissue were also identified in tumor specimens. Conclusions: TuBA offers a simple biclustering method
that can identify biologically relevant gene co-expression signatures not captured by traditional unsupervised clustering
approaches. It complements biclustering approaches that are designed to identify constant or coherent submatrices in
gene expression datasets, and outperforms them in identifying a multitude of altered transcriptional profiles that are
associated with observed genomic heterogeneity of diseased states in breast cancer, both within and across tumor
subtypes, a promising step in understanding disease heterogeneity, and a necessary first step in individualized therapy.
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Background

The first step in organizing and analyzing high-throughput gene
expression datasets is to group together (cluster) genes, or sam-
ples based on some mathematical measure of similarity be-
tween the respective entities of interest. Because a priori knowl-
edge about both the relevant genes and the unique phenotypic
characteristics of samples is usually limited, clustering is often

performed in an unsupervised manner [1–5]. Quite frequently,
measures of similarity (e.g., the Pearson correlation coefficient,
Spearman correlation coefficient, mutual information) are used
to quantify the level of similarity between every pair of genes
(or samples) across all samples (or genes). Such an approach is
known as global clustering. In case of datasets with a heteroge-
neous assortment of samples, only a small subset of genes in a
fraction of the total set of samples may be co-regulated in spe-
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cific cellular processes. This is especially true for diseases like
cancer that manifest a plethora of diseased phenotypes. In gene
expression datasets comprising tumor samples, depending on
the heterogeneity of the diseased states, there may be multiple
distinct transcriptional alterations that are exhibited by multiple
(not necessarily exclusive) subsets of the tumor samples. More-
over, it is well known that even in normal cells, the same genes
can regulate and participate in multiple distinct pathways, de-
pending on the context. Therefore, global clustering is not an
optimal approach to identify co-expressed sets of genes or sam-
ples in gene expression datasets associated with heterogeneous
diseases.

To address these concerns, a variety of local biclustering
algorithms have been proposed that satisfy the following re-
quirements: (i) a cluster of genes is defined with respect to
only a subset of conditions (patient samples) and vice versa,
and (ii) the clusters are not exclusive and/or exhaustive—i.e., a
gene/condition may belong to >1 cluster or to none at all [6–9].
Based on the type of biclusters and the mathematical formu-
lation used to discover them, biclustering techniques are cat-
egorized by Oghabian et al. [10] into 4 classes: (i) correlation
maximization methods that identify subsets of genes and sam-
ples where the expression values of genes (or samples) is highly
correlated across samples (or genes) [6], (ii) variance minimiza-
tion methods that identify biclusters where the expression val-
ues have low variance among the selected genes or conditions
or both [11], (iii) 2-way clustering methods that iteratively per-
form 1-way clustering on the genes and samples [12], and (iv)
probabilistic and generative methods that employ stochastic ap-
proaches to discover genes (or samples) that are similarly ex-
pressed in subsets of samples (or genes) [13, 14]. Another clas-
sification scheme proposed by Pontes et al. [15, 16] categorizes
the generated biclusters based on their gene expression patterns
into 4 classes: (i) biclusters with constant values, (ii) biclusters
with constant values on rows (genes) or columns (conditions),
(iii) biclusters with additive and/or multiplicative relationships
between genes and conditions, and (iv) biclusters based on evi-
dence that a subset of genes is up-regulated or down-regulated
across a subset of conditions without taking into account ac-
tual expression values; data in such biclusters do not follow any
mathematical model.

In this paper, we introduce a graph-based method called the
Tunable Biclustering Algorithm (TuBA), which discovers biclus-
ters consistent with the latter category. TuBA is based on a novel
measure of proximity that identifies aberrantly co-expressed
gene sets within subsets of tumor samples that correspond to
the expression extremals for the genes. A key feature of the
proximity measure used in TuBA is that it does not rely explic-
itly on the actual gene expression values. We demonstrate the
utility of TuBA by applying it to 3 large, independent cohorts of
breast invasive carcinoma (BRCA) encompassing 3,940 patients.
In addition to detecting known pathways and subtypes associ-
ated with breast cancer, TuBA was able to uncover several novel
sets of co-expressed genes across subtypes that may be relevant
as biomarkers for therapeutic identification and intervention.

Methods
Proximity measure

TuBA’s proximity measure addresses the following question: in
a given gene expression dataset, which genes exhibit higher (or
lower) expression levels in the same subset of samples relative
to the rest? In other words, if we only consider the top (or bot-

tom) x percentile samples for every gene, which gene pairs share
a significant number of samples between their percentile sets?
The number of samples shared between any pair of percentile
sets follows the hypergeometric distribution; therefore, we can
compute the significance (P-value) of overlaps between pairs of
percentile sets based on the numbers of shared samples by us-
ing the 1-sided Fisher’s exact test. Thus, TuBA’s proximity mea-
sure between 2 genes is defined by the significance of overlaps
between their respective percentile sets (Fig. 1).

In a real biological dataset, we expect the following 2 scenar-
ios to arise: (i) subsets of genes associated with particular biolog-
ical processes/pathways are co-expressed in all samples. In this
case, it is reasonable to expect a significant agreement between
the sets of samples that exhibit higher (or lower) expression lev-
els of the involved genes. (ii) Alternatively, subsets of genes may
be dysregulated via shared underlying mechanisms, such that
their expression levels are higher (or lower) compared with the
rest of the samples that are not influenced by that mechanism.
The latter case is of particular interest for datasets associated
with diseased states, especially cancers, because these gene co-
expression signatures and their underlying mechanisms could
help us identify potential biomarkers with prognostic and/or
predictive value. This is the basic motivation behind standard
different differential expression analyses as well [17]. However,
unlike usual differential co-expression analyses, our proximity
measure does not rely on any pre-specification of subtypes.

A salient feature of our proximity measure is that it does
not model the distributions of the measured expression levels of
genes across samples. Moreover, it does not rely on significant
differences between the expression levels of genes in samples
comprising the extremal sets vs the rest of the samples. Thus,
biologically relevant gene co-expression signatures can be iden-
tified without restricting the analysis exclusively to genes that
exhibit differential expression across subsets of samples. In the
case of tumor datasets, this increases the likelihood for identifi-
cation of gene co-expression signatures associated with the mi-
croenvironment. Another salient feature of our proximity mea-
sure is that there is no penalty for relative changes in ranks of
samples in the respective percentile sets. This is important be-
cause, even if the ranks of matching samples are significantly
different in the 2 percentile sets, there is still valuable informa-
tion to be gleaned by virtue of the fact that these subsets of sam-
ples exhibit higher (or lower) expression levels for a given gene
pair compared with all the other samples. This feature of our
proximity measure makes it less sensitive to noise compared
with other proximity measures, such as the Spearman’s rank
correlation.

Graph-based algorithm

For each gene, TuBA identifies samples in the uppermost (or low-
ermost) percentile sets. Pairwise comparison between these per-
centile sets (using the 1-sided Fisher’s exact test) identifies gene
pairs that share a statistically significant number of samples.
Each significant gene pair is illustrated graphically as a pair of
nodes connected by an edge that represents the samples shared
between their percentile sets. The complete set of these pair-
wise graphs generates large graphs from which robust gene co-
expression signatures are recovered using the following iterative
process (Fig. 2):

1. The graph is pruned such that its elementary units are com-
plete subgraphs (cliques) of size 3 (triangles).
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Figure 1: Schematic representation of TuBA’s proximity measure. (A) For each gene, samples are arranged in increasing order of expression levels and those corre-
sponding to a fixed percentile set (top or bottom) are compared between each pair of genes as shown. The gene pairs that share a significant number of samples are

represented as nodes linked by edges, which represent the samples. (B) The Venn diagram illustrates the set-up of the contingency table for the 1-sided Fisher’s exact
test. The gray rectangular box represents the set of all samples in the dataset, and the red and blue circles represent the samples in the top (or bottom) percentile sets
of gene 1 and gene 2, respectively.

2. The largest clique (i.e., the seed) in the pruned graph is iden-
tified using the Bron-Kerbosch algorithm [18]. In cases where
the largest clique is not unique, the union of all equally large
cliques with a non-zero intersection of their nodes is desig-
nated as the seed; the remaining largest cliques are identified
as new seeds in subsequent iterations.

3. The graph is trimmed by removing all the edges that contain
any of the nodes in the seed in Step 2. This step significantly
reduces the computation time required to identify all the ro-
bust cliques in the graph.

4. Steps 2 and 3 are repeated until the graph has no elementary
units left.

5. The seeds identified in Steps 1–4 are exclusive in their gene
sets, i.e., no 2 seeds share a common gene. To create the bi-
cluster, the seeds are reintroduced sequentially into the orig-
inal pruned graph from Step 2, and nodes that share edges
with ≥2 nodes in each seed are identified and added to the
seed. The resulting graphs are the final biclusters obtained
by TuBA.

Note that the requirement of largest cliques as seeds of our
biclusters in Step 2 is a key step in our algorithm that enables the

identification of shared altered mechanisms in subsets of sam-
ples that exhibit high (or low) expression levels of these genes,
while permitting the study of sets of co-expressed genes that
are associated with functionally related pathways. Implicit in
this requirement is the crucial assumption that the sets of genes
making up the largest cliques are co-expressed in a subset of
samples that make up the edges. This assumption is not the
same as requiring all gene pairs making up the seed to share
identical sets of samples, or assuming that all the samples mak-
ing up the final biclusters co-express all the genes present in the
bicluster. Instead, our expectation is that the samples present in
the final biclusters are enriched in the top (or bottom) samples
for each gene making up the biclusters. We have provided sup-
porting evidence for this expectation in the Results section.

Gene enrichment analysis of the gene sets in the biclusters
can be used to identify their functional relevance, and sample
enrichment analysis can elucidate potential clinical subtypes,
underlying mechanisms of disease, and possible therapeutic
approaches. Furthermore, within each bicluster, genes can be
assigned degrees, which are the total number of edges that
connect them to other genes in the graph. Genes with higher
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Figure 2: TuBA’s schematics. (A) Flow chart of the pipeline for TuBA. (B) Schematic representation of the graph-based approach to discover biclusters.

degrees exhibit co-expression with other genes in a greater
proportion of samples in the bicluster. These could be candidate
driver genes.

Tuning TuBA

TuBA has 2 adjustable parameters:

1. The percentile cut-off: This parameter controls the number
of top or bottom samples (based on expression levels) con-
sidered for comparison between genes.

2. The overlap significance cut-off: The P-value threshold used
to assess significance of the overlap of samples between per-
centile sets for each gene pair. This parameter controls the
minimum number of samples that must be shared between
percentile sets for an association to be considered significant,
and to be represented in the graph.

The parameters can be seen as “knobs” that can be tuned
to probe different levels of heterogeneity in the population. For
a given dataset, the choice of these 2 parameters determines
the number, as well as the composition of the final biclusters.
The choice of the first parameter determines the level of hetero-
geneity and/or the extent of prevalence of genomic alterations
in tumors that may be of interest to the investigator. To illus-
trate how the choice of percentile cut-off could affect the iden-
tification of co-expressed gene pairs, we consider a hypothet-
ical dataset consisting of 200 samples. Assume that there is a
gene pair in this dataset that is up-regulated in 5% of the sam-
ples such that the top 5% percentile sets (i.e., top 10 samples) are
identical for the 2 genes. Fig. 3A shows the significance values for
overlaps (P-values calculated using 1-sided Fisher’s exact test)
as a function of the fraction of samples that overlap. At 5% per-
centile cut-off, the significance value for an overlap fraction of 1
(complete match/overlap between percentile sets) is P = 4.45e–
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Figure 3: Tuning TuBA’s parameters. (A) Significance of overlap corresponding to fraction of overlap between 0 (no matches/overlap) and 1 (all samples match/overlap)

for percentile set size of: (i) top 20% (green), (ii) top 10% (red), and (iii) top 5% (dark blue) for a hypothetical dataset consisting of 200 samples. (B) Divergence of the total
number of edges in the graph for the TCGA RFS dataset as we lower the cut-off for the significance of overlap.

17 (dark blue curve). If instead we had chosen an upper 10% per-
centile cut-off, we would have an overlap fraction of 0.5 (overlap
of 10 out of 20 samples) corresponding to a significance value for
overlap between 1e–10 and 1e–5. Thus, an increase in the size of
the percentile set results in loss of significance for aberrant co-
expression signatures found in smaller subsets of samples. This
does not imply that it is generally better to choose smaller per-
centile sets. In fact, a reduction in the size of the percentile set
increases the likelihood that a number of samples match purely
by chance. (Note the P-values corresponding to the overlap frac-
tion of 1 for the 3 cases in Fig. 3A, further demonstrated by per-
mutation tests in the Results.) Thus, as we vary the size of the
percentile set, there exists a trade-off between the sensitivity
(identification of altered transcriptional profiles in small subsets
of population) on one hand and the overlap significance on the
other.

The choice of the second parameter—the extent of pa-
tient/sample overlap between percentile sets—determines the
gene pairs that will be represented in the graph that is explored
iteratively to identify sets of co-expressed genes. As we lower
the significance of overlap (increasing P-values), new genes and
samples get added to the graph, resulting in an increase in the
number of edges (Fig. 3B). Further lowering of the overlap sig-
nificance results in the addition of many more edges to the
graph; however, this addition is not accompanied by a propor-
tional increase in the samples or genes added to the graph. As
more edges get added to the graph, the computational effort re-
quired for finding maximal cliques increases. Because the maxi-
mal clique problem is NP-hard [19], it can take exponential time
to find all maximal cliques. Thus, the cut-off for the significance
of overlap is informed by the trade-off between the gain of new
information in the biclusters in terms of new samples and genes,

and the number of edges added to the graph that leads to a dis-
proportionate increase in the computational effort. We propose
the following heuristic for choosing the cut-off value: the cut-
off for the significance level of overlap should be such that a de-
crease in the significance level by an order of magnitude leads
to a 40–60% increase in the number of edges that get added to
the graph (note the number of edges that get added to the graph
at overlap significance P-values >1e–20 in Fig. 3B).

Because the principal goal of TuBA is to identify subsets of
genes that are co-expressed at high (or low) levels within sub-
sets of samples, the exact number of biclusters is not biologically
relevant despite possible small variations in their total number
as the algorithm is tuned. We investigated the consistency of
TuBA’s biclusters across different choices of the parameters. We
used the hypergeometric test to identify biclusters that share
significant fractions of their genes and observed that despite
a 5-fold difference in the significance level of overlap, there is
>80% agreement between the sets of biclusters obtained for dif-
ferent choices of the overlap significance cut-off. The results of
the analysis are presented and discussed under Robustness of
TuBA’s Biclusters in Supplementary Methods and Supplemen-
tary Table 4.

BRCA datasets

We primarily applied TuBA to 3 independent BRCA datasets that
used distinct methods for measuring transcript levels: (i) The
Cancer Genome Atlas (TCGA) RNA sequencing (RNA-Seq) gene
expression dataset using the Illumina HiSeq 2000 RNA-Seq plat-
form, (ii) METABRIC gene expression dataset using the Illumina
HT-12 v3 microarray platform, and (iii) 6 cohorts with gene
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expression data from Gene Expression Omnibus (GEO) using the
Affymetrix HGU133A microarray platform. To compare results
among datasets, we applied TuBA to only their common gene
sets. For clinical association analysis, we prepared 2 separate
datasets for patients with known recurrence-free survival
(RFS) status (908 patients) and patients with known Prosigna
Breast Cancer Prognostic Gene Signature Assay (PAM50) subtype
annotation (522 patients), respectively. Henceforth, we refer
to TCGA RFS, METABRIC RFS, and GEO RFS datasets simply as
TCGA, METABRIC, and GEO, respectively, and PAM50 datasets
are indicated specifically.

1. TCGA—BRCA: The log2(x + 1) transformed RSEM normalized
counts of Level 3 data (16 August 2016 version), the clinical
data (including relapse status and PAM50 subtype annotation
from the 2012 Nature study [20]) (27 April 2016 version), and
gene-level copy number variation (CNV) data, as estimated
by GISTIC2 [21] (16 August 2016 version), were downloaded
from the University of California Santa Cruz (UCSC) Xena Por-
tal [22]. Genes with zero expression in all samples, as well as
the samples with NAs for any gene, were removed from the
analysis.

2. METABRIC: Normalized gene expression data, the clinical file,
and the copy number file for the METABRIC study were down-
loaded from the cBioPortal [23] on 14 May 2017 [24, 25]. A gene
expression dataset of 1,970 samples that had both relapse
status and PAM50 subtype annotation was used in this study.

3. GEO: MAS5 normalized gene expression data and the clini-
cal data with relapse status were downloaded from Gyorffy
& Schafer [26] on 10 May 2017. The dataset comprises sam-
ples from 6 independent cohorts. After processing, our gene
expression dataset consisted of 1,062 patients with relapse
status.

Additional validation datasets

To compare TuBA’s performance with other biclustering algo-
rithms, we applied it to the following datasets:

1. breastCancerNKI: Gene expression data from a breast can-
cer study published by van’t Veer et al. [27], and van de Vi-
jver et al. [28] were downloaded in the form of an eSet using
the breastCancerNKI package [29] in R. The dataset was fur-
ther processed by removing probes with >10% missing val-
ues, and imputing the missing values for the included probes
[30].

2. ESTIMATE: Scores for the level of stromal cells present and
the infiltration level of immune cells in tumor tissues for
906 of 908 samples for the TCGA—BRCA RNA-SeqV2 dataset
using the ESTIMATE algorithm were downloaded from ESTI-
MATE [31] on 2017-10-12.

3. GTEx: RNA-Seq raw counts data from the Genotype-Tissue
Expression (GTEx) portal [32] were downloaded on 15 June
2017. The dataset comprises all tissue samples currently
available in the GTEx database. The 214 breast tissue samples
were identified and normalized using the DESeq package in
R [33].

Statistical analysis

All computations were performed with R 3.3.0 [34]. The igraph
package [35] was used to perform network/graph computations
with some data summary functions performed using the plyr
package [36]. The figures with graphs showing the genes for

some of the biclusters were generated using Cytoscape v3.4.0
[37]. Permutation test was performed on the METABRIC dataset
(1,970 samples) with upper percentile set size cut-off of 5%. For
each gene, we permuted the labels of the samples prior to as-
certainment of the samples that corresponded to the top 5%,
respectively. The significance values for overlaps between ev-
ery pair of genes were computed using the Fisher’s exact test.
We performed 100 iterations of these permutation tests in to-
tal. The data.table package was used to handle data files, and
the ggplot2 package was used to make plots [38]. GeneSCF [39]
was used to perform gene set clustering based on functional an-
notation and to associate biclusters with specific biological pro-
cesses. A binary matrix with biclusters along the rows and sam-
ples along the columns was generated to perform hierarchical
clustering. Samples belonging to respective biclusters were as-
signed a value of 1. The Hamming distance was used to mea-
sure dissimilarity between the biclusters as well as the samples.
All tests for enrichment were performed using the Fisher’s exact
test; where necessary the P-values were corrected for multiple
hypothesis testing using the Benjamini–Hochberg false discov-
ery rate (FDR) method [40]. The details of the contingency tables
for the tests are provided in the Supplementary Methods. All en-
richments are reported at FDR < 0.05, unless specified otherwise.

Results
Benchmarking TuBA’s proximity measure

TuBA’s pairwise proximity measure for genes is based on over-
laps between their extremal subsets of samples. In comparison,
global pairwise linear correlation coefficients such as the Pear-
son’s correlation coefficient and Spearman’s rank correlation co-
efficient are both susceptible to the influence of outliers. Even
in the absence of outliers, genes that are co-expressed across
all samples are expected to have significant overlaps between
the subsets of samples that correspond to their top (or bottom)
percentile sets. Given these observations, we tested the hypoth-
esis that gene sets identified by global proximity measures have
significant overlap with those identified by TuBA within its bi-
clusters.

We computed the Pearson’s correlation coefficients between
all possible pairs of genes in the TCGA and METABRIC datasets,
respectively. We shortlisted all gene pairs with the correla-
tion coefficient ≥0.6. We then used our graph-based algorithm
to identify gene co-expression modules within the graphs.
For TCGA and METABRIC, we obtained 569 and 298 gene co-
expression modules, respectively (Supplementary Table 1). We
investigated the association between the gene sets in biclusters
discovered by TuBA’s proximity measure vs gene co-expression
modules identified by global correlation metrics by performing a
hypergeometric test for gene overlaps. The null hypothesis was
the absence of significant overlap between their respective sets
of genes. Ninety percent (316 of 353) of the biclusters discovered
by TuBA in the TCGA dataset comprised gene sets that were en-
riched in ≥1 gene co-expression module (FDR < 0.001), while 86%
(293 of 340) of the biclusters discovered by TuBA in the METABRIC
dataset were enriched in ≥1 module.

We performed a similar analysis using Spearman’s rank
correlation, with a cut-off of 0.6 for the correlation coefficient.
We obtained 524 and 232 gene co-expression modules for TCGA
and METABRIC, respectively. A total of 81% (285 of 353) of TuBA’s
biclusters in the TCGA dataset comprised gene sets that were
enriched in ≥1 module. Overall, we see a significant enrichment
of gene sets in TuBA’s biclusters with the co-expression modules
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obtained by using the 2 global proximity measures. This is in
concordance with our hypothesis stated earlier.

As noted earlier, due to samples that exhibit aberrant/outlier
expression of some genes, the linear correlation coefficients can
often get skewed to reflect greater pairwise correlations between
such genes that our graph-based algorithm can identify. How-
ever, due to the global nature of these proximity measures, the
resulting graphs lack any information on the samples that might
be associated with aberrant expression of these genes. In other
words, unlike the case for TuBA, the edges in these graphs do not
represent any subset of samples; they simply reflect an associ-
ation between the genes by virtue of their pairwise correlation
coefficient being greater than the chosen cut-off. The novel de-
sign of our proximity measure enables precise identification of
co-expressed gene sets, while discerning the subsets of samples
that exhibit higher (or lower) expression levels of these genes
relative to the rest of the samples.

Choice of parameters for TuBA

For a given choice of the size of percentile set, TuBA generates
plots that illustrate the number of added genes, added edges,
and added samples as the overlap significance cut-off is var-
ied. These are used to inform the choice of the overlap signif-
icance cut-off based on our proposed heuristic. Because the ex-
perimental platform and the total number of samples were dif-
ferent among the analyzed datasets, the choice of the overlap
significance cut-off varied (Fig. 4). For the respective choices of
the knobs, we obtained 353, 340, and 369 biclusters for the TCGA,
METABRIC, and GEO datasets, respectively (Supplementary Ta-
ble 2). Permutation tests showed that no gene pairs had P-values
less than the cut-offs (Fig. S1). Moreover, after adjustment for
multiple hypothesis testing, none of the gene pair P-values were
statistically significant.

Enrichment of bicluster samples in top (bottom) sample
sets of bicluster genes

As pointed out earlier, the identification of largest cliques as
seeds of our biclusters was based on the expectation that sam-
ples present in the final biclusters were enriched specifically in
the up-regulated (down-regulated) samples for each gene mak-
ing up the cliques. We tested the hypothesis that the subsets
of samples making up the biclusters were enriched by the sam-
ples that make up the top (bottom) sets for each gene in the bi-
cluster. For example, suppose a dataset consists of 1,000 sam-
ples, wherein on application of TuBA for high expression, 1 bi-
cluster is identified to comprise 100 genes and 200 samples.
For each of those 100 genes, we identify their top 200 sam-
ples and test whether these 200 samples are enriched in the
200 samples making up the bicluster. The null hypothesis is
that these 2 sets of samples are independent and therefore we
should not expect to see statistically significant associations
between them. We applied this test for each of TuBA’s biclus-
ters in the TCGA, METABRIC, and GEO datasets. For high ex-
pression, we observed that all genes in all 353 biclusters from
TCGA showed significant enrichment (hypergeometric test FDR
< 0.001). In the case of METABRIC we observed 2 biclusters (bi-
clusters 2 and 269) out of 340 biclusters with only 1% of their
constituent genes not exhibiting enrichment, while in the case
of GEO we observed only 1 bicluster (bicluster 22) out of 369 with
1% of its constituent genes not exhibiting enrichment. For the
low-expression analysis of TCGA, we observed 2 biclusters (bi-
clusters 14 and 165) out of 203 biclusters that comprised a few

genes that did not exhibit enrichment. A crucial observation
across all the datasets was that even in the few biclusters that in-
cluded a few genes with enrichment FDR > 0.001, none of these
genes were constituents of the seeds of those biclusters. We
therefore found it justified to rely on the subsets of genes that
make up the seeds for future gene ontological enrichment tests.
This enables us to identify the core functional signatures of
biclusters.

We performed a similar analysis for the bicluster samples.
Following the previous example of a high-expression bicluster
with 100 genes and 200 samples, we aimed to identify the genes
in the bicluster that had a given sample in their top 200 sam-
ples (based on the expression levels of the genes). Therefore, for
each sample, we evaluated whether their corresponding sub-
set of genes had significant overlaps with the complete set of
genes making up the bicluster. So, we tested the null hypothesis
that overlaps between them were not statistically significant. For
high expression, we observed that 95% of biclusters (336 of 353)
from the TCGA, 97% of biclusters (329 of 340) in the METABRIC,
and 89% of biclusters (328 of 369) in the GEO databases had
>95% of samples enriched (hypergeometric test FDR < 0.001).
For the low-expression analysis of TCGA, we observed that 98%
of biclusters (199 of 203) had 95% of their samples enriched in
the bottom 200 samples for the corresponding genes in the bi-
clusters. Based on these analyses, the FDR values for each gene
(sample) in any given bicluster can be viewed as their scores—
the closer the value of the FDR is to zero for a gene (sample), the
stronger is the association of the gene (sample) to the bicluster.
We used the FDR values for the genes and samples within bi-
cluster i to evaluate its overall quality, Q(Bi), defined as the min-
imum of the fraction of the genes in the bicluster with FDR <

0.05 or the fraction of samples in the bicluster with FDR < 0.05.
Q(Bi) takes values between 0 and 1, where values close to zero
indicate weak associations between the constituent genes and
samples within the bicluster, while values close to 1 would indi-
cate strong associations.

Consistency of TuBA within a dataset

To investigate whether TuBA could consistently discover biclus-
ters within the TCGA RFS cohort, the 908 samples were divided
randomly into 2 groups of 454 samples each. This was done 5
times to generate 5 pairs of datasets. TuBA was applied to each
dataset pair using a percentile set size of 5% and an overlap
significance cut-off of FDR ≤ 1e–08. Pairwise comparisons (be-
tween sets of genes) of biclusters from the 5 trials showed that
on average 73% biclusters from 1 dataset in each pair were en-
riched (FDR < 0.001) in ≥1 bicluster from the other (Supplemen-
tary Table 3). We found a significant difference (Mann-Whitney
U-test P < 1e–05) in the number of genes contained in biclus-
ters that matched among trials, compared to the number of
genes in biclusters that did not; while the median size of biclus-
ters that matched was 20 (range: 3–840), the median size of bi-
clusters that did not match was 3 (range: 3–18) (note that 3 is
the smallest sized bicluster generated by TuBA). Overall, TuBA
was able to consistently identify matching sets of co-expressed
genes from randomly sampled subsets of data within a
dataset.

Consistency of TuBA’s biclusters among independent
datasets

Using common sets of genes, we compared the biclusters
obtained from (i) TCGA and METABRIC, (ii) TCGA and GEO, and
(iii) METABRIC and GEO. Pairwise comparisons of biclusters
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Figure 4: The effect of TuBA’s parameters on the number of genes and samples in the graph. Plots for the number of genes added to the graph for every incremental
decrease in the significance level for overlap [−log10(P)], the number of samples in the graph at different significance levels of overlap, and the total number of edges
in the graph at different significance levels of overlap corresponding to a percentile set size of 5% for (A) METABRIC, (B) TCGA, and (C) GEO datasets.

obtained from the 2 datasets were used to identify the biclus-
ters that shared a significant proportion of their genes (FDR <

0.001). In the TCGA vs METABRIC comparison, 64% of biclusters
obtained in 1 dataset were enriched in ≥1 bicluster in the other.
In the TCGA vs GEO comparison, 69% of biclusters obtained
in 1 dataset were enriched in ≥1 bicluster in the other. Finally,
in the METABRIC vs GEO comparison, 76% of the biclusters
obtained in 1 dataset were enriched in ≥1 bicluster in the other.
Once again, we found that the biclusters that did not match
were significantly smaller (median number of genes: 3–5) than
the biclusters that matched (median number of genes: 20–25)
between the datasets (Mann-Whitney U-test P < 0.001).

TuBA identifies subtype-specific biclusters

We classified BRCA samples based on the expression levels
of the ESR1 (ER) and ERBB2 (human epidermal growth fac-
tor receptor 2 [HER2]) genes into 4 subtypes: (i) ER–/HER2–, (ii)
ER+/HER2–, (iii) ER–/HER2+, and (iv) ER+/HER2+ (where the plus
sign indicates over-expressed and minus sign indicates under-
expressed). A substantial proportion of biclusters were enriched
in the ER–/HER2– subtype: 53% for METABRIC (Fig. 5A and B), 54%
for TCGA (Fig. 5C and D), and 40% for GEO (Fig. S6) (Supplemen-
tary Table 5).

According to the PAM50 classification, there are 5 subtypes of
BRCA: (i) basal-like, (ii) HER2-enriched, (iii) luminal A, (iv) lumi-
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Figure 5: Subtype enrichment of CNV-associated and non-CNV biclusters. Enrichment of biclusters consisting of proximally located genes with copy number gains

in the 4 subtypes based on ER/HER2 status for (A) METABRIC and (C) TCGA. The biclusters are represented by horizontal bars in each panel, color-coded according to
the chromosome number of their constituent genes. Panels (B) and (D) show the remaining biclusters arranged according to their serial numbers in Supplementary
Table 4 for METABRIC and TCGA, respectively. The ones that are associated with copy number gains of genes located at distant chromosomal sites are shown in red,
while the rest are shown in black. Note that the thickness of the bar in each panel depends on the total number of biclusters displayed in that panel and so does not

represent its chromosomal extent.

nal B, and (v) normal-like [41]. We observed a significant frac-
tion of biclusters enriched in the basal-like subtype: 52% for
METABRIC (Fig. S4A and B) and 55% for TCGA PAM50 (Fig. S4C and
D). Although tumors of the basal-like or triple-negative subtypes
accounted for only ∼15% of all BRCAs in the population, most of
the altered expression profiles captured by our biclusters were
in tumors of this subtype.

TuBA identifies down-regulated subtype-specific
biclusters in RNA-Seq data

RNA-Seq offers a significant advantage over microarray assays.
Theoretically, only the depth of sequencing limits the dynamic
range of RNA-Seq data [42, 43]. Given that TCGA’s RNA-Seq data
have adequate sequencing depth, we expected a reliable quan-
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tification of even low-expression transcripts. We therefore ap-
plied TuBA to the TCGA datasets to explore transcriptional pro-
files associated with low expression. We found that 46% of bi-
clusters from TCGA were enriched in the ER–/HER2– subtype
(Fig. S5A and B), while 48% of biclusters from the TCGA PAM50
dataset were enriched in the basal-like subtype (Fig. S4E and F).
Thus, biclusters associated with low expression were predom-
inantly enriched in the ER–/HER2– or basal-like subtypes. This
further underscores the tremendous heterogeneity of altered
transcriptional profiles within tumors of this subtype.

TuBA highlights biclusters with proximally located
genes

We observed that several biclusters discovered by TuBA across
the 3 datasets comprise genes that are proximally located on the
chromosomes, suggesting copy number amplification (CNA) as
an underlying mechanism. Copy number data were used to cal-
culate the significance of the proportion of samples present in
each bicluster that exhibited copy number gains. For each gene
in a given bicluster, we computed a P-value for the significance
of the proportion of samples with CNA present in the bicluster.
These P-values were then combined using Fisher’s method to
yield a single P-value for the bicluster. This showed that 56%
and 64% of biclusters from the METABRIC and TCGA datasets, re-
spectively, were enriched for CNA (FDR < 0.001). Closer scrutiny
revealed that only 60 (18%) biclusters from METABRIC were
associated exclusively with CNA of proximally located genes
(Fig. 4A); the remaining biclusters associated with CNA were en-
riched in genes from distant chromosomal locations (Fig. 4B).
Similarly, 112 (32%) biclusters from TCGA were associated with
CNA of proximally located genes (Fig. 4C). Many of these bi-
clusters were associated with loci previously identified to ex-
hibit copy number gains in BRCA [44, 45]. In order to explore
the association between the biclusters obtained from the low-
expression analysis and loss of copy number, we repeated the
copy number analysis described above. We observed that 52% of
biclusters from the TCGA dataset were enriched in copy num-
ber losses. However, only 21 biclusters contained genes located
on the same chromosome (Fig. S5A); the remaining biclusters
associated with copy number loss were enriched in genes from
distant chromosomal locations. Similar analyses for PAM50 sub-
type enrichment for METABRIC and TCGA are summarized in
Fig. S4.

To compare CNA-associated biclusters between TCGA and
METABRIC, we prepared 2 datasets that contained genes that
were common in the 2 cohorts (17,209 genes). Pairwise com-
parison of the set of genes in the CNA-enriched biclusters be-
tween the 2 datasets revealed that 61% of biclusters from TCGA
matched ≥1 CNA-associated bicluster from METABRIC. On the
other hand, 91% of biclusters from METABRIC were enriched
in ≥1 CNA-associated bicluster from TCGA. This suggests that
most of the CNA-enriched biclusters identified in the METABRIC
microarray dataset were independently identified in the RNA-
Seq dataset of TCGA.

We also observed some biclusters with proximally located
genes that were not associated with gain in copy number.
For TCGA, 14 biclusters out of 353 consisted of genes lo-
cated proximally, while 18 biclusters out of 340 for METABRIC
consisted of genes located near each other. Details of the
genes and subtype-specific enrichments for some of these bi-
clusters are summarized in Supplementary Table 6. Exam-
ples of biclusters from this category include the biclusters
consisting of genes from the Cancer-Testis antigens family—

MAGEA2, MAGEA3, MAGEA6, MAGEA10, CSAG1, CSAG2, CSAG3
(Xq28)/CT45A3, CT45A5, CT45A6 (Xq26.3). These genes are
known to be aberrantly expressed in triple-negative breast tu-
mors [46], as well as in a few other tumor types [47].

TuBA identifies biclusters associated with non-tumor
expression signatures

We also discovered biclusters that seemed to be associated
with non-tumor cells. For instance, biclusters associated with
immune response were among the largest identified indepen-
dently in all 3 datasets. The top 5 Gene Ontology−Biological Pro-
cesses (GO-BP) terms for the bicluster associated with immune
response were T-cell co-stimulation, T-cell receptor signaling
pathway, T-cell activation, regulation of immune response, and
positive regulation of T-cell proliferation (Supplementary Table
7). This indicates immune cell infiltration in a significant num-
ber of tumor samples. To corroborate this, we stratified TCGA
samples on the basis of their ESTIMATE [48] scores for the infil-
tration level of immune cells in tumor tissues into 3 groups—(i)
top 25 percentile, (ii) intermediate 50 percentile, and (iii) bottom
25 percentile—and verified that samples in these biclusters as-
sociated with immune response were enriched in samples with
the highest levels of immune infiltration (FDR < 0.001).

For all 3 datasets, we also observed a bicluster associated
with the stromal adipose tissue. The top 5 GO-BP terms for this
bicluster were response to glucose, triglyceride biosynthetic pro-
cess, triglyceride catabolic process, retinoid metabolic process,
and retinol metabolic process. An analysis based on the ESTI-
MATE scores for the level of stromal cells present in tumor tis-
sue of TCGA samples confirmed that this bicluster was enriched
within the top 25 percentile samples for stromal cell level. Sub-
type enrichment revealed that the bicluster was enriched in ER–
/HER2–, basal-like (PAM50), and normal-like (PAM50) subtypes.

TuBA’s proximity measure was applied to gene expression
data from 214 normal breast tissue samples from the Genotype-
Tissue Expression (GTEx) public dataset. We observed that only
6.75% of biclusters obtained for the TCGA vs GTEx comparison
were enriched in gene pair associations identified in the GTEx
dataset. The bicluster associated with the adipose tissue signa-
ture was one of the biclusters found enriched in GTEx. Another
group of biclusters enriched in the 3 cancer datasets, as well as
in GTEx, were those associated with translation and ribosomal
assembly. The top 5 GO-BP terms for these biclusters were trans-
lation, ribosomal RNA (rRNA) processing, ribosomal small sub-
unit biogenesis, ribosomal large subunit assembly, and riboso-
mal large subunit biogenesis. These biclusters were enriched in
the ER–/HER2– subtype (FDR < 0.001).

TuBA identifies clinically pertinent biclusters

We performed a Kaplan-Meier analysis of RFS, comparing the
patients present in each bicluster to the rest for METABRIC and
GEO. (The number of patients with incidence of recurrence in
TCGA was insufficient for this kind of survival analysis to be sta-
tistically robust.) As expected for METABRIC, patients in the bi-
cluster (bicluster 25) associated with the HER2 amplicon (17q12)
had significantly shorter RFS time compared to the rest (Fig. S7).
This is because patients in the METABRIC study were enrolled
before the general availability of trastuzumab [49].

We also observed biclusters associated with CNA at the
8q24.3 locus in all 3 datasets (TCGA—biclusters 39 and 113,
METABRIC—biclusters 26, 56, and 167, GEO—biclusters 16, 24,
37, 55, 74, 118, and 302). These patients also had significantly
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shorter RFS times compared with those patients whose tumors
did not have amplification of this locus (Fig. 6A–C). A similar re-
sult was obtained when we restricted the samples to ER+/HER2–
tumors, validating an earlier observation that copy number gain
of the 8q24.3 locus may confer resistance to ER targeted ther-
apy [50]. We note, however, that biclusters with amplification
of the 8q24.3 locus were enriched in the ER–/HER2– subtype (P
< 0.001). Hence, amplification of this locus may be even more
relevant in determining treatment for patients with ER–/HER2–
breast cancers assigned into an intermediate (ambiguous) risk
class by Oncotype DX [50]. Genes at 8q24.3 that may be consid-
ered promising candidates on the basis of their degrees in the
biclusters include PUF60, EXOSC4, COMMD5, and HSF1. Specifi-
cally, PUF60 is an RNA-binding protein known to contribute to
tumor progression by enabling increased MYC expression and
greater resistance to apoptosis [51].

For both METABRIC and GEO, patients in biclusters associated
with copy number gains of the 8p11.21–p11.23 loci (METABRIC—
bicluster 289, GEO—bicluster 25) had significantly shorter RFS
times compared with patients without amplification of this lo-
cus (Fig. 6D–F). We found that patients in this bicluster were
enriched in the luminal B subtype, which has poorer prognosis
than the luminal A subtype among ER+/HER2– tumors [52]. This
suggested that amplification of the 8p11.21–p11.23 loci may be
another marker of potential failure of ER targeted therapy.

Similarly, we found that patients whose tumors have copy
number gains of the 17q22–q23.3 locus (METABRIC—biclusters
33 and 119, GEO—biclusters 15 and 160) had significantly shorter
RFS times compared with patients whose tumors do not ex-
hibit such a copy number gain (Fig. 6G–I). For METABRIC, this
cohort was enriched in the luminal B (PAM50), ER+/HER2+, and
ER–/HER2+ subtypes (FDR < 0.001). For GEO, this cohort was en-
riched in the ER+/HER2+ and ER–/HER2+ subtypes (FDR < 0.05).
This suggests that amplification of this locus may confer addi-
tional risk of recurrence in HER2+ breast cancers.

Note that the biclusters discussed above were not the
only ones that exhibited differential relapse outcomes. For
METABRIC, 61 biclusters out of 340 were found to exhibit differ-
ential relapse outcomes for the patients present in the biclus-
ters. Of these 61 biclusters, 69% were enriched in the ER–/HER2–
subtype (64% for basal-like), with a significant proportion (67%)
of these associated with copy number gains. For GEO, there were
48 such biclusters (13%) that exhibited differential relapse out-
comes; 25% of these were enriched in the ER–/HER2– subtype.

Tests for enrichment of biclusters in tumors of higher grades
revealed that 8 biclusters from TCGA were enriched in tumors of
grade 3C. Some of these biclusters were associated with GO-BP
terms related to angiogenesis, vasculogenesis, blood vessel mat-
uration, and so forth. For METABRIC, 4 biclusters were enriched
in tumors of grade 3, out of which 2 were associated with the
HER2 amplicon (17q12). For GEO, 68 biclusters were enriched in
tumors of grade 3, including biclusters associated with CNA at
the HER2 amplicon.

We also looked at the lymph node status of patients and ob-
served that 4 biclusters in TCGA were enriched in samples with
positive lymph node status in the corresponding patients. One
was associated with the HER2 amplicon, while the others were
associated with CNA at the 8q22.1–q22.3 loci, 17q23.1–q23.3 loci,
and the 19q13.43 locus, respectively. Similarly in METABRIC, we
observed 4 biclusters enriched in samples with positive lymph
node status in the corresponding patients—2 of them were as-
sociated with copy number gains at the HER2 amplicon, and the
other 2 were associated with copy number gains at 19q13.11–
q13.12 and 1q21.3–q25.1, respectively. Interestingly, biclusters

associated with CNA at 8q24.3, 8p11.21–p11.23, and 17q22–q23.3
that exhibited poor RFS outcomes were not enriched in tumors
of higher grades or in patients with positive lymph node status
in any of the 3 datasets. In the case of METABRIC, we additionally
confirmed that none of these biclusters (8q24.3, 8p11.21–p11.23,
17q23.1–q23.3) were among the 36 biclusters enriched in sam-
ples with the poorest expected 5-year survival outcome (Not-
tingham Prognostic Index > 5.4) [53, 54]. This highlights the im-
portance of these altered transcriptomic signatures for reclassi-
fication of patients into the category with higher risk of recur-
rence.

Hierarchical clustering of biclusters reveals shared
mechanisms

Sample membership–based hierarchical clustering of biclusters
revealed distinct groups of biclusters that presumably share
common functional mechanisms (Fig. 7). These included clus-
ters associated with cell cycle and proliferation, immune re-
sponse, cell adhesion (extracellular matrix), translation, mi-
tochondrial translation, and ribosomal RNA processing path-
ways. Because a significant fraction of our biclusters were as-
sociated with copy number alterations, we also found distinct
groups of biclusters associated with significant copy number
changes such as the ones associated with the HER2 amplicon,
the 8p11.21–p11.23 loci, or the 8q24.3 locus.

Similarly, we used hierarchical clustering to group samples
that were enriched in similar sets of biclusters, highlighting dif-
ferential clinical outcomes. In particular, we observed 2 sets
of samples enriched in biclusters associated with CNA at the
8q24.3 locus. In one group, the samples were enriched in bi-
clusters related to immune response; this group showed signif-
icantly lower incidence of recurrence compared to those with-
out enrichment in immune response–related biclusters. Both of
these sets of samples were enriched in biclusters associated
with cell division and proliferation. In contrast, we observed a
cluster of samples enriched in biclusters associated with 8q24.3
copy number gain and a number of other loci; however, these
were not enriched in biclusters associated with cell division and
proliferation. This group exhibited low incidence of recurrence.
We also observed a cluster of samples with significantly poor RFS
that were enriched in biclusters associated with CNA at 17q25.1–
q25.3, and in biclusters associated with cell division and prolif-
eration.

TuBA compared to other biclustering methods

TuBA’s proximity measure distinguishes its biclusters from
those identified by other algorithms by leveraging the size of the
datasets to identify subsets of tumor samples that co-express
subsets of genes at their most extreme levels (high or low) rel-
ative to other samples. We emphasize that TuBA is designed
to identify biclusters with samples that correspond to the ex-
tremals for the corresponding sets of genes and does not con-
sider other subsets of conditions for the same sets of genes for
biclustering. In contrast, most biclustering methods seek sub-
matrices with constant, or coherent gene expression patterns.
Given this key difference, only those biclusters that exhibit such
expression patterns in the extremal (top or bottom) subsets of
samples for some subsets of genes are expected to have agree-
ment with the biclusters identified by TuBA. Therefore, a direct
comparison between the biclusters discovered by other algo-
rithms and those identified by TuBA would necessarily be lim-
ited.
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Figure 6: Clinically pertinent biclusters. Kaplan-Meier survival curves for the set of patients in the bicluster (red) compared to the remaining set of patients (blue) for
METABRIC and GEO datasets, together with the graphs corresponding to the biclusters for 8q24.3 (A–C), 8p11.22–p11.23 (D–F), and 17q22–q23.3 (G–I).
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Figure 7: Hierarchical clustering of biclusters-samples. Hamming distance was applied to the biclusters-samples binary matrix for (A) TCGA and (B) METABRIC RFS
datasets. The clusters of samples marked by green, brown, and cyan on top in panel (B) exhibit poor recurrence-free survival. The green and brown clusters are
associated with copy number gains at 8q24.3, while the cyan cluster is associated with copy number gains at 17q25.1–q25.3. Additionally, all 3 of them were enriched
in gene signatures associated with cellular division and proliferation.

In their paper on DeBi [55], a novel biclustering method that
identifies differentially expressed biclusters based on a frequent
itemset approach, Serin and Vingron applied their method to
both synthetic and real gene expression datasets, including
diffuse large B-cell lymphoma (DLBCL) data comprising 661
genes and 180 samples [56]. Apart from DeBi, they applied ISA
[57], OPSM [58], QUBIC [59], and SAMBA [60] to this dataset; we
used these results to evaluate TuBA against these methods.
To ensure a uniform and unbiased comparison between the
enrichment results for biclusters from different algorithms, we
used GeneSCF [39] to perform GO-BP enrichment on the biclus-
ters obtained by all methods. Fig. 8A shows the proportions
of GO-BP–enriched biclusters for 5 different significance levels
(FDRs): 0.001%, 0.1%, 0.5%, 1%, and 5%. For the FDR cut-off of
<5%, almost all the biclusters for every algorithm were enriched
in ≥1 GO-BP term. TuBA had 2 non-enriched biclusters out of
94, SAMBA had 2 non-enriched biclusters out of 128, and QUBIC
had 1 bicluster out of 100 that were not enriched in a GO-BP
term (Supplementary Table 7). As the FDR cut-off was lowered,
TuBA had lower proportions of enriched biclusters compared to
other algorithms for the corresponding FDR cut-offs. This can be
partly attributed to the fact that the other algorithms discover
biclusters that can have arbitrary overlaps between their genes.
Because most of the biclusters discovered by other algorithms
shared genes with other biclusters, we could expect a certain
amount of redundancy in enriched GO-BP terms. In contrast,
TuBA precludes any overlap between the genes of the seeds of
its biclusters. Moreover, its biclusters often include proximally

located genes with aberrant expression due to copy number
changes, which may not show enrichment in GO-BP terms.

For a closer examination of the redundancy in the GO terms
enrichment, we identified the top 5 GO-BP terms for every biclus-
ter obtained by each algorithm (not every bicluster was enriched
in 5 distinct GO-BP terms; some had <5, while others were not
enriched in any term). For each algorithm, we prepared lists of
all the unique GO-BP terms for the entire set of biclusters. The
ratios of the number of elements in these lists to the total num-
ber of biclusters for each algorithm at 5 different significance
levels show that TuBA-identified biclusters were enriched in a
more extensive array of biological process terms (Fig. 8C).

In addition to the DLBCL dataset, we also analyzed the TCGA
dataset with the following biclustering algorithms: (i) BIMAX
[61], (ii) ISA, (iii) QUBIC, and (iv) SAMBA, using their respective
default parameters (Supplementary Tables 7 and 8). For succinct
descriptions of each of these algorithms we refer the reader to
Prelic et al [61] and Pontes et al [15]. We used the biclust package
in R for BIMAX [62], the isa2 package in R for ISA [63], the QUBIC
package in R for QUBIC [64], and the Expander software for run-
ning SAMBA [65]. Fig. 8B shows the proportion of GO-BP terms
enriched in biclusters of each algorithm for 5 different signif-
icance levels. TuBA compared favorably with other algorithms,
especially when we accounted for the redundancy of the GO
terms that were found enriched in the biclusters. We observed
again that TuBA’s biclusters were enriched in a larger set of dis-
tinct biological process terms (Fig. 8D). We observed similar re-
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Figure 8: TuBA compared to other biclustering methods. Proportions of GO-BP terms–enriched biclusters for each biclustering method at 5 different significance levels

for (A) the DLBCL dataset, (B) the TCGA BRCA dataset. Ratios of number of unique GO-BP terms and total number of biclusters at 5 different significance levels for (C)
the DLBCL dataset, (D) the TCGA BRCA dataset.

sults for METABRIC (Fig. S8A and B). The results of the compar-
ative analysis are summarized in the Supplementary Methods.

In these analyses, the choice of the parameters is a cru-
cial factor in determining the performance of each biclustering
method. It is possible that different results could be obtained by
more prudent choices of parameters for the other algorithms;
however, a detailed analysis of optimal parameter choices for
each of these algorithms is beyond the scope of this study. We
must point out for TuBA that, for any given dataset, there is no

optimal (or default) choice of its 2 parameters; the biclusters ob-
tained for any given choice of the parameters simply satisfy the
basic requirements laid down by those choices. We looked at GO-
BP term enrichments for TuBA’s biclusters for 5 different choices
of the overlap cut-off (Supplementary Methods). Although the
total number of biclusters obtained differed for each choice, the
proportion of enriched biclusters at different significance levels
remained similar irrespective of the parameter choice (Fig. S9A).
Similarly, the ratio of the number of unique GO-BP terms and the
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total number of biclusters was consistent across all 5 choices of
overlap cut-offs (Fig. S9B).

In earlier studies comparing biclustering algorithms [8,
61], synthetic datasets were generated with constant, shifting,
and/or scaling patterns of expression for subsets of conditions
and genes. The algorithms were evaluated on the basis of how
well they were able to identify the known biclusters implanted in
these synthetic datasets. Because TuBA is not based on a math-
ematical model of the data in its biclusters, a comparison based
on synthetic datasets is not feasible. However, in the case of tu-
mor datasets we have the benefit of complementary genomic
data that could provide us with truth-known scenarios for vali-
dation. For example, alterations at the genomic level can directly
influence the expression levels of genes; it is well known that
a significant proportion of tumors across multiple tumor types
frequently exhibit genomic alterations such as gains or losses
in the copy numbers of genes. Quite often, these alterations are
not limited to a single gene but include multiple genes located
at neighboring chromosomal locations. If such alterations are
located at transcriptionally active sites, then co-expression of
the neighboring genes that are affected by it will be observed. In
BRCA for instance, ∼15–20% of tumors possess extensive gains
in copy numbers of genes at the 17q12 cytoband locus (includes,
e.g., ERBB2 [Her2], STARD3, GRB7, PNMT, PGAP3, MED1). Identifica-
tion of co-expression of genes at this locus in the subset of sam-
ples that are histologically HER2-positive (HER2+) represents a
simple truth-known scenario that can be used to verify whether
a given biclustering algorithm identifies the co-expression of
these genes in the subset of samples that exhibit this alteration.
We identified HER2+ samples in the TCGA dataset and, for each
biclustering algorithm, selected those biclusters that were en-
riched in these samples (hypergeometric test FDR < 0.001). BI-
MAX and SAMBA did not discover any, but ISA identified 2 biclus-
ters (biclusters 71 and 72) enriched in HER2+ samples. Although
the genes from the 17q12 amplicon, such as ERBB2, STARD3,
GRB7, PNMT, PGAP3, and MED1, were present in ISA’s enriched
biclusters, they made up a small subset within the genes in
them—bicluster 71 had 639 genes, while bicluster 72 had 539
genes. QUBIC also had 4 biclusters that were enriched in HER2+
samples; however, they did not contain any genes from the HER2
amplicon (including ERBB2). In contrast, not only did TuBA iden-
tify a bicluster (bicluster 256) exclusively associated with the
HER2 amplicon, it identified many other biclusters associated
exclusively with CNA of genes located near each other.

In summary, apart from TuBA, only ISA identified co-
expression of the genes located at the HER2 amplicon. However,
ISA’s co-expression module corresponding to the amplicon was
embedded within much larger sets of genes. In the absence of in-
formation about copy number gain of the ERBB2 gene, it would
be a challenge to explicitly identify the co-expression module
corresponding to the amplicon, and in turn infer the underlying
mechanism for their co-expression. TuBA successfully uncovers
those co-expressed sets of genes that are associated with CNA
of neighboring sites on the chromosome and is particularly effi-
cient at identifying transcriptionally active copy number gains,
as compared to other algorithms.

The nature of our proximity measure allows us to determine
differential co-expression signatures without the need to specify
subsets of samples in advance. Gao et al. [66] proposed a biclus-
tering method, Bicmix, based on a Bayesian statistical model to
infer subsets of co-regulated genes that covary in all samples,
or in only a subset of samples. They also developed a princi-
pled method to recover context-specific gene co-expression net-
works from the sparse biclustering matrices obtained by Bicmix.

They applied Bicmix to the breastCancerNKI dataset and iden-
tified 432 genes that were differentially co-expressed in ER+
and ER– samples. Of these 432 genes, 430 were up-regulated in
ER– samples and down-regulated in ER+ samples, while 2 genes
were down-regulated in ER– samples and up-regulated in ER+
samples. We applied TuBA (for high expression) to the same
dataset with the following choice of parameters: (i) percentile
set size: 10%, and (ii) overlap significance cut-off: FDR ≤ 1e–08.
We obtained 549 biclusters, several of which consisted solely of
probes that correspond to the same gene (Supplementary Ta-
ble 5). This is reasonable because probes corresponding to the
same gene are expected to demonstrate higher expression lev-
els in the same set of samples. We inquired whether some of the
biclusters discovered by TuBA corroborated the differential co-
expression signature between ER+ and ER– samples identified
by Bicmix. Using Fisher’s exact test, we determined that the set
of 430 genes up-regulated in ER– samples and down-regulated
in ER+ samples were enriched in 30 biclusters discovered by
TuBA—bicluster 5 shows the maximum enrichment (FDR < 1e–
165). In fact, the genes that had the highest degrees in the co-
expression network discovered by Bicmix—CD247, CD53, IL10RA,
and CXCR3—were among the ones with highest degrees in bi-
cluster 5 discovered by TuBA. The 2 genes (SFRP2 and COL12A1)
that were up-regulated in ER+ samples and down-regulated in
ER– samples were also found to be co-expressed in a TuBA biclus-
ter (bicluster 115). TuBA also identified biclusters corresponding
to amplicons at 17q12 (HER2), enriched in ER– samples (FDR =
0.02); 8q24.3, enriched in ER– (FDR = 0.003) samples; and 17q25–
q25.3, enriched in ER– samples (FDR = 7.09e–05). Thus, in ad-
dition to the differential co-expression network identified by
Bicmix, TuBA recovered biclusters associated with genomic al-
terations such as CNA, several of which are differentially ex-
pressed between ER+ and ER– samples. Overall, TuBA recov-
ered 144 biclusters enriched in ER– samples and 31 biclusters
enriched in ER+ samples (FDR < 0.05). This is consistent with
our earlier observation that a significant proportion of biclus-
ters discovered independently in the TCGA, METABRIC, and GEO
datasets were enriched in the ER–/HER2– subtype.

Runtime analysis

TuBA’s graph-based algorithm relies on the identification of
largest cliques, which is a computationally hard problem. Large
graphs (both in terms of the number of genes, and edges) can po-
tentially lead to long computation times. The size of our graphs
is principally determined by the choice of the cut-off for the sec-
ond parameter—the significance level of overlap between per-
centile sets. We varied the cut-offs for the TCGA and METABRIC
datasets such that the total number of edges in the resultant
graphs ranged between 10,000 and 250,000.

For choices of overlap cut-offs consistent with our suggested
heuristic, we recorded TuBA’s computation time to generate fi-
nal biclusters for each dataset (Fig. 9A). The computation time
for TCGA increased dramatically as the number of edges in the
graphs exceeded 150,000. In particular, while the computation
time for a graph with 200,000 edges for METABRIC was ∼70 min-
utes, the computation time for a graph of similar size for TCGA
was ∼42 hours. Thus, although METABRIC is the larger dataset
with 24,368 genes and 1,970 samples compared to TCGA’s 20,241
genes and 908 samples, more iterations were required to identify
all the largest cliques in the graphs for TCGA given its respec-
tive choices of parameters. We therefore conclude that TuBA’s
computation time depends on the nature and complexity of the
graphs themselves.
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Figure 9: Runtime analysis of TuBA. (A) Computation time taken by TuBA to discover biclusters for different sizes (number of edges) of the graphs based on different
choices of overlap cut-offs for the TCGA (blue) and METABRIC (red) datasets. (B) Dependence of computation time on the number of rows (genes) for choices of overlap
cut-offs consistent with our suggested heuristic. Here, we chose overlap cut-offs consistent with our suggested heuristic and ensured that comparable numbers of
edges were generated for different datasets; this explains why the computation times for datasets with upwards of 14,000 genes were quite similar to each other. (C)

Dependence of computation time on the number of columns (samples) for choices of overlap cut-offs consistent with our suggested heuristic.

We also investigated the impact of the size of datasets on
computation time. We created new subsets from the TCGA
dataset by randomly sampling a fixed number of genes. We var-
ied the number of genes from 2,000 to 20,000 and created 10 ran-
domly sampled datasets for each gene number (Fig. 9B). For each
individual run, we chose an overlap cut-off consistent with our
suggested heuristic and ensured that comparable numbers of
edges were generated for different datasets.

We also investigated the impact of the number of samples
in a dataset. For this, we created 5 randomly selected subsets
from the TCGA dataset each with 250, 500, 750, and 908 samples
(Fig. 9C). As expected, TuBA’s computation time did not depend
strongly on the number of samples in the datasets.

In its current implementation, using a 2.7-GHz Intel Xeon
processor and 48 GB of RAM, TuBA has longer runtime than most
other existing algorithms. Depending on the choice of the over-
lap cut-off, the runtimes can vary between 15 and 120 minutes
for datasets with ∼20,000 genes and 1,000 samples.

Discussion

Global clustering approaches have successfully unveiled dis-
tinct disease subtypes in tumors, prompting the community to
look beyond traditional clinico-pathological signatures to iden-
tify relevant disease processes. However, the extensive hetero-
geneity, even within tumors of a given subtype, confounds the
identification of many altered transcriptional programs by such
unsupervised clustering methods.

In this paper, we introduce an algorithm called TuBA based
on a proximity measure specifically designed to extract gene co-
expression signatures that correspond to the extremes of ex-
pression (both high and low for RNA-Seq data, and high for
array-based platform). This enables us to preferentially identify
co-aberrant gene signatures associated with the disease states
of tumors. The identification of altered transcriptional profiles
can be particularly relevant for those tumors that have so far
eluded targeted drug development for therapy. This is exempli-

fied by tumors of the basal-like or triple-negative subtypes for
BRCA. Although these tumors account for only ∼15% of all BR-
CAs in the population, a significant fraction of biclusters identi-
fied by TuBA corresponded to alterations associated with tumors
of these subtypes (Fig. S10). For each dataset, a simple estima-
tion of enrichment of samples in a given bicluster within any
other bicluster revealed that the samples in the biclusters corre-
sponding to CNA at 8p11.21–p11.23 or 17q12 were enriched (FDR
< 0.001) independently in ∼5% of all biclusters for both TCGA
and METABRIC, respectively. In sharp contrast, 30–40% of all bi-
clusters were enriched in samples with copy number gains at
the 8q24.3 locus (FDR < 0.001). Additionally, 51% of all biclus-
ters obtained from the low-expression analysis of TCGA were
enriched in the samples corresponding to the 8q24.3 bicluster.
Previous studies have also identified the amplicon at 8q24.3 by
representational difference analysis as a location of oncogenic
alterations in breast cancer that can occur independent of neigh-
boring MYC amplifications [67]. Although the 8q24.3 bicluster it-
self is enriched with ER–/HER2– samples, these observations, to-
gether with poor RFS outcome observed independently in both
METABRIC and GEO, highlight this locus as a promising prognos-
tic marker for BRCA tumors, irrespective of subtype.

We must mention a notable exception in the biclusters dis-
covered by TuBA for all 3 datasets—none of the biclusters con-
tained the ESR1 gene, which codes for estrogen receptor (ER).
Closer inspection revealed that ESR1 had statistically significant
associations with several genes; however, the level of signifi-
cance of overlap with these genes was much lower (FDR > 1e–
07) than the chosen cut-off for all 3 datasets. While it is known
that ∼70% of BRCAs exhibit elevated expression of ER, over-
expression of ER may not be a sufficient condition to drive co-
expression of genes involved in other pathways [68]. This may
explain why co-expression of ESR1 with other genes was not
as significant as the other associations that were extracted and
summarized in TuBA’s biclusters.

Apart from highlighting the heterogeneity of CNA-associated
alterations in tumors of the ER–/HER2– subtype or basal-like sub-
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type, TuBA offered a glimpse into the utility, the limitations,
and the potential pitfalls with the current subtype classifica-
tion approaches. In the ER/HER2-based subtype enrichment, we
observed a significant proportion of biclusters that were not
specifically enriched in any of the 4 subtypes. For instance, sev-
eral CNA-associated biclusters from chromosome 8 were not
subtype-enriched. In the case of PAM50 subtype classification,
however, we observed that most of these biclusters were en-
riched in the luminal B subtype for METABRIC (and to a limited
extent for TCGA). While this appears to indicate that PAM50 of-
fers an improvement on the traditional clinico-pathological ap-
proach to subtype classification, it unfortunately fails to clas-
sify several samples associated with overexpression of ERBB2 as
HER2-positive. As a consequence, several of our biclusters asso-
ciated with the HER2 amplicon and copy number gains in the
neighboring locations on chromosome 17 (17q.21.1–q21.2 and
17q21.32–q21.33), for both METABRIC and TCGA, were observed
to be enriched in the luminal B subtype. This corroborates the
modest level of agreement with PAM50 classification reported by
Parker et al. [41], as well as disagreements in later studies [69].
Given that trastuzumab is a clinically proven therapeutic drug
for HER2+ tumors, misclassification of these patients into any
other subtype can be highly disadvantageous.

Change in copy number is often not a sufficient condition
for elevated (or suppressed) expression levels of transcripts be-
cause there are multiple layers of regulation of transcription in
cells [70, 71]. TuBA specifically identifies sets of genes with copy
number changes that are transcriptionally active (or inactive),
filtering out the ones that are unlikely to influence disease pro-
gression. Moreover, the graph-based approach allows us to infer
the relative importance of each gene within a bicluster, based on
its degree. In the case of high-expression analysis, the degree of
each gene is an indicator of how frequently it is expressed aber-
rantly at high levels by the subset of samples that make up any
given bicluster. As an example, consider the CNA-associated bi-
cluster from TCGA corresponding to gains at the 8q22.1–q22.3
loci. The bicluster exhibited enrichment in patients with lymph
node–positive disease (the corresponding bicluster in METABRIC
has a significance level of FDR = 0.052 for patients with positive
lymph node status). The gene with the highest degree in the bi-
cluster was MTDH (metadherin), which has been shown to be
associated with increased chemotherapy resistance and metas-
tasis in BRCA [72–74].

Clustering analysis of biclusters and samples based on the
membership of samples within biclusters allowed us to iden-
tify the sites that were altered concomitantly within the same
subsets of samples. Moreover, we improved our perspective on
the tumor microenvironment in the subsets of samples that ex-
hibit non–tumor-associated signatures (e.g., immune, extracel-
lular matrix). Differences in disease progression due to distinct
microenvironments in tumors with similar transcriptional alter-
ations can help us better understand the potential role of the mi-
croenvironment within the context of tumors harboring these
specific alterations. For instance, we noticed a difference in RFS
outcomes between 2 groups of patients who exhibit copy num-
ber gains at 8q24.3; the group that was additionally associated
with an immune response signature was observed to have bet-
ter RFS outcomes compared to the group that did not exhibit a
strong association with the immune response.

Unlike most biclustering methods, TuBA does not allow ar-
bitrary overlaps between its biclusters. This is because it is de-
signed to discover biclusters with samples that correspond to
the extremals for the corresponding gene set; biclusters with
other conditions are not permitted for the same gene set. How-

ever, our biclusters are not exclusive, and some overlap between
their genes and samples is permitted. For example, in the case
of an ER–/HER2– BRCA sample that exhibits CNA at 8q24.3, be-
cause of high immune-cell infiltration in the tumor, the same
sample may also be present in the biclusters enriched in the sets
of genes associated with immune response.

Another limitation of TuBA is that it can only be applied reli-
ably for large datasets that contain ≥100 samples. Depending on
cohort heterogeneity, some of the overlaps between percentile
sets may not be significant in smaller datasets. However, the de-
liberate design of our proximity measure leveraging the size of
the datasets offers a significant benefit—it not only enables the
identification of the plethora of gene co-aberrations associated
with the tumors but also enables the estimation of the extent or
prevalence of the identified alterations in the population. This
is where the tunable aspect of TuBA becomes relevant—the 2
”knobs” should be viewed as valuable aids that help estimate
the extents of the prevalence of various alterations in the tumor
population and their clinical relevance. Although transcriptomic
changes are not the ultimate determinants of progression, our
algorithm holds the promise to improve therapeutic selection
and design by identifying significantly altered transcriptional
patterns associated with tumors.

Conclusions

TuBA is quite distinct from other biclustering algorithms, in that
it is designed to identify biclusters with samples that correspond
to the extremals for the corresponding sets of genes. Most bi-
clustering algorithms are designed to identify nearly constant
or coherent gene expression levels in subsets of genes across
subsets of samples. However, we were able to show that TuBA
outperforms other algorithms in identification of co-expressed
genes located in transcriptionally active copy number–altered
sites. Moreover, from a differential co-expression perspective,
TuBA offers an advantage over other methods because no prior
specification of subsets of samples (context) is necessary; the
nature of our proximity measure ensures that such differen-
tial co-expression signatures are preferentially identified. Given
these considerations, TuBA offers great promise as a biclus-
tering method that can identify biologically relevant gene co-
expression signatures that are not successfully captured by
other unsupervised clustering or biclustering approaches. These
signatures, along with the ones identified by other biclustering
methods, would enable a comprehensive understanding of the
underlying alterations and shared mechanisms in subsets of tu-
mors.

Availability of data and materials

TuBA is open-sourced and available in R scripts at https://gith
ub.com/KhiabanianLab. TCGA dataset was obtained from UCSC
Xena Portal (http://xena.ucsc.edu). METABRIC dataset was ob-
tained from the cBioPortal (http://www.cbioportal.org). GEO and
breastCancerNKI datasets were obtained from Gyorffy & Schafer
[26], and van’t Veer et al. [27] and van de Vijver et al. [28], respec-
tively. Supporting data and materials are available in the Giga-
Science GigaDB database [75].

Availability of supporting source code and
requirements

Project Name: TuBA: Tunable Biclustering Algorithm

https://github.com/KhiabanianLab
http://xena.ucsc.edu
http://www.cbioportal.org
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Project home page: https://github.com/KhiabanianLab/TuBA
Operating System(s): Platform Independent
Programming language: R
Other requirements: R 3.3.0 or higher
License: GNU GPL v3
RRID:SCR 017121

Additional files

Fig. S1. (A) Histogram for overlap significance values (in –log10

scale) based on a permutation test on the METABRIC dataset.
The P-values were not corrected for multiple hypothesis testing.
(B) Histogram for overlap significance values (in –log10 scale) af-
ter correcting for multiple hypothesis testing.
Fig. S2. Impact of the size of top percentile set for the biclus-
ter corresponding to the HER2 amplicon (17q12). (A) Number of
samples in bicluster as the overlap significance is lowered from
10−20 to 10−16 for percentile set size of 5%, (B) number of samples
in bicluster as the overlap significance is lowered from 10−35 to
10−23 for percentile set size of 10%.
Fig. S3. Enrichment of biclusters consisting of proximally located
genes with copy number gains in the PAM50 subtypes for (A)
METABRIC and (C), (E) TCGA. The biclusters are represented by
horizontal bars in each panel, color-coded according to the chro-
mosome number of their constituent genes. Panels (B), (D), and
(F) show the remaining biclusters arranged according to their se-
rial numbers in Supplementary Table 3 for METABRIC and TCGA,
respectively. The ones that are associated with copy number
(CN) gains of genes located at distant chromosomal sites are
shown in red while those associated with loss are shown in
green. The rest are shown in black. Note, the thickness of the
bar in each panel depends on the total number of biclusters dis-
played in that panel and so does not represent its chromosomal
extent.
Fig. S4. (A) Enrichment of biclusters from TCGA consisting of
proximally located genes with copy number loss in the ER/HER2
subtypes. The biclusters are represented by horizontal bars in
each panel, color-coded according to the chromosome number
of their constituent genes. Panel (B) shows the remaining biclus-
ters arranged according to their serial numbers in Supplemen-
tary Table 3. The ones that exhibit copy number loss of genes
located at distant chromosomal sites are shown in green, while
the rest are shown in black. Note, the thickness of the bar in
each panel depends on the total number of biclusters displayed
in that panel and so does not represent its chromosomal extent.
Fig. S5. Enrichment of biclusters from GEO in the subtypes based
on ER and HER2 status. The biclusters have been arranged ac-
cording to their serial numbers in Supplementary Table 3 (bi-
cluster 1 on top) and are represented by horizontal black bars.
Fig. S6. Degrees of genes in the bicluster corresponding to the
HER2 amplicon (17q12) for (A) TCGA, (B) METABRIC, and (C) GEO.
Fig. S7. (A) Kaplan-Meier survival curve for the set of patients in
the Her2 (17q12) bicluster (red) compared to the remaining set
of patients (blue) for the METABRIC dataset, and (B) the graph
corresponding to the bicluster.
Fig. S8. (A) Proportions of GO-BP term–enriched biclusters for
each biclustering method at 5 different significance levels for the
METABRIC dataset. (B) Ratios of number of unique GO-BP terms
and total number of biclusters at 5 different significance levels
for the METABRIC dataset.
Fig. S9. (A) Proportions of GO-BP term–enriched biclusters ob-
tained by TuBA at 5 different significance levels for 5 choices of
the overlap significance cut-off for the TCGA dataset. (B) Ratios

of number of unique GO-BP terms to the total number of biclus-
ters at 5 different significance levels for 5 choices of the overlap
significance cut-off for the TCGA dataset.
Fig. S10. Summary of the results from primary analysis of breast
cancer datasets.
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