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Breast cancer-induced inflammation in the tumor reactive stroma supports invasion
and malignant progression and is contributed to by a variety of host cells including
macrophages and fibroblasts. Inflammation appears to be initiated by tumor cells and
surrounding host fibroblasts that secrete pro-inflammatory cytokines and chemokines
and remodel the extracellular matrix (ECM) to create a pro-inflammatory “cancerized”
or tumor reactive microenvironment that supports tumor expansion and invasion. The
tissue polysaccharide hyaluronan (HA) is an example of an ECM component within the
cancerized microenvironment that promotes breast cancer progression. Like many ECM
molecules, the function of native high-molecular weight HA is altered by fragmentation,
which is promoted by oxygen/nitrogen free radicals and release of hyaluronidases within
the tumor microenvironment. HA fragments are pro-inflammatory and activate signaling
pathways that promote survival, migration, and invasion within both tumor and host
cells through binding to HA receptors such as CD44 and RHAMM/HMMR. In breast
cancer, elevated HA in the peri-tumor stroma and increased HA receptor expression are
prognostic for poor outcome and are associated with disease recurrence. This review
addresses the critical issues regarding tumor-induced inflammation and its role in breast
cancer progression focusing specifically on the changes in HA metabolism within tumor
reactive stroma as a key factor in malignant progression.

Keywords: hyaluronan, breast cancer, inflammation, tumor microenvironment, RHAMM/HMMR, CD44,
macrophage

Hyaluronan as a Component of Cancerized Stroma in Human
Breast Cancer

During breast cancer growth, tumor cells interact with their surrounding stroma to create an
environment resembling that found during wound healing with increased inflammation, angio-
genesis, and stromal remodeling. Both tumor cells and fibroblasts produce pro-inflammatory
chemokines and cytokines, which recruit and activate innate immune cells including neutrophils
and macrophages (1). Macrophages are recruited by tumor cells as a key component of the
inflammatory microenvironment and have been strongly implicated in breast cancer growth and
progression in patients (1–4). Together, the tumor cells, fibroblasts, and inflammatory cells produce
factors that remodel the extracellular matrix (ECM), leading to the formation of a “cancerized”
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microenvironment that sustains tumor growth and promotes
malignant progression. The ECM is composed of proteins and
proteoglycans/glycosaminoglycans that provide structural sup-
port and facilitate tissue organization. In addition, specific com-
ponents of the ECM contribute to cell survival, proliferation,
migration, angiogenesis, and immune cell infiltration. A major
ECM component of the stroma is hyaluronan (HA), a member of
the glycosaminoglycan family of polysaccharides. HA is synthe-
sized at the cell surface as a large linear anionic polymer (up to
107 Da) by multiple cell types in healing wounds and in tumors.
There are three distinct isoenzymes (HA synthases, HAS 1–3) that
synthesize HA (see below). Understanding the role that HA plays
in contributing to breast carcinoma-induced inflammation has
important implications for the design of therapeutic approaches
targeting both the tumor cells and the pro-tumorigenic functions
of the cancerized stroma (5).

A number of studies have demonstrated that HA regulates
tumor cell migration and invasion in vitro, and tumor growth and
progression in vivo (5–7). Cell culture studies show that invasive
breast cancer cells synthesize and accumulate larger amounts of
HA than normal tissue and preferentially express more HAS2
mRNA than less aggressive tumor cells (8). Furthermore, HAS2
promotes breast cancer cell invasion in vitro (9).Overexpression of
HAS2 inmammary epithelial cells ofMMTV-Neu transgenicmice
increases tumor HA production and enhances growth of mam-
mary tumors (10).HAS2-overexpressing tumors exhibit enhanced
angiogenesis and stromal cell recruitment. These results demon-
strate that increasedHA in the tumormicroenvironment supports
mechanisms of neoplastic progression.

Although carcinoma cells synthesize HA, stromal HA levels are
increased in breast cancers predicting that stromal cells are also
a rich source of this biopolymer. Similar to the contributions of
HA fragments in wound healing, HA fragmentation leads to the
generation of angiogenic fragments that act on endothelial cells
to promote blood vessel formation (11). As described below, HA
regulates inflammatory cell functions located within the tumor
microenvironment. The combined effects of HA on both tumor
and host cells as well as evidence that elevated accumulation of
peri-tumor stromal HA is linked to reduced 5-year survival (12),
provide strong evidence that HA participates in the generation of
a pro-tumorigenic “cancerized” stroma (5).

In-depth analysis of the HA staining patterns within tumors
shows an enrichment of HA in the stroma at the leading edge
of the tumor, and detailed clinical study of these HA levels and
localization in patient samples support a relationship between
high-stromal HA accumulation and poor patient survival (12).
While most HA is likely synthesized by stromal cells, a subset of
breast cancers also stain for HA in the tumor parenchyma and this
is correlated with lymph node positivity and poor differentiation
(12). Furthermore, these tumors tend to be negative for the hor-
mone receptors estrogen receptor (ER) and progesterone receptor
(PR) (12).

Hyaluronan accumulation has additionally been compared in
early and later stage breast tumors, specifically in ductal carcinoma
in situ (DCIS), DCIS with microinvasion and invasive carcinoma,
to determine if altered HA production is linked to early as well
as later stage invasion events in breast cancer. HA levels of DCIS

associated with microinvasion and later stage invasive carcinoma
are significantly increased when compared to pure DCIS (13).
RHAMM/HMMR, which promotes migration and invasion of
breast cancer lines, is also elevated in breast cancer, particularly
at the invasive front of tumors and in tumor cell subsets (14, 15).
Collectively, these results suggest that HA performs a number of
functions in progressing tumors and in particular contributes to
invasion in early and later stage breast cancer.

More recently, HA staining and CD44 expression have been
examined in HER2-positive breast tumors. High levels of stromal
HA staining in this breast cancer subtype have been linked to
specific clinical correlates, including lymph node-positive breast
cancer and reduced overall survival (16). Elevated CD44 expres-
sion, which occurs in tumor parenchyma and to a lesser extent in
stromal cells, is associated with HER2-positive breast cancers and
linked to reduced overall survival in this breast cancer subtype.
A number of studies have also examined expression levels of
HA synthases in breast cancer tissues. Expression of all of the
HAS isoenzymes (HAS 1–3) have been detected in the tumor
parenchyma and stroma of breast tumors (17). Expression of
tumor cell HAS1, but not HAS2 or HAS3, was found to correlate
with reduced overall survival when breast cancer patients were not
sorted into subtypes. In this study, expression of all three HAS
proteins in the stroma corresponds with reduced overall survival
(17). However, HAS2 expression is particularly linked to triple
negative and basal-like breast cancer subtypes and its elevated
expression is associated with reduced overall survival of these
cancer patients (18).

Together, these studies suggest pro-tumorigenic roles for
increased levels of HA in breast cancer (19, 20) and predict
possible mechanisms through which HA might facilitate tumor
initiation and progression. For example, the increase in tumor cell
HA may provide a self-protective coat, minimizing recognition by
immune cells and helping to reduce damage by reactive oxygen
and nitrogen species. Increased levels of HA may also facili-
tate mitosis and invasion of surrounding tissue. However, recent
studies demonstrating that fragmentation of HA within damaged
tissues alters biological properties of the intact biopolymer and
that HA receptors differ in their recognition of HA polymer sizes
suggest a much more complex mode of regulation (see below).
These more recent studies emphasize the importance of defining
both changes in HA levels and the extent of HA fragmentation
for understanding mechanisms by which the peri-tumor stroma,
in particular the inflammatory status of the tumor-associated
stroma, influences breast cancer initiation and progression.

Regulation of HA Synthesis and
Fragmentation

Elevated HA synthesis in adults is most often associated with
a response to tissue damage or disease. These increases result
from both transcriptional and post-transcriptional control of HA
synthesis. HA synthesis is catalyzed by one or more of three
HA synthase isoenzymes (HAS 1–3) (21, 22), which are unique
among other glycosyltransfererases since they are localized at
the plasma membrane rather than in the Golgi (23). Primary
structures of all three enzymes predict that they span the plasma

Frontiers in Immunology | www.frontiersin.org June 2015 | Volume 6 | Article 2362

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Schwertfeger et al. Hyaluronan, inflammation, and breast cancer

FIGURE 1 | Hyaluronan induces receptor-mediated signaling
through interaction with cell-surface HA binding proteins.
Interaction of HA with CD44 and RHAMM induces CD44 receptor
clustering and intracellular RHAMM-regulated MAPK activation, resulting
in ERK phosphorylation and downstream activation of the transcription
effectors AP-1 and NFκB. Active transcription of AP-1 and NFκB target

genes ultimately result in the induction of directed cell migration and
release of inflammatory cytokines. Abbreviations: MEK, MAPK ERK
kinase; ERK, extracellular regulated kinase; RHAMM, receptor for
hyaluronan-mediated motility; CD44, cluster of differentiation 44; AP-1,
activator protein 1; RTK, receptor tyrosine kinase; NFκB, nuclear factor
kappa B.

membrane several times (21). The three isoenzymes contain cyto-
plasmic catalytic sites that sequentially add the activated UDP--
glucuronic acid andUDP-N-acetyl--glucosamine to the growing
HA polymer, which is then extruded through pores in the plasma
membrane, likely created by formation of HAS oligomers (21, 22).
Released HA polymers are captured by extracellular HA binding
proteoglycans such as versican, along with other ECM protein
components and cell-surface receptors (5, 6, 24). High-molecular
weight polymers of HA are thought to function like other ECM
components, in part, by providing a multivalent template to
organize ECM proteoglycans and to cluster HA receptors thus
“organizing” plasma membrane components. Clustering leads to
subsequent cytoskeletal re-organization, the efficient assembly
and activation of signaling pathways and ultimately changes in the
cellular transcriptome (Figure 1).

Hyaluronan synthesis is controlled by multiple distinct but
overlapping mechanisms. HA synthesis is partially regulated by
intracellular levels of the HAS substrates UDP-GlcA and UDP-
GlcNAc. These are produced by complex pathways that con-
trol their levels and/or availability within cells. For example, the
compound 4-methyl-umbelliferone (4-MU) inhibits the synthesis
of HA by depleting cytoplasmic UDP-GlcA, (25). Although 4-
MU theoretically could limit substrate availability to multiple
glycosyltransferases, its inhibitory effect appears to be localized
to limiting substrate availability for HAS isoenzymes associated

with the inner plasma membrane. By contrast, the majority of
glycosyltransferases are resistant to the inhibitory effects of 4-MU
since they are located in the Golgi, which is not permeable to 4-
MU (23). The genes encoding HAS isoenzymes are located on
distinct chromosomes and their expression is regulated by distinct
transcriptional and post-transcriptional mechanisms (23, 26, 27).
Numerous wound and tumor-associated cytokines and growth
factors promote HA synthesis, including TGFβ, PDGF, FGF2,
EGF, and TNFα [Ref. (23) and references therein]. It is important
to emphasize that regulation of HAS isozyme expression and
activity can be cell and tissue specific. Thus, careful analysis is
needed when considering HA-related mechanisms in different
pathologies. For example, HAS2 transcription can be regulated
via EGFR/STAT3 pathways, PKA/CREB pathways (23), or TNFα
or IL-1β-induced activation of NF-κB. The latter pathway is par-
ticularly relevant to the impact of up-regulated HA synthesis in
the context of inflammation. While transcriptional control is a
major mechanism for regulating HA synthesis, post-translational
modification of HAS isoenzymes also affects their activity and/or
cell-surface localization. For example, ErbB2/ERK1, 2 signaling
activates and phosphorylates the three HAS isoenzymes impli-
cating this as a mechanism for up-regulated HA synthesis in
HER2/neu-positive tumor subtypes (28). HAS proteins can also
be covalently modified by O-GlcNAcylation, which modifies
trafficking and/or subcellular localization of the enzymes to the
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plasma membrane (23). Finally, early evidence from analyzing the
naked mole rat genome shows that activating mutations of HAS2
can be selected for, that increase not only the production but also
the predominant size of HA synthesized by this HAS isoform (29).

Large, native HA polymers clearly participate in the architec-
tural maintenance and hydration of homeostatic adult tissues.
However, recent evidence demonstrates that HA fragmentation
is a critical contributing factor in the physiology of wounds and
cancerized stroma (27, 30, 31). While larger HA polymers appear
to be anti-inflammatory and anti-tumorigenic, HA fragments and
oligomers are pro-inflammatory and pro-tumorigenic. This has
led to the concept that HA fragmentation is one of the initial
“danger signals” sensed by cells to initiate efforts that limit tissue
damage through promoting tissue inflammation and repair (5).
This cycle of increased synthesis and fragmentation appears to
be hijacked by tumor cells and their stromal partners to sustain
inflammation, which contributes to malignant progression. The
mechanisms by which HA fragmentation contributes to such
tissue pathology are not well understood. One proposed function
is that LMW fragments alter or disrupt the cellular “organizing”
properties of HMW HA by inhibiting the HA-induced clustering
of cell-surface receptors such as CD44 and affecting signaling
(6, 24, 32). Direct pull down assays of cellular extracts using
beads coupled to HA oligomers have demonstrated that tumor
cell and wound RHAMM can bind LMW HA fragments (33).
This scenario predicts that cell-surface RHAMM, displayed in
response to cellular stress, is one HA receptor that “senses” HA
fragmentation and thus serves to initiate cellular responses to
tissue damage possibly by affecting CD44 clustering (5). These
previous studies point to the importance in determining both the
level of HA and the ratio of HMW HA to LMW fragments noted
previously (34, 35) and in an accompanying manuscript in this
issue (36).

Hyaluronan fragmentation within tissues results from the
increased expression of one or more hyaluronidases (Hyals)
and from oxidative/nitrosative damage. Hyals function as endo-
or exoglycosidases to cleave HA polymers (27, 30). Hyal1
and Hyal2 are most often associated with damaged or tumor-
associated stroma undergoing remodeling (27). In vitro analysis of
hyaluronidases indicates that their activity results in unique frag-
mentation patterns. For example, although both Hyal1 and Hyal2
can catalyze degradation by cleaving β-(1,4) linkages, they differ
in that Hyal1 degrades HA into small fragments (hexasaccharides
and tetrasaccharides) whereas Hyal2 appears to produce pre-
dominantly larger (i.e., 20 kDa) fragments (37). Both Hyal1 and
Hyal2 have pH optima in the acidic range and are associated with
processing HA that has been internalized into endocytic vesicles.
However, low pH within localized stromal microenvironments
facilitates extracellular Hyal-mediated HA degradation (27).

Hyaluronan is also fragmented by reactive oxygen and nitrogen
species (ROS/RNS) such as hydroxyl radicals (•OH), peroxyni-
trite/peroxynitrous acid (ONOO−/ONOOH), and hypochlorite
anion (OCl−). Iron, derived from tissue associated heme or fer-
ritin, is one important contributor in catalyzing the formation
of both hydroxyl radicals and superoxide anions

(
O−•

2
)
. This

mechanism is contributed to by infiltrating polymorphonuclear
leukocytes, monocytes, and activated macrophages (38). HA is

extensively cleaved by any of these reactive species, and they are
therefore important mechanisms for HA fragmentation within
inflamed tissues. Although assessment of HA fragmentation by
thesemechanisms have largely been defined using in vitro analyses
(39), it is clear that this degree of HA fragmentation occurs in skin
wound tissue and in human milk (34, 35).

Cellular Receptors for Hyaluronan

Although a number of HA receptors have been identified, the two
that have been best characterized and are to date most relevant to
inflammation and breast cancer are CD44 and RHAMM (5, 27).
Other receptors implicated in cellular responses toHA, TLR2, and
TLR4, are discussed in more detail below. Interactions between
HA and CD44 lead to ligand-induced clustering, and activation
of intracellular signaling pathways such as ERK1, 2, Akt, and
FAK. The binding of HA by CD44 occurs through interactions
with an amino terminal “link” domain, similar to those found in
several other types of HA binding proteins, in particular, extracel-
lular HA binding proteoglycans such as versican, aggrecan, and
link protein. RHAMM binds HA through structurally distinct
domains (BX7B motifs where B is a basic amino acid residue
and X are non-acidic residues) that differ from link domains
(5, 27). While CD44 expression is ubiquitous, RHAMM is nor-
mally not detected in most homeostatic tissues, but expression
increases in response to injury and thus seems to be primarily
important for restoring homeostasis following injury (5). Null
RHAMM mice are viable but exhibit defects in tissue response to
injury including vascular damage and excisional wound healing
(40). RHAMM may also be required for robust female fertility
in mice (41). Interaction of HA with CD44 is often associated
with increased cell motility and invasion, although numerous
reports have demonstrated that CD44 can also modify growth
and therapeutic resistance of tumor cells (6, 24). As with CD44,
RHAMM is displayed on cell surfaces. However, unlike CD44,
RHAMM surface expression is tightly regulated, occurring under
conditions of cellular stress. Thus, RHAMM is largely a cytoplas-
mic proteinwhose surface localization is regulated bymechanisms
similar to other non-conventionally exported cytoplasmic and
nuclear proteins and that regulates signaling cascade activation
through co-receptor functions with integral receptors such as
CD44 (5). Cell surface and intracellular RHAMMare also involved
in stimulating cell motility and invasion. Intracellular RHAMM
co-distributes with interphase microtubules and a splice variant
of human RHAMMhas been detected in nuclei (14, 42). RHAMM
expression increases in G2/M of the cell cycle, associating it with
mitosis and modifying cell-surface RHAMM blocks cells in G2M
(43). This is consistent with more recent reports indicating that
RHAMM is a critical contributor to mitotic spindle formation
and regulation of proper chromosomal segregation and genomic
stability (44). Both CD44 and cell-surface RHAMM also function
as co-receptors for activating transmembrane tyrosine kinases
(including EGFR, c-MET, and PDGFR) and ERK1,2 (Figure 1).

Both CD44 and RHAMM regulate the intensity and/or dura-
tion of such signal transduction pathways as ERK1, 2, which
are initiated by growth factors (40, 45). Intracellular RHAMM
functions as a scaffold protein that directly binds to ERK1 and
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forms complexes with ERK1, 2, and MEK1. This has been pro-
posed to be one mechanism by which RHAMM helps to increase
the intensity and/or duration of oncogenic ERK1, 2 signaling
pathways (46, 47). One consequence of HA, CD44, RHAMM-
mediated increases in the duration of ERK 1, 2 activation is
the alteration of the transcriptome of cells within the cancer-
ized stroma (Figure 1). These changes in gene expression have
an impact on the activation of transduction pathways related to
cell migration and the expression and export of inflammatory
mediators. In turn, the persistent activation of these pathways in
cancerized stroma enhances pro-tumorigenic inflammation and
breast tumor progression. Thus, this represents one major mech-
anism by which biological “information” encoded within HA can
lead to pro-tumorigenic or “cancerized” alterations in stroma.

Positive paracrine and autocrine feedback loops between tumor
and stromal cells can be initiated by inflammatory mediators such
as IL-1α and TGFβ that increase HA synthesis and expression of
both RHAMM and CD44, which collectively sustain cell migra-
tion and invasion within cancerized stroma. Thus, the aberrant
upregulation of CD44 or RHAMM in cancerized stroma is a
nefarious consequence of sustained ERK 1, 2 activation, further
aggravating persistent oncogenic signaling (46, 47). Since CD44
and RHAMM functionally cooperate under certain conditions
(40), targeting RHAMM may be an effective way to specifically
limit the function of CD44 in breast tumors.

LYVE-1, another cell-surface HA receptor associated with can-
cerized stroma (48–50), was first identified as a surface marker
expressed by lymphatic endothelium and has been proposed to
serve in HA transport from interstitial tissue to lymph (51).
However, studies addressing the obligatory importance of LYVE-1
in promoting normal lymphangiogenesis have yielded conflict-
ing results (52, 53). In tumors, the density of stromal LYVE-1
positive lymphatic vessels is a negative prognostic indicator in
breast cancer patients with invasive ductal carcinomas (54). Fur-
thermore, in vitro studies suggest that HA and LYVE-1 promote
adhesion of breast cancer cells to fibroblasts, predicting these
interactions contribute to adhesion or dissemination of tumor
cells (55). Nevertheless, a mechanistic role for LYVE-1 in poor
prognosis of breast cancer has yet to be demonstrated. One pos-
sible mechanism is suggested by the expression of LYVE-1 in
cancer-associated macrophages (56) but a causative role for this
HA receptor in inflammation has yet to be established.

Effects of Hyaluronan on Innate Immune
Cells in Cancerized Stroma

The generation of a pro-tumorigenic inflammatory environ-
ment during breast cancer initiation and progression requires
recruitment of inflammatory cells, including neutrophils and
macrophages. Once recruited to the tumor site, these cells become
activated and secrete factors that are normally involved in prolifer-
ation, angiogenesis, and stromal remodeling during tissue repair
(1). Macrophages residing within the tumor parenchyma and the
tumor reactive stroma are prognostic of poor outcome in breast
cancer patients (57). Macrophages in a wound-healing context
are characterized as pro-inflammatory (M1) or anti-inflammatory
(M2) (58). Pro-inflammatory macrophages are involved in the

initial stages ofwoundhealing and are characterized by the expres-
sion of NF-κB-regulated pro-inflammatory cytokines, includ-
ing IL-1β and IL-12 as well as mediators contributing to
pathogen destruction, including reactive oxygen species. Anti-
inflammatorymacrophages are important for the resolution phase
of the wound-healing process and they are characterized by
expression of anti-inflammatory cytokines, including TGFβ and
IL-10 as well as factors that promote tissue remodeling includ-
ing the MMPs. Profiling and functional studies demonstrate
that macrophages within the tumor microenvironment express a
range of both pro- and anti-inflammatory factors depending upon
tumor type and stage. For example, macrophages associated with
early stages of tumorigenesis have high levels of NF-κB activation
and subsequently express pro-inflammatory factors, such as IL-
1β and IL-6 (59). As tumors become increasingly aggressive,
tumor-associated macrophages express high levels of immuno-
suppressive cytokines, such as IL-10 and TGFβ (58). Tumor-
associated macrophages also produce factors that are established
promoters of breast cancer growth and progression including
EGF, VEGF, and MMP-9 (60). Thus, it is clear that tumor-
associated macrophages reside in a functional continuum that is
regulated by specific factors within the tumor microenvironment.
However, the specific factors within the microenvironment that
macrophages are responding to and driving these responses are
not well understood.

A primary function of monocytes and macrophages in wound-
healing environments is to produce reactive oxygen intermediates,
which contribute to pathogen killing during wound healing (58).
High levels of reactive oxygen species, found in both wound
healing and tumor environments, are known to fragment HA,
which then induce expression of pro-inflammatory genes (38, 61,
62). Recent studies of human breast cancer samples demonstrate
that high numbers of CD163 positive macrophages correlate with
increased levels of HA synthases and HA accumulation within
tumors (63). Based on the links between HA and macrophages
during wound healing, it is likely that HA in the tumor microen-
vironment may regulate macrophage function.

Indeed, HA modulates expression levels of pro-tumorigenic
cytokines and chemokines in macrophages. Specifically, HA
induces expression of the pro-inflammatory cytokine IL-1β in
macrophages (64). Numerous studies have implicated IL-1β in
breast cancer initiation and progression. Expression of IL-1β is
increased in tumor and stromal cells in 90% of ER negative
invasive breast carcinomas (65, 66). In addition, high levels of
serum IL-1β correlate with recurrence in breast cancer patients
(67). Finally, IL-1β may also be involved in premalignant breast
cancer based on studies that showing increased IL-1β expres-
sion in pre-invasive DCIS (65, 68). Mechanistically, increased
IL-1β within the tumor microenvironment leads to enhanced
expression of cyclooxygenase-2 (COX-2), which contributes to
the formation of early stage lesions and is a well-established
tumor promoter (69). Increased IL-1β also leads to mammary
tumor growth and metastasis in part through inducing regulation
of myeloid derived suppressor cells (MDSCs), which promote
an immunosuppressive environment (70). Taken together, these
studies suggest that modulation of pro-inflammatory cytokines
by HA in the tumor microenvironment represents a potential
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mechanism through which HA might contribute to tumor growth
and progression.

The precise mechanisms by which elevated levels of stromal
HA modulate pro-inflammatory responses are not well under-
stood. Similar to the wound-healing environment, both increased
levels of hyaluronidases (71, 72) and reactive oxygen or nitrogen
species, including nitric oxide are present in breast tumors (39,
73), predicting elevated HA fragmentation in the tumor microen-
vironment. In vitro studies demonstrate that increased HA frag-
mentation is correlated with elevated hyaluronidase expression
by breast cancer cells (74). Studies focusing specifically on
hyaluronidase 1 (Hyal1) demonstrate that enhanced expression
of Hyal1 in breast cancer cells induces tumor cell proliferation,
migration, invasion, and angiogenesis (75). Furthermore, knock-
down ofHyal1 in breast cancer cells reduces cell growth, adhesion,
and invasion in culture as well as decreased tumor growth in vivo
(72). Breast cancer cells lacking ER expression typically produce
more hyaluronidases than estrogen positive cells and this corre-
lates with invasion in vitro (15). LMW HA fragments, but not
total HA levels, detected in the serum of breast cancer patients
also correlates with the presence of lymph node metastasis (74).
In addition, Hyal1 expression in non-invasive ductal hyperplasias
correlates with subsequent development of invasive breast car-
cinoma (76). These studies indirectly establish a link between
breast cancer and HA fragmentation (Figure 2), although studies
analyzing the accumulation of HA fragments in experimental or
clinical breast cancer tissues are still lacking. Because HA frag-
ments are pro-inflammatory, it is reasonable to assume that they
contribute to production of inflammatory cytokines, chemokines,
and proteases by tumor-associated macrophages (27). In contrast
to LMW fragments, HMW HA suppresses expression of many
of the above pro-inflammatory cytokines in macrophages (77).
This opposing function of native HA suggests that both the level
and the distribution ratio of different size HA fragments may
dictate inflammatory cell phenotypes within cancerized stroma.
Development of new technologies to isolate and characterize HA
polymers and fragments from tissues will be key for develop-
ing a mechanistic understanding of the biological complexities
associated with HA metabolism (35).

In addition to regulating pro-inflammatory cytokine produc-
tion, HA can modulate the expression of anti-inflammatory
cytokines. Analysis of macrophage responses to tumor cell
conditioned media demonstrates that tumor cell-derived HA
stimulates production of IL-10 by macrophages (78). IL-10, an
anti-inflammatory cytokine, is a potent mediator of immuno-
suppression in the tumor microenvironment through inhibi-
tion of T cell activation (79). Recent studies have demonstrated
that increased IL-10 in the breast cancer microenvironment
leads to therapeutic resistance through multiple potential mech-
anisms. For example, increased levels of IL-10 lead to the sup-
pression of CD8+ T cell responses in response to chemother-
apy (Figure 2) (4). Furthermore, IL-10 has been found to act
directly on breast cancer cells to promote survival in response to
chemotherapy involving a STAT3/bcl-2 mechanism (80). Thus,
it is possible that HA contributes to immunosuppression and
therapeutic resistance through modulation of IL-10 in the tumor
microenvironment.

Hyaluronan also controls expression of chemokines, including
IL-8/CXCL8 (81). Chemokines are pro-inflammatory cytokines
that play an essential role in leukocyte recruitment and cell
trafficking. These secreted proteins interact with cell-surface G-
protein-coupled receptors to induce cytoskeletal rearrangement,
adhesion to endothelial cells, and directional migration of cells
to specific tissue sites (82). For example, IL-8 binds its receptors,
CXCR1 and CXCR2, to stimulate neutrophil chemotaxis (67). IL-
8 is overexpressed in breast cancers and contributes to tumor
initiation and growth through promoting migration and inva-
sion of breast cancer cells. More recently, studies have implicated
IL-8 in the regulation of breast cancer stem cell invasion (83).
Macrophage chemokines that are regulated by HA, including
CXCL2 andCXCL12, have similarly been implicated in breast can-
cer progression (27) and have been shown to promote migration
and invasion of these cancer cells (84, 85). The CXCL12/CXCR4
axis is particularly important for homing of breast cancer cells to
metastatic sites, including bone and lung (86).

In another positive feedback loop,HAproduction is alsomodu-
lated by pro-inflammatory signaling pathways. For example, both
IL-1β and TNFα induce HA production in endothelial cells in
an NF-κB-dependent manner (87). We have also demonstrated
that HA synthesis is enhanced in tumor cells through an IL-
6/STAT3-dependent mechanism (88). Furthermore, inflamma-
tory macrophages express hyaluronidases (89) and ROS (58),
which potentially fragment HA into pro-inflammatory polymers.
These results predict that HA and pro-inflammatory cytokines act
reciprocally to sustain inflammation.

Contributions of Hyaluronan Receptors
and Binding Proteins to Inflammation

A major challenge in the mechanistic understanding of HA in
breast cancer-associated inflammation is to link HA metabolism
with specific contributions of HA receptors CD44, RHAMM, and
LYVE-1, which are all expressed by macrophages (78, 90–92).
CD44 has been examined for its ability to regulate macrophage
migration and phagocytosis (93). In the context of modulat-
ing macrophage responses to tumor cells, functional studies
demonstrate a link between CD44:HA binding and generation of
immunosuppressive macrophages. Specifically, blocking the abil-
ity of HA to bind tomonocytes either through blocking HA:CD44
binding or using an HA-specific blocking peptide inhibits tumor
cell conditioned media promoted formation of immunosuppres-
sive macrophages (78).

While RHAMM has not been examined specifically in the
context of tumor-associated macrophages, recent studies have
started to elucidate its potential functions during response to
injury. RHAMM expression is induced in macrophages following
chemically induced lung injury (94) and in excisional skinwounds
(34) and blocking RHAMM function in these injuries reduces
the level of tissue macrophages (31, 34). Additional studies have
demonstrated that RHAMM regulates macrophage chemotaxis
in response to TGFβ in the context of surfactant protein A-
mediated inflammation in the lung (92). While not specifically
addressed, these studies predict the potential of RHAMM for
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FIGURE 2 | Effects of HA on various cell types within the tumor
microenvironment. HA is synthesized by HAS enzymes in breast
cancer cells (shown) or in stromal cells (not shown) and extruded to the
extracellular space. HA can be fragmented by hyaluronidases (Hyal) or

reactive oxygen species within the tumor microenvironment. HA, full
length and fragmented, can act through cell-surface receptors, including
CD44 and RHAMM, on various cell types to regulate the indicated cell
functions.

promoting HA-mediated macrophage motility and chemotaxis in
tumor-associated inflammation.

While the contributions of HA interactions with LYVE-1 to
macrophage functions are even less well understood, recent inter-
est in LYVE-1 as a marker of tumor-associated macrophages sug-
gests that further studies of these interactions are warranted (90).
Given the numerous effects of HA on macrophage recruitment
and function, a focus on the roles of HA receptors in mediating
tumor-associated macrophage functions will likely dramatically
increase understanding of the mechanisms driving macrophages
to promote breast tumor progression.

Studies have also suggested a link between HA and toll-like
receptor (TLR) signaling in macrophages (27, 95). Specifically,
LMW HA induces expression of pro-inflammatory cytokines
and chemokines, mediated in part by TLR2 and/or TLR4 (27,
95). Additional published studies using blocking antibodies have
suggested that the TLR-mediated effects may require interac-
tions with CD44 (96). TLR signaling has been implicated in
breast cancer progression, as TLR4 is expressed at high levels
on invasive breast cancer cells and knock-down of TLR4 leads
to reduced cell proliferation and survival (97). In vivo studies
have suggested that TLR4 agonists can inhibit mammary tumor
metastasis (98, 99). By contrast, recent studies using a poten-
tial TLR4 agonist demonstrated enhanced survival of mice in a
model of tumor resection, suggesting that the contributions of

TLR4 to breast cancer progression are complex (100). Recent
studies have suggested that breast cancer cell-derived exosomes
modulate inflammatory cytokines in macrophages potentially
involving both TLRs and CD44 (101). While direct interac-
tions between HA and TLRs in breast cancer cells have not
been established, additional studies examining HA and TLR
signaling in both tumor cells and the microenvironment are
warranted.

Tumor necrosis factor-stimulated gene-6 (TSG-6), which is an
extracellular HA binding protein, is synthesized and secreted at
sites of inflammation (102). TSG-6 bindsHAwith high affinity via
a link module and enhances binding of HA to CD44 (103). TSG-6
also contributes toHA cross-linking, which has been implicated in
adhesion and rolling of leukocytes (104). In the context of breast
cancer, TSG-6 is up-regulated in breast cancer cells following
ionizing radiation, suggesting a potential role for TSG-6 when
tissue is damaged (105). It will be interesting to determine the
contributions of TSG-6 toHA remodeling and functionwithin the
breast cancer microenvironment.

Effects of Hyaluronan on Adaptive Immune
Cells in Cancerized Stroma

In addition to innate immune cells, adaptive immune cells are also
prevalent within the breast cancer microenvironment. Immune
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cell profiling studies have demonstrated that breast cancer with
high levels of macrophages and Th2 T cells are associated with
worse outcome than those with high levels of Th1 cells (106).
More recently, studies have demonstrated that the presence of
infiltrating T cells and B cells predict better response to neo-
adjuvant chemotherapy in breast cancer patients (107). Under-
standing the regulation and function of adaptive immune cells
during both tumor progression and therapy is a rapidly growing
focus of research in the breast cancer field.

While the potential role of HA on tumor infiltrating lympho-
cytes has not to our knowledge been reported, HA is known
to contribute to the regulation of T cell trafficking (Figure 2).
Studies have demonstrated that upon activation, T cells adhere
to and migrate on native HA (108). Other studies show that
HA:CD44 interactions on T cells can contribute to activation-
induced T cell death (109). This response occurs following expo-
sure to HMW, rather than LMW HA, suggesting an additional
anti-inflammatory role for HMW HA. Finally, HMW HA has
also been found to promote the immunosuppressive functions of
regulatory T cells (Tregs) (110). Exposure of Tregs to HMW HA
leads to prolonged expression of Foxp3, a transcription factor that
is required for Treg function. Collectively, these studies predict
an important role for HA in the regulation of T cell recruitment
and/or function.

Targeting HA Metabolism as a Potential
Therapeutic Strategy in Breast Cancer

Given these links of HA and its receptors with breast cancer
progression, targeting HAmetabolism represents a potential ther-
apeutic approach for treatment of breast and other cancers. There
are multiple potential points in the HA metabolic pathway that
could potentially be targeted including HA synthesis, accumu-
lation, degradation, and/or HA:receptor interaction. Use of 4-
MU, an inhibitor of HA synthesis, is a common approach for
blocking HA synthesis in experimental models of breast cancer
and is described in detail in another article in this Research Topic
(111). Numerous studies have demonstrated that inhibition of HA
synthesis using 4-MU reduces breast cancer tumor cell prolifer-
ation and migration (88, 112, 113). Furthermore, treatment of
tumor bearing mice with 4-MU reduces tumor growth (114, 115).
Treatment of mice bearing bone metastatic lesions with 4-MU
reduces HA accumulation and growth of osteolytic lesions (116,
117). 4-MU is well-tolerated in both animal models suggesting
that blocking HAS catalytic function represents a viable therapeu-
tic strategy. While the efficacy of targeting HA synthesis alone
remains to be determined in human cancers, we have recently
demonstrated that reducingHA synthesis combined with targeted
therapy enhances therapeutic response (88). These studies high-
light the importance of combinatorial targeting of both tumor
cell specific oncogenic signaling pathways and pro-tumorigenic
alterations in the tumor microenvironment in new therapeutic
approaches.

Elimination of HA in the tumor microenvironment using
hyaluronidases has also been explored as a potential therapeu-
tic strategy for some cancers, including pancreatic cancer, and
is currently being tested in clinical trials (118–120). Treatment

of breast cancer cells with bacteriophage hyaluronidase inhibits
growth, migration, and invasion in culture (121). Recombinant
hyaluronidase, which eliminates stromal HA, allows increased
drug access to tumor cells (118–120). Studies suggest that
recombinant human hyaluronidase (rHuPH20) improves sub-
cutaneous delivery of antibody-based targeted therapies such
as trastuzumab, currently used for treatment of HER2-positive
breast cancer (122). HA is a normal component of the breast
stroma that provides structural support and contributes to
epithelial morphogenesis (123). Whether eradication of HA
and/or the generation of fragments due to the hyaluronidase
activity negatively affects breast tissue architecture remains to
be determined.

Additional approaches to inhibiting HA function in tumors
include interfering with HA:receptor interactions. CD44 expres-
sion correlates with specific subtypes of breast cancer, including
triple negative and endocrine resistant breast cancers (124, 125).
Furthermore, HA–CD44 interactions promote invasion and ther-
apeutic resistance (7, 124, 125). Thus, developing targeted ther-
apies that specifically inhibit this interaction could lead to viable
therapies for treating breast cancer subtypes that currently have
limited therapeutic options. Nevertheless, the use of a humanized
monoclonal antibody (Bivatuzumab) in clinical trials of patients
with squamous cell carcinomas showed early promise. However,
it had a dose related toxicity in some patients and caused the
death of one patient causing the trial to be terminated prema-
turely (126) raising concerns about this therapeutic approach.
Furthermore, since there are multiple structural variants of CD44,
it may be difficult to develop a complete array of humanized
antibodies that can target this structurally complex group of
proteins.

An alternative approach, which may be less toxic than
Bivatuzumab will be to develop and utilize HA binding peptides
that can specifically block HA-stimulated signaling and inflam-
mation. Early efforts along this line using a 12mer phage dis-
play resulted in a peptide termed PEP-1, which was identified
by sequential binding of 12mer-displaying phage to immobilized
HA (127). PEP-1 has been shown to reduce gastric stem cell
proliferation (128) and reduceH. pylori-induced gastric epithelial
proliferation in vivo (128). Finally, PEP-1, in combination with
the selective activation of the adenosine A2 receptor, inhibits
arthritis-associated inflammation (129, 130).While the PEP-1was
effective in these studies, it was not demonstrated to inhibit inter-
actions with a specific HA receptor. More recently, we have devel-
oped a unique HA binding “RHAMM mimetic” peptide using
a 15mer (P-15) based phage display approach (34). This 15mer
approach is unique from PEP-1 in several respects. Unlike PEP-
1, P-15 contains a BX7B HA binding motif found in RHAMM,
it binds HA, in particular HA fragments with high affinity, can
inhibit HA binding to RHAMM but does not block HA binding
to CD44. It inhibits HA-stimulated migration of RHAMM+/+

fibroblasts but has no effect on the migration of RHAMM null
fibroblasts. P-15 reduces inflammation, angiogenesis, and fibro-
plasia of RHAMM+/+ but not RHAMM−/− excisional wounds.
Peptides or mimetics similar to P-15 may offer an effective alter-
native therapy since specific blockade of RHAMM can also limit
CD44 signaling.
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Summary

In summary, there is clear evidence that alterations in HA are
associated with malignant progression of breast cancer. Based on
the known pro-inflammatory properties of HA fragments during
wound healing and the increased levels of HA associated with
the peri-tumor stroma in breast cancers, it is likely that HA
contributes to the generation of a pro-tumorigenic inflamma-
tory environment. This is supported by the recently identified
links between HA levels in the tumor stroma and infiltration of
macrophages. Analyzing the presence and function of HA frag-
ments within the tumor microenvironment will provide insights
into changes in HA metabolism during tumor growth and pro-
gression. As described in an accompanying article in this issue
(36), advances have been made in the isolation of HA from
tissues and analysis of HA fragmentation and addressing these
questions is now feasible. Identifying the specific HA receptors
involved in mediating recruitment and activation of inflamma-
tory cells, such as macrophages, into the tumor environment and

determining how HA regulates adaptive immune cells will lead
to a better understanding of how alterations in HA contribute to
host immune responses to breast cancer. Agents that limit aber-
rant HA synthesis, fragmentation, or block specific HA:receptor
interactions is very likely to yield advances in the development of
new therapies to limit relapse and recurrence in patients receiving
tumor cell targeted therapies.
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