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ABSTRACT: Chitosan is a typical hydrophilic biomass building
block widely used in material science and engineering. However, its
intrinsic amphiphilicity has been seldom noted so far. Herein, a
series of glutaraldehyde-crosslinked chitosan cryogels with super-
amphiphilicity are fabricated at moderately frozen conditions
through a freezing−thawing process. The micron-sized porous
cryogel samples display a 0° contact angle toward both water and
oil, 0° water contact angle under oil, and over 120° oil contact
angle underwater. By comparing the wetting behavior of the tablet
compressed by pure chitosan powders, the superamphiphilicity of
the chitosan sample is proven to be independent on crosslinkers.
This special wettability endows the chitosan cryogels with high
separation efficiency for various surfactant-stabilized oil-in-water emulsions under continuous flow mode driven by gravity as well as
a peristaltic pump.

1. INTRODUCTION

Chitosan, poly-β-(1,4)-2-amino-2-deoxy-D-glucopyranose, is
partially deacetylated from chitin that is the second largest
natural materials after cellulose.1 It is deemed a unique type of
cationic carbohydrate based on biomass in the world so far.2

With an increasing demand on sustainable development,
chitosan has been received growing attention and thus has
been applied in numerous fields as diverse as drug delivery,3,4

wound healing,5 separation media,6,7 tissue scaffold,8 and so
forth.
One most important feature of chitosan-based materials is

porosity that governs mass transfer and site accessibility.9−12 A
variety of porogenic strategies have been developed to
construct porous chitosan materials, including ice-tem-
plate,13,14 solvent and particle leaching,15,16 linear polymer
removing,17 and gas forming.18,19 Among them, the ice-
template approach is promising because it fulfills the
requirement of green and sustainable development. By virtue
of the ice-template approach, supermacroporous chitosan-
based materials can be fabricated. Regarding the removal
method of ice crystals, the ice-template approach is further
classified into two groups, that is, freezing−drying and
freezing−thawing. The porous chitosan materials obtained by
the freezing−drying process are conventionally termed
“aerogel”, while those prepared by the freezing−thawing
process are usually called “cryogel”, though the two definitions
are ambiguous and contradictive sometimes in literature.20,21

Compared to freezing−drying, freezing−thawing could be a
better alternative with respect to economic concerns.
Chitosan-based cryogels are designed to gelate under

moderately frozen conditions, thus having micron-sized porous
structures after ice crystals are removed by the thawing process
when the temperature recovers to room temperature.22 The
first report on chitosan-based cryogels was described by
Lozinsky and co-workers who found that glutaraldehyde-
crosslinked chitosan cryogels showed superior mechanical
strength to the samples prepared with the same procedure at
the temperature above 0 °C.23 Nikonorov et al. further studied
the detailed conditions, such as temperature, crosslinker
content, and molecular weight of chitosan, and how they
affect the morphology, gel fraction yield, and swelling property
of the samples.24,25 Zhang et al. systematically investigated the
effect of the temperature profile on porous structures of the
chitosan-glutaraldehyde systems.26 Bratskaya et al. proved that
diglycidyl ethers can be used as the crosslinker to fabricate
chitosan-based cryogels when hydrochloric acid was added in
the aqueous system.27 Besides the pristine chitosan cryogels,
numerous composite chitosan-based cryogels have also been
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developed by cooperating chitosan with cellulose,28 gelatin,8

poly(vinyl alcohol),29 polydopmain,30 polyurethane,31 and so
on.
Water pollution has been a challenging issue in recent years

due to an increasing oil spill accidents and industrial destroy
incidents.32,33 Oil/water separation, especially oil-in-water
emulsion separation, has attracted a growing attention around
the world.34,35 Due to their supermacroporosity of cryogels,
several types of cryogels, including rubber-graphite-based36

and polymethacrylate-based cryogels,37−39 have successfully
been applied in rapid separation of the oil/water mixture. In
our previous study, the composite cryogels based on
polyethylene glycol incorporated with hydrophobic polydivinyl
benzene particles displayed high separation efficiency for the
surfactant-stabilized oil-in-water emulsions.40 Nevertheless, the
cryogels involved in oil/water separation are limited up to now,
and such functional cryogels above are derived from fossil-
based raw materials. Thus, it is very desirable that biomass-
based cryogels are explored in emulsion separation.
In this work, we aim to demonstrate the potential of

chitosan cryogels based on the freezing−thawing process in the
separation of surfactant-stabilized oil-in-water emulsions. We
noted that chitosan is well known as a kind of hydrophilic
building block. In order to achieve separation of oil/water
mixture or emulsion, several chitosan aerogels are reported to
convert their hydrophilic surfaces into hydrophobic ones
before treatment of wastewater.41−43 During our preliminary
tests on chitosan-based cryogels, we unexpectedly observed
that the near chitosan cryogels displayed superamphiphilic
wetting behavior because the samples show 0° contact angle
toward both water and oil in air. Based on the literature and
our previous experience,40,44,45 the superamphiphilic foams are
of high separation efficacy of oil-in-water emulsion. These
considerations stimulated us to investigate the possibility of the
pristine chitosan cryogels in separation of oil-in-water
emulsion. Three types of oil-in-water emulsions, stabilized by
cationic, nonionic, and anionic surfactants, respectively, were
chosen to verify the universality of our method. The chitosan
cryogels were tested to show rapid separation of various oil-in-
water emulsions under continuous flow mode driven by gravity
as well as a peristaltic pump.

2. RESULTS AND DISCUSSION

2.1. Supermacroporous Chitosan Cryogels Fabri-
cated by Freezing−Thawing. Chitosan cryogels were
obtained through Schiff base crosslinking reaction between
amino groups on chitosan and aldehyde groups on
glutaraldehyde during a freezing−thawing process (Figure 1).
In the moderately frozen condition, water molecules converted

into ice crystals; due to the cryoconcentration effect,22 the
gelation induced by Schiff base reaction could still occur at the
sub-zero temperature (−18 °C); when the temperature was
increased up to room temperature, ice crystals were thawed,
leaving the supermacroporous structures in the original matrix.
Such a freezing−thawing process is much greener and more
economic than the freezing−drying process.
Results of yield of chitosan−glutaraldehyde cryogels varying

with glutaraldehyde content are shown in Table 1. The gel

yields achieve around 80% and are independent on
glutaraldehyde content at 2.0 vol % chitosan loading amount,
indicating high crosslinking efficiency of Schiff base reaction
under the conditions. Such Schiff base reaction was confirmed
by infrared spectroscopy, as shown in Figure 2. Besides specific
peaks of chitosan, a new peak appears at 1665 cm−1, which
corresponds to the formation of the CN bond,19,46 in
comparison with the peak at 1653 cm−1 assigned to the C−N
bond on chitosan.
The supermacroporosity of the chitosan-based cryogels was

observed by scanning electron microscopy (Figure 3). The
samples display micron-sized porous structures and similar
morphology under the cross-section view as well as side-
section view. The results strongly indicate that the porous
structures are interconnected in the matrix and probably
suitable for rapid mass transfer in real application. Additionally,
no significant difference could be found in the porous
structures between the two samples obtained at 0.2 and 0.5%
crosslinker content according to SEM images, implying that
supermacroporous structures could be mainly attributed to the
amount and shape of ice crystals. Thermal gravity analysis
shows a two-step weight loss for the samples (Figure S1). The
decrease in weight at below 100 °C is possibly attributed to
bound water loss, and the corresponding loss at over 220 °C
should result from degradation of the chitosan backbone. Half-

Figure 1. Schematic image of fabrication of chitosan-based cryogels by the freezing−thawing process.

Table 1. Yield of Chitosan-Based Cryogels Obtained at 2.0
wt % Chitosan Loading Amount With Glutaraldehyde as the
Crosslinker

gel yield (%)

crosslinker content
(vol %) 1 2 3 average ± standard deviation

0.1 77.3 75.7 79.5 77.5 ± 1.6
0.2 80.4 77.0 80.8 79.4 ± 1.7
0.3 76.8 75.0 75.5 75.8 ± 0.7
0.4 80.1 83.4 79.7 81.1 ± 1.6
0.5 76.6 74.0 81.8 77.2 ± 2.9
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life temperatures of the samples with glu content 0.2 and 0.5%
are 282 and 293 °C, respectively.
The supermacroporosity of the chitosan-based cryogels was

further investigated by the mercury intrusion method. As
shown in Figure 4A, the pore sizes of the two chitosan samples
mainly lie in the range of 20 to 120 μm, which are well
consistent with the results obtained by SEM. The average pore
size of the sample obtained at 0.5% crosslinker is slightly
smaller than that obtained at 0.2% crosslinker (Table 2),
possibly due to the shrinking of the matrix driven by the
greater amount of the Schiff base bond.
In order to further study the mesoporous and microporous

structure of the samples, nitrogen adsorption tests were

adopted. As shown in Figure 4B, a large hysteresis loop is
found in the adsorption−desorption curve ranging from 0.4 to
0.9 relative pressure for the two samples. The results indicate
that a number of both mesoporous (2−50 nm) and
macroporous (greater than 50 nm) structures exist in the
samples, as also shown in pore size distribution curves (Figure
4C). Similar to the results observed by mercury intrusion, the
lower crosslinked sample displays a greater average pore size
compared to the higher crosslinked one (Table 2). Never-
theless, both of two samples have a very low surface area below
5.0 m2/g, which is a characteristic feature for most cryogel
materials.22,50

Figure 2. FTIR spectra of chitosan cryogels prepared by different crosslinker contents with full scale (A) and magnification from 500 to 1800 cm−1

(B).
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2.2. Superamphiphilicity of Chitosan Cryogels. Wett-
ability is deemed a crucially important factor in separation of
oil-in-water emulsion.42,43 Figure 5 shows contact angle tests
for chitosan−glutaraldehyde cryogel samples under different
conditions. Chitosan is regarded as a typical hydrophilic
material; however, in our cases, it is observed that the

chitosan−glutaraldehyde cryogel samples display superphilicity
both to water and to oil in air as water contact angle (WCA) as
well as oil contact angle (OCA) both are 0°. Moreover, they
have 0°WCA under oil but over 120° OCA underwater (Table
3). Among them, the sample with 0.2% glu content shows
141.5° ± 1.3° of OCA underwater, and the sample with 0.5%
glu content has 128.6° ± 2.5° of OCA underwater. This
unique wettability probably gives a great potential for the
material in oil-in-water emulsion separation.
To further investigate the origination of the special

wettability of the chitosan-based cryogels, we compared the
difference between the pure chitosan and chitosan−gluta-
raldehyde cryogel sample in dye diffusion. Given that pure
chitosan cannot form the gel sample under the used condition,
chitosan powders were compressed into a thin round slice
(12.6 mm in diameter and 0.3 mm in thickness) as control. As
shown in Figure 6A and Movie S1, both water and oil droplets
can spread the surface of the chitosan−glutaraldehyde cryogel
sample, which is similar to that observed on the pure chitosan
slice (Figure 6B, Movie S2). The results strongly indicate that
the superamphiphilicity of the chitosan sample is an intrinsic
property of chitosan, which is independent of the involvement
of glutaraldehyde. As well known, chitosan is a typical
hydrophilic material, and the amphiphilicity of pure chitosan

Figure 3. SEM images of chitosan cryogels prepared by different
conditions. (A) Cross-section view, glutaraldehyde content, 0.2 vol %,
(B) side-section view, glutaraldehyde content, 0.2 vol %, (C) cross-
section view, glutaraldehyde content, 0.5 vol %, and (D) side-section
view, glutaraldehyde content, 0.5 vol %.

Figure 4. Pore-size distribution of chitosan cryogels prepared with different procedures based on mercury intrusion porosimetry (A). Nitrogen
adsorption (closed)/desorption (open) isotherms of samples at 77.3 K (B) and pore size distribution curves calculated using the DFT method (C).
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has seldom been reported so far to our knowledge. The actual
explanation for such superamphiphilicity is not clear at present;
however, we deduce that pure chitosan must possess two
regions, that is, hydrophilic region and hydrophobic region,

and the latter may be possibly attributed to the strong
intramolecular hydrogen bondings derived by the interaction
among amino groups and hydroxyl groups. When observed
from the side view, the water solution dyed by methylene blue
can rapidly pass through the chitosan−glutaraldehyde column
sample in a valley shape under gravity (Figure 6C, Movie S3),
confirming that the porous structures of the sample are
interconnected, as seen in SEM images.

2.3. Separation of Oil-In-Water Emulsions. The unique
wettability and the convective porous structures of the
chitosan−glutaraldehyde cryogels prompted us to use it in
the field of oil-in-water emulsion separation. Three types of
surfactant-stabilized oil-in-water emulsions were chosen to test
separation performance under continuous flow mode. Before
treatment of emulsion, the dried cryogel sample rapidly
adsorbed water to achieve equilibrium within 2 h (Figure
S2). As shown in Figure 7, after the milky emulsion is added
into the syringe, a clear and transparent solution can be
collected at the bottom of the syringe under gravity. Micron-
sized surfactant-stabilized oil droplets can hardly be seen after
treating the emulsion by the chitosan sample. The subsequent

Table 2. Pore Characteristic Features of Different Samples

nitrogen adsorption mercury intrusion porosimetry

crosslinker content
(vol %)

SBET
a

(m2 g−1)
PVBET

b

(cm3 g−1)
average pore diameter

(nm)
total surface area (m2

g−1)
PVMIP

c

(cm3 g−1)
average pore diameter

(μm)

0.2 3.5 0.7*10−3 12.5 11.2 23.8 80.8
0.5 4.8 0.9*10−3 7.0 8.8 19.1 78.2

aSurface area calculated from the nitrogen adsorption isotherms at 77.3 K using the BET method. bPore volume calculated from the nitrogen
adsorption isotherms at P/P0 = 0.99, 77.3 K. cPore volume calculated from mercury intrusion porosimetry.

Figure 5. Water contact angle (WCA) in air (A), oil contact angle (OCA, toluene) in air (B), WCA underoil (C), and oil (DCE) CA (OCA, D)
underwater of the chitosan−glutaraldehyde cryogel (glu, 0.2 vol %) sample with 3.0 μL droplet volume.

Table 3. Contact Angles of Different Chitosan Cryogelsa

crosslinker content (vol %) test condition 1 (°) 2 (°) 3 (°) average ±standard deviation (°)

0.2 WCA in air 0 0 0 0 ± 0
OCA in air 0 0 0 0 ± 0
WCA underoil 0 0 0 0 ± 0
OCA underwater 140.4 143.3 140.7 141.5 ± 1.3

0.5 WCA in air 0 0 0 0 ± 0
OCA in air 0 0 0 0 ± 0
WCA underoil 0 0 0 0 ± 0
OCA underwater 126.2 127.4 132.1 128.6 ± 2.5

aNote: droplet volume 3.0 μL.

Figure 6. Optical images of droplets of methylene blue stained water
and methyl red stained oil spreading on the surface of the chitosan−
glutaraldehyde cryogel (glu, 0.2 vol %) sample (A) and the tablet
compressed by pure chitosan powders (B). Diffusion of methylene
blue stained water through the chitosan−glutaraldehyde cryogel (glu,
0.2 vol %) sample (C).
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measurements confirmed that the separation efficiency can
reach above 96% for three types of emulsions using five
chitosan−glutaraldehyde cryogel samples with different cross-
linker contents, respectively (Table 4). The results indicated

that three processes, including demulsification, adsorption, and
separation, can be integrated into one-step process conducted
on the chitosan-based columns, showing a very promising
possibility for rapid separation of various oil-in-water
emulsions.
The exact mechanism of emulsion separation has been the

subject of considerable controversy.42,43 In our cases, the

unique wetting behavior of chitosan-based cryogels, that is, the
superphilicity to water under oil and oleophobicity to oil under
water, could be favorable for demulsification. According to
infused-liquid switchable behavior described by Wang et al.,
whether liquid can be infused in the matrix is dependent on the
polar part of the surface energy (PSE) of the liquid.47 As
toluene has a lower PSE compared to water, toluene can be
repelled by water even if toluene molecules first occupy inside
the room of the porous superamphiphilic matrix. As such,
water molecules can pass through the chitosan-based column,
while toluene molecules are blocked by the oleophobic sample
under the aqueous conditions. This behavior is usually found
in oil-blocking type separation based on superwetting
materials.44 Tracking the surfactant confirms that only 35.7
± 7.0% of Tween 80 can be found in the filtrate, indicating that
most of the surfactants can be adsorbed by the chitosan-based
column. Meanwhile, 97.7 ± 1.8% of water molecules can pass
through the chitosan-based column (Table S3). Given that the
average pore size of the chitosan cryogel is significantly greater
than the particle size of the oil-in water emulsion (Figure 7c,
Table S2, and Figure S2), the “size screening” should be not a
main driven force for demulsification in our cases.48,49

The continuous separation of emulsion by the chitosan-
based cryogel sample was further performed on a homemade
device driven by a peristaltic pump at a 480 mL/h flow rate.

Figure 7. Separation performance of the chitosan−glutaraldehyde cryogel (glu, 0.2 vol %) sample toward Tween-80 stabilized toluene-in-water
emulsion (A,D) and SLS stabilized toluene-in-water emulsion (B,E), respectively. Optical images of separation of Tween-80 stabilized toluene-in-
water emulsion before (C) and after (F) using the chitosan cryogel, respectively.

Table 4. Separation Efficiency of Emulsions by Chitosan
Cryogels Under Gravity

separation efficiency (%)

crosslinker
content
(vol %)

sodium
lauryl
sulfate Tween-80

cetyl
trimethyl
bromide

average ±standard
deviation

0.1 98.0 97.7 98.0 97.9 ± 0.1
0.2 97.5 98.1 96.7 97.4 ± 0.6
0.3 97.0 97.8 97.9 97.6 ± 0.4
0.4 98.8 97.6 97.7 98.0 ± 0.5
0.5 95.9 97.2 95.5 96.2 ± 0.7

Figure 8. Homemade device for continuous separation of emulsion (A). Recyclability of the chitosan cryogel sample (B).
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The chitosan-based cryogel is located in the top part of the
plastic tube that is immersed in oil-in-water emulsion. With the
emulsion pumped in the first tube, clear and transparent
solution can be accumulated in the reservoir connected with
the second tube (Figure 8A). As the pumped-out volume of
the emulsion reaches 50 mL, 25 times volume of the chitosan-
based cryogel sample, the separation efficiency is still over 95%
and maintains above 77% on further loading emulsion to 70
mL (Figure 8B). Besides, after being washed by ethanol and
water, the chitosan-based cryogel column can be recycled for
continuous separation of surfactant-stabilized oil-in-water
emulsion with high efficiency in the two subsequent treat-
ments.

3. CONCLUSIONS

A series of glutaraldehyde crosslinked chitosan cryogels were
fabricated at moderately frozen conditions through a freezing−
thawing process. Based on tests by SEM and mercury
intrusion, the obtained cryogels were demonstrated to have
micron-sized porous structures that are interconnected and
averaged around 80 μm in pore size. Moreover, nitrogen
adsorption tests confirmed that the samples had a small
amount of mesoporous and microporous structures. Contact
angle studies indicated for the first time that chitosan-based
cryogels showed superphilicity both to water and to oil in air,
superphilicity to water under oil, as well as oleophobicity to oil
underwater. After investigation on the wetting behavior of the
tablet composed of pure chitosan powders, the super-
amphiphilicity of the chitosan sample was demonstrated to
be an intrinsic property of chitosan. The chitosan cryogels with
special wettability showed high separation efficiency for various
surfactant stabilized oil-in-water emulsions even under high
flow speed driven by a pump, showing a promising potential in
large-scale treatment of oil-in-water emulsions.

4. MATERIALS AND METHODS

4.1. Materials. Chitosan (CTS, 98% deacetylation, 100−
200 mpa/s) and glutaraldehyde (Glu) were obtained from
Aladdin Chemistry Co., Ltd. (Shanghai, China). Acetic acid
(AA), ethanol, 1,2-dichloroethane (DCE), and toluene were
purchased from Fuyu Chemical Reagent Co., Ltd. (Tianjin,
China). Tween-80, sodium lauryl sulfate (SLS), and cetyl
trimethyl bromide (CTEB) are all from Sinopharm Chemical
Regent Co. Ltd. (Shanghai, China).
4.2. Fabrication of Chitosan-Based Cryogels. Chitosan-

based cryogels were fabricated at a moderately frozen
condition according to the previous studies with slight
modifications.22−25 Typically, a chitosan stock solution was
first prepared by adding 2 g of chitosan into 100 mL of water
containing 2.0 vol % of acetic acid with vigorously stirring at 75
°C for 2 h. Then, 2 mL of the stock chitosan solution was
taken out and mixed with 4 μL of glutaraldehyde (0.2 vol %)
into a sealed plastic syringe with a capacity of 5 mL. The sealed
syringe was placed in a freezer at −18 °C for 24 h and then
thawed at room temperature. After that, the resulting material
was successively washed by NaOH aqueous solution (1.0 wt
%), water, and ethanol and finally dried at 50 °C to constant
weight.
4.3. Characterization. Fourier-transform infrared spec-

troscopy (FTIR, Spectrum one, PerkinElmer, Waltham, MA)
was used to characterize the occurrence of the reaction.
Scanning electron microscopy (SEM, FEI QUANTA FEG250)

was used to investigate the pore structure of the samples. Both
nitrogen adsorption (ASAP 2020 M, Micromeritics, Norcross,
GA) and mercury intrusion porosimetry (Poremastier-60,
Quantachrome, Boynton Beach, FL) tests were used to
measure the pore size and its distribution of the resultant
material.50 The wettability of the sample was studied by
measuring the contact angle (CA) on an instrument (OCA 40,
Dataphysics, Germany) at room temperature. Also, the CA was
measured in several environments including in air, underwater,
and under oil. The thermal stability of the samples was
measured by Diamond TG/DTA (PerkinElmer, Shanghai,
China) by heating each sample from 25 to 800 °C, with a
heating rate 10 °C/min under a nitrogen atmosphere. The size
distribution of emulsion was further measured by a dynamic
light scattering nanosizer (DLS, Nano-ZS 3600, Malvern, UK)
at room temperature.

4.4. Separation of Oil-In-Water Emulsions. Three types
of oil-in-water emulsions were prepared according to previous
studies.40 Toluene (495 μL), 50 mg of surfactant (Tween-80,
sodium lauryl sulfate or cetyl trimethyl bromide), and 45 mL
of deionized water were mixed by stirring for 24 h. The volume
ratio of oil to water was 1:100. The obtained emulsions were
stable at least within 1 week.
The cryogel sample was put into a plastic syringe and

swollen in water for 2 h to achieve equilibrium before
separation. The oil-in-water emulsion (1 mL) was added to the
syringe and passed through the sample under gravity. The
remnant toluene in water was extracted by 3.0 mL of carbon
tetrachloride, and its content was measured at 265 nm by an
ultraviolet−visible-light (UV−vis) spectrometer (UV759CRT,
Yoke Instrument Co. Ltd., Shanghai, China). The separation
efficiency (SE) could be calculated by the equation as follows

C CSE (1 / ) 100%f 0= − ×

where C0 and Cf are the concentration of toluene in water
before and after separation, respectively. After the separation,
the samples were washed with ethanol for recycling. Separation
of oil-in-water emulsions under another continuous flow mode
was conducted using a peristaltic pump.51 Before and after
separation, oil-in-water emulsions were also observed by an
optical microscope (Nikon Eclipse LV100 POL).

4.5. Swelling Ratios of Cryogels. The dried samples with
1 cm length were accurately weighted (Wd). Then, the samples
were put into 10 mL of water and taken out every 20 min from
water at room temperature. After removal of the surface water
of the cryogel sample by the weight papers, the samples were
then weighted (Ws). The swelling ratio of the sample was
calculated by the following equation

W W Wswelling ratio ( )/s d d= −

4.6. Determination of Tween 80 in Filtrate. The
concentration of Tween 80 in the filtrate was determined
based on a quantitative test for the complex of the
polyoxyethylene groups of Tween with NH4[Co(SCN)3]
according to literature.40,52 The absorption of the complex
solution was measured at 624 nm using an UV−vis
spectrometer (UV759CRT, Yoke Instrument Co. Ltd.,
Shanghai, China).
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TGA curves and swelling ratios of the samples,
concentration of Tween 80 in the filtrate, and size
distribution of Tween-80-stabilized toluene-in-water
emulsion measured by DLS (PDF)
Spreading processes of water and oil droplets on the
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Spreading processes of water and oil droplets on the
pure chitosan sample (AVI)
Diffusion process of methylene blue-stained water
through the samples (AVI)
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