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The development of cervical cancer (CeCa) is associated with high-risk human papilloma virus (HR-HPV) infections, mainly
HPV-16, which is present in more than 50% of cases. The presence of immunosuppressive factors in the early stages of the
disease is also strongly linked to CeCa progression. In this context, it is unknown whether ectonucleotidases CD39 and CD73,
which are involved in the production of adenosine (Ado) that suppresses the specific antitumor immune response, are present
in precursor lesions of CeCa. In this pilot study, we analyzed the presence of CD39 and CD73 and their capacity to generate
Ado in 25 cervical samples from patients with grade 1 cervical intraepithelial neoplasms (CIN-1) and 25 samples from normal
donors (NDs) free of HPV infection. Cells obtained from cervical samples of CIN-1 patients positive for HPV-16 showed
higher CD39 and CD73 contents compared to samples obtained from CIN-1 patients negative for HPV-16 and NDs.
Interestingly, solubilized cervical mucus from these patients also showed higher contents of soluble CD39 and CD73,
which were associated with a greater capacity to produce Ado from the hydrolysis of adenosine triphosphate (ATP) and
adenosine monophosphate (AMP). In addition, serum samples of these patients showed higher levels of TGF-β than those
of CIN-1 patients negative for HPV-16 and ND. These results suggest that persistent infection with HR-HPV, mostly
HPV-16, in CIN-1 patients may promote the expression of CD39 and CD73 through the production of TGF-β in
precursor lesions to generate an immunosuppressive microenvironment and allow its progression to CeCa.
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1. Introduction

Cervical cancer (CeCa) is the fourth cause of cancer death in
women worldwide, accounting for more than 300,000 deaths
per year, of which more than 80% occur in developing coun-
tries [1, 2]. Persistent infection due to human papilloma virus
(HPV) is the main factor for developing CeCa. To date, more
than 200 HPV genotypes have been identified, of which
HPV-16, HPV-18, HPV-31, HPV-33, HPV-35, HPV-39,
HPV-45, HPV-51, HPV-52, HPV-56, and HPV-58, which
are considered high-risk HPV (HR-HPV), are associated
with anogenital cancer [3–5].

Most HPV infections are eliminated by the immune
system in approximately 1 or 2 years after exposure [6]. How-
ever, in rare cases, HPV can generate dysplastic changes in the
cervix, known as cervical intraepithelial neoplasia (CIN), clas-
sified as CIN-1, CIN-2, or CIN-3 [7]. CIN lesions are clinically
heterogeneous and may regress spontaneously or persist and
progress to invasive cancer. The regression rates vary accord-
ing to the degree, occurring in approximately 50-90% of
women with CIN-1, 40% with CIN-2, and 30% with CIN-3
[8]. In this context, the immune system plays a significant role
by eradicating HPV infection, even with established CIN;
however, it has been proposed that the progression to CeCa
is inevitably linked to an immunosuppressive microenviron-
ment during carcinogenesis in the cervix [9]. Therefore, it is
important to determine the molecular mechanisms involved
in immunosuppression in the initial stages of CeCa.

Recent reports have shown that the adenosinergic
pathway plays an important role in the pathogenesis of
gynecological cancer [10]. In this pathway, Ado generated
through the phosphohydrolysis of adenine nucleotides by
the activity of CD39 ectoenzymes (ENTPD1, ectonucleoside
triphosphate diphosphohydrolase-1, EC 3.6.1.5) and CD73
(5′-ectonucleotidase, EC 3.1.3.5) induces extracellular signal-
ing through four Ado receptors (ARs: A1R, A2AR, A2BR,
and A3R) coupled to G proteins and arranged in the
membranes of target cells [11]. In the hypoxic tumor micro-
environment, Ado exerts an immunosuppressive effect on
the effector cells of the immune system by interacting with
A2AR [12] in addition to participating in the promotion of
tumor growth inducing proliferation, invasion, and metas-
tasis of tumor cells [13, 14]. Our working group was the
first to report that CeCa tumor cells positive for HPV-16
and HPV-18 produce higher levels of CD73 than those neg-
ative for HPV and strongly suppress the effector functions
of cytotoxic T lymphocytes through the production of Ado.
Furthermore, by silencing the E6 and E7 oncogenes in these
tumor cells, the expression level of CD73 and its ability to
produce Ado were strongly reduced, suggesting that HPV
infection may favor the constitutive expression of CD73 in
cervical neoplasms to contribute to the suppression of the
immune response through the production of Ado [15]. To
determine whether the presence of CD39 and CD73 is related
to HPV infection in the early stages of CeCa, we analyzed the
contents and hydrolytic activity of these ectonucleotidases in
cervical samples from patients with CIN-1. For comparison
purposes, cervical samples from NDs negative for HPV were
also analyzed.

2. Methods

This was a cross-sectional, descriptive, and observational
pilot study.

2.1. Biological Material. The study population was selected
among patients who visited the Department of Gynecology
of HGZ No. 2-A Troncoso, Mexican Social Security Institute
(IMSS), Mexico City, Mexico. Cervical cytology samples were
obtained between February 2016 and February 2018 after
obtaining informed consent endorsed by the local bioethics
committee. All women underwent cytological and histopath-
ological analyses by means of a directed colposcopy. Two
experienced cytotechnologists independently examined all
Papanicolaou tests. Samples with an inconsistent diagnosis
were excluded from the study. The cytology diagnoses were
classified according to the Bethesda system, while a CIN-1
histopathological diagnosis was classified according to
Richardt [16]. Women who were consistently negative to
clinical and molecular tests were considered ND. Only
CIN-1 patients who tested positive for HPV through poly-
merase chain reaction (PCR) were included in the study.
Samples from patients with CIN-2 or CIN-3 were excluded
from the study. Cervical cells were carefully collected by
cleaning the ectocervix with a cytobrush (Cytobrush®,
STERYLMEDICAL Co., Yangon, Myanmar). Samples were
placed in a tube containing 2 mL of sterile phosphate-
buffered saline (PBS) (Sigma-Aldrich, St. Louis, MO, USA)
free of contamination to solubilize the mucus. Once the
samples were centrifuged at 2000 rpm, the cell pellet was
placed in a tube containing ThinPrep® PreservCyt® (Hologic
Inc., Marlborough, MA, USA), while the supernatants were
fractionated into tubes and stored at -20°C for the detection
and determination of the hydrolytic activity of soluble CD39
and CD73. A portion of cells was used for immunocyto-
chemical staining and another for further processing in
TRIzol® (Thermo Fisher Scientific, Waltham, MA, USA).
DNA was extracted from TRIzol® by the traditional
phenol-chloroform technique. All samples were subjected
to PCR molecular analysis, using the LINEAR ARRAY®
HPV kit (Roche Diagnostics, CA, USA), for genotyping
between 37 main types of HPV that infect the anogenital
region (HPV-6, HPV-11, HPV-16, HPV-18, HPV-26,
HPV-31, HPV-33, HPV-35, HPV-39, HPV-40, HPV-42,
HPV-45, HPV-51, HPV-52, HPV-53, HPV-54, HPV-55,
HPV-56, HPV-58, HPV-59, HPV-61, HPV-62, HPV-64,
HPV-66, HPV-67, HPV-68, HPV-69, HPV-70, HPV-71,
HPV-72, HPV-73, HPV-81, HPV-82, HPV-83, and
HPV-84), following the supplier’s instructions.

2.2. Detection of CD39 and CD73 in Cervical Cytologies. The
expression of ectonucleotidases CD39 and CD73 in cervical
cells was determined by immunocytochemical staining with
a mouse anti-CD39 monoclonal antibody (clone eBioA1
(A1), 14-0399-82, eBioscience) (Thermo Fisher Scientific,
Waltham, MA USA) and an anti-CD73 rabbit-derived poly-
clonal antibody (Cat. NBP1-85740) (Novus Biologicals,
Cambridge, UK) according to protocols previously described
[17, 18]. Briefly, 5 × 103 cervical cells fixed in ThinPrep
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PreservCyt® solution were deposited onto positively charged
glass slides (Kling-On HIER Slides, Biocare Medical). Subse-
quently, the cells were permeated with 0.01% Triton X-100 in
PBS and incubated for 2 h with 2% (w/v) bovine serum albu-
min (BSA) in PBS (Sigma-Aldrich, St. Louis, MO, USA).
Next, the cells were incubated for 1 h with the antibodies.
After two washes with PBS, the slides were incubated for 1
h using goat anti-mouse or anti-rabbit secondary antibodies
conjugated to horseradish peroxidase (Dako, Carpinteria,
CA, USA). The development was carried out with a
substrate-chromogen solution, 3,3'-diaminobenzidine dihy-
drochloride (DAB) (Sigma-Aldrich, St. Louis, MO, USA),
for 3-5 min. Cells incubated with the correspondent second-
ary antibody were included as a control. Nuclei were stained
with Mayer’s hematoxylin (Sigma-Aldrich, St. Louis, MO,
USA). The slides were scanned through an Aperio CS digital
pathology device (San Diego, CA, USA) to obtain electronic
files. The presence of proteins CD73 and CD39 in the cervical
cells was determined by densitometric analysis considering
the total expression density (TED) from 100 cells per sample
using Image-Pro Plus version 6.0.

2.3. Detection of Soluble CD39 and CD73. The content
of ectonucleotidases CD39 and CD73 solubilized in

supernatants of cervical samples was determined by an
enzyme-linked immunosorbent assay (ELISA). Data were
interpolated in type curves of recombinant enzymes CD39
and CD73 (R&D Systems, Minneapolis, MN, USA) using
different concentrations (1-100 ng/mL) diluted in PBS. To
detect the content of soluble CD39 and CD73 in cervical
samples, we previously determined the total protein concen-
tration in each supernatant by using the Bradford reagent
(Sigma-Aldrich, St. Louis, MO, USA). Afterwards, 2 μg of
total protein (in a final volume of 100 μL) placed in triplicate
in 96-well flat-bottomed plates for the ELISA/RIA (Corning
Inc., USA) was incubated for 1 h at 37°C and then overnight
at 4°C. Next, the plates were washed with wash solution
(PBS-0.1% Tween-20) and then incubated with blocking
solution (2% BSA w/v in PBS-0.1% Tween-20) for 2 h at
37°C. Once the plates were washed, anti-CD39 and anti-
CD73 antibodies were added at a dilution of 1 : 500 in block-
ing solution and incubated for 2 h. The plates were washed
six times and incubated with goat anti-mouse or anti-rabbit
IgG antibodies bound to alkaline phosphatase (Thermo
Fisher Scientific, Waltham, MA, USA) at a dilution of
1 : 5000. The plates were incubated at 37°C for an addi-
tional 2 h, and after eight washes, the alkaline phosphatase
substrate (Sigma-Aldrich, St. Louis, MO, USA) was added

Table 1: Clinical data of patients with CIN-1 and the HPV genotyping of their cervical samples.

Cervical sample number HPV genotypes Age (years) Number of sexual partners Number of pregnancies

1 16 36 4 3

2 16 29 2 2

3 16 43 3 2

4 16 32 3 2

5 16, 54, 56, 83 19 2 4

6 16 25 3 3

7 16 39 3 3

8 16 28 4 2

9 16, 33, 35, 52, 58, 61 27 3 2

10 16, 33, 35, 52, 58, 61 19 2 2

11 16,33, 35, 52, 58, 61 29 3 2

12 33, 35, 52, 54, 58, 62 31 1 2

13 2, 61 21 2 1

14 58 20 2 1

15 52 24 2 1

16 18 40 3 2

17 52 41 2 1

18 58 20 2 1

19 18, 54 37 2 0

20 39 42 2 1

21 53 33 2 1

22 39, 53, 70 26 1 1

23 33, 35, 52, 58, 59 34 3 1

24 53 27 2 1

25 39, 53, 70 39 2 2

Averages 30.4 2.4 1.72
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to diethanolamine solution (Sigma-Aldrich, St. Louis, MO,
USA) at 10% (pH 9.8). The reading was performed at a
wavelength of 405 nm using an ELISA plate reader.

2.4. Hydrolytic Activity of Soluble CD39 and CD73. To deter-
mine the hydrolytic activity of ectonucleotidases CD39 and
CD73 solubilized in cervical samples, 2 μg of total protein
from the supernatants of the samples collected was incubated
with adenosine triphosphate (ATP) or adenosine monopho-
sphate (AMP) at a final concentration of 5 mM. After incuba-
tion for 72 h, Ado production was evaluated. To inhibit the
enzymatic activity of CD39 and CD73, the specific inhibitors
sodium polyoxotungstate (POM-1) (Sigma-Aldrich, St.
Louis, MO, USA) and adenosine 5′-(α,β-methylene)dipho-
sphate (APCP) (Sigma-Aldrich, St. Louis, MO, USA), respec-
tively, were added at a final concentration of 5 mM as
previously described [19]. The total volume of each reaction
was 50 μL. The amount of Ado produced by each sample
incubated with ATP or AMP was evaluated through high-
performance liquid chromatography, applying 25 μL of each
reaction to a chromatograph (UPLC Acquity, Waters Corpo-
ration, Milford, MA, USA) using a mobile phase composed
of 0.5% acetonitrile, 5% methanol, and 94.5% sodium acetate
(0.25 M and pH 6.3). Prior to the reading, the samples
were filtered in Amicon filters of 3000 Daltons (Millipore
Corporation, USA). An Ado standard curve was prepared
to evaluate the Ado content in the different samples using
Empower 3 (Waters Corporation, Milford, MA, USA).

In some assays, different concentrations (5 mM, 0.5 mM,
0.05 mM, and 0.005 mM) of POM-I or APCP were used to
inhibit the capacity of supernatants of cervical samples to
hydrolyze ATP or AMP. The presence of the products
(AMP and Ado) was detected by thin-layer chromatography
(TLC) by placing 1 μL of each supernatant on fluorescent
gel-coated plates (Whatman, GE Healthcare, Freiburg,
Germany). Samples were eluted for 1 h using a mobile phase
composed of isobutanol : isoamyl alcohol : ethoxyethano-
l : ammonia : water (9 : 6 : 18 : 9 : 15) [20], and 5 mM AMP,
Ado, and inosine (Ino) (Sigma-Aldrich) were used as
standard controls. Compounds were visualized using an
UV transilluminator.

2.5. Quantification of TGF-β1. To quantify TGF-β1 content
in serum samples, the human TGF-β1 Quantikine ELISA
Kit (R&D Systems) was used according to the manufacturer’s
protocol.

2.6. Statistical Analysis. All numerical data are presented
as the mean value ± standard error of the mean (SEM) of
three independent experiments. Comparisons and correla-
tions were evaluated by multivariate statistical analysis
using GraphPad Prism version 7 (La Jolla, CA, USA).
Values < 0 05 were considered statistically significant.

3. Results

3.1. Participant Characteristics. The present study was
performed using 50 cervical samples from women who
visited the Department of Gynecology of HGZ Troncoso,
IMSS, and according to the clinical assessment and

histopathological study. Twenty-five samples corresponded
to women whose colposcopy was positive for CIN-1 and 25
ND samples that were negative for HPV infection and whose
colposcopy was negative for CIN-1. All samples and clinical
data from the participants were taken after obtaining
informed consent, in accordance with the ethics and confi-
dentiality requirements related to working with human
samples from the institutions involved. The mean age of
the CIN-1 patients was 30.4 (range 19-43) years (Table 1),
and that of the ND group was 29.9 (range 18-44) years
(Table 2). The average number of sexual partners and preg-
nancies reported by CIN-1 patients was 2.4 (range 1-4) and
1.72 (range 1-4), respectively (Table 1), while that of the
ND group was 1.08 (range 1-3) and 1.2 (range 1-3)
(Table 2), respectively. All cervical samples from CIN-1
patients were positive for HPV infection. The most frequent
genotypes were HPV-16 (11/25, 44%), HPV-58 and HPV-52
(7/25, 28%), HPV-53 and HPV-61 (4/25, 16%), and HPV-39
and HPV-54 (3/25, 12%) (Table 1). Fifteen samples
presented infection with a single HPV genotype, of which 7
presented mono-HPV-16 infection (HPV-16), and 10
samples had coinfections (CI) by two or more different
HPV genotypes, of which only 4 were coinfected with
HPV-16 (HPV-16+CI). On the other hand, 14 of the 25

Table 2: Clinical data of normal donors.

Cervical sample
number

Age
(years)

Number of sexual
partners

Number of
pregnancies

1 32 1 1

2 19 0 0

3 23 1 2

4 24 0 0

5 18 0 0

6 23 1 1

7 33 1 2

8 28 1 2

9 29 1 1

10 31 1 2

11 26 2 1

12 30 1 1

13 42 1 2

14 22 0 0

15 28 1 1

16 41 1 3

17 40 2 2

18 31 1 1

19 34 1 2

20 44 2 2

21 37 3 1

22 21 1 0

23 28 1 1

24 28 1 1

25 37 2 1

Averages 29.9 1.08 1.2
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Table 3: Relation among clinical data of NDs and patients with CIN-1 with different HPV genotypes.

Clinical data NDs
CIN-1 patients

HPV-16 HPV-16+CI HPV-16neg P values

Age (years) 29 96 ± 7 26 33 14 ± 6 46 23 5 ± 5 26 31 07 ± 8 07 —

Number of sexual partners 1 08 ± 0 7 3 4 ± 0 69a 2 5 ± 0 57b 2 ± 0 55c
<0.0001 vs. NDa

<0.0077 vs. NDb

<0.0002 vs. NDc

Number of pregnancies 1 2 ± 0 8 2 4 ± 0 53d 2 5 ± 1e 1 14 ± 0 53f, g
<0.0008 vs. NDd

<0.0077 vs. NDe

<0.0001 vs. HPV-16f

<0.002 vs. HPV-16+CIg

ND: normal donors; HPV-16: CIN-1 patients positive for HPV-16; HPV-16+CI: CIN-1 patients with coinfection with HPV-16 and other HPV types;
HPV-16neg: CIN-1 patients negative for HPV-16. P values were calculated using the Wilcoxon signed-rank test and Student’s t-test.
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Figure 1: Expression of CD39 and CD73 in cervical cytologies of CIN-1 patients and normal donors (NDs). (a) Representative
immunocytochemistry staining associated with the presence of ectonucleotidases CD39 and CD73 in cervical cytologies from NDs
free of HPV infection and CIN-1 patients, positive either for HPV-16 (HPV-16) or for coinfection with HPV-16 and other HPV types
(HPV-16+CI), or from HPV patients negative for HPV-16 (HPV-16neg) is shown in brown (10x magnification). Cells incubated only
with the secondary antibody were included as a negative control (Ctl(-)). The presence of CD39 (b) and CD73 (c) proteins in cervical
cytologies was analyzed through an Aperio AS device. The total expression density (TED) values are shown for each ND sample (circles),
CIN-1 patients positive for HPV-16 (squares), patients with HPV-16+CI (triangles), and HPV-16neg patients (diamonds). ∗ indicates a
statistically significant difference between groups. P values were calculated using the Wilcoxon signed-rank test and Student’s t-test.
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CIN-1 samples were negative for HPV-16 infection
(HPV-16neg). It is important to mention that CIN-1
patients, positive for HPV-16, either by mono-HPV-16 or
by coinfection with other HPV genotypes (HPV-16+CI),
exhibited significantly a greater number of sexual partners
(averages 3.4 and 2.5) and pregnancies (averages 2.4 and
2.5), respectively, than those of NDs, whose averages were 1
and 1.2, respectively (Table 3).

3.2. Cervical Cytologies of Patients with CIN-1 and HPV-16
Infection Showed High CD39 and CD73 Contents. The pres-
ence of CD39 and CD73 was visible mainly at the membrane
and in the cytoplasm (Figure 1(a)). The TED for both ectonu-
cleotidases was significantly higher in CIN-1 patients com-
pared to NDs. The TED averages for CD39 and CD73 in
CIN-1 patients were 7606 ± 597 and 6379 ± 343 pixels,
respectively, while those in NDs were 1989 ± 194 and
2451 ± 234 pixels, respectively (Figures 1(b) and 1(c)). In
fact, in the CIN-1 patients, those with HPV-16 and
HPV-16+CI showed TED values of CD39 and CD73 that
were higher than the values in HPV-16neg one. However,
no differences of TED values of CD39 and CD73 were
observed between HPV-16 and HPV-16+CI groups
(Figure 1(b) and (c)). On the other hand, we observed a
positive correlation between CD39 and CD73 contents in

both the ND (0.6298, P < 0 001) (Figure 2(a)) and CIN-1
(0.7654, P < 0 001) groups (Figure 2(b)).

3.3. Presence of Soluble CD39 and CD73 in Cervical Samples
from CIN-1 Patients and NDs. The expression of oncogenes
E6 and E7 in cells positive for HR-HPV significantly
increases protein secretion and extracellular microvesicles
that may suppress the immune response [21–23]. Consider-
ing that cytological samples from CIN-1 patients had higher
levels of CD39 and CD73 than ND samples, we detected the
presence of these ectonucleotidases in the supernatants of the
cervical samples using ELISA and type curves of recombinant
CD39 and CD73. The supernatants of cervical samples from
patients with CIN-1 positive for HPV-16, either by mono-
HPV-16 or by coinfection with other HPV genotypes
(HPV-16+CI), presented significantly higher contents
(P < 0 05) of soluble CD39 and CD73 than those of ND sam-
ples. The contents of CD39 and CD73 in the supernatants of
ND samples were 2 87 ± 0 98 and 1 71 ± 0 86 ng/μg of total
protein, respectively. Cervical samples from patients with
CIN-1 positive for HPV-16, HPV-16+CI, and HPV-16neg
had 8 84 ± 1 65 and 5 32 ± 0 99, 6 14 ± 0 92 and 4 2 ± 0 41,
and 4 3 ± 0 76 and 3 24 ± 0 39 ng/μg of total protein, respec-
tively (Figure 3).

3.4. Cervical Samples from Patients with CIN-1 HPV-16+
Showed a High Capacity to Generate Adenosine by the
Hydrolysis of ATP and AMP. To analyze the hydrolytic activ-
ity of ectonucleotidases CD39 and CD73 solubilized in the
supernatants of cervical samples from patients with CIN-1
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Figure 3: Contents of CD39 and CD73 in cervical samples from
CIN-1 patients and NDs. The presence of CD39 and CD73
solubilized in cervical samples was determined by ELISA as
described in Methods. The contents of CD39 and CD73 in cervical
samples from NDs free of HPV infection (black bars) and from
CIN-1 patients, positive either for HPV-16 (HPV-16, white bars)
or for coinfection with HPV-16 and other HPV genotypes
(HPV-16+CI, diagonal lines), or from HPV patients negative
for HPV-16 (HPV-16neg, horizontal lines) are shown. Data
represent three independent experiments, and the means ± SEM
are shown. ∗ indicates a significant difference (P < 0 05) relative
to the ND group. P values were calculated using the Wilcoxon
signed-rank test and Student’s t-test.
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and NDs, we incubated 2 μg of total protein of each superna-
tant in the presence of 5 mM ATP or AMP and in the pres-
ence or absence of POM-I or APCP, specific inhibitors of
CD39 and CD73, respectively. Aliquots of the supernatants
were taken at the beginning and after 72 h of incubation to
evaluate Ado production by means of UPLC. Samples from
CIN-1 patients exhibited a greater capacity to produce Ado
than ND samples. Notably, samples from CIN-1 patients
positive for HPV-16 had the highest capacity to hydrolyze
ATP and AMP. The average Ado concentration produced
by incubation of the supernatants from ND samples in the
presence of ATP and AMP was 31 72 ± 7 8 and 181 16 ±
56 97 nM, respectively (Figures 4(a) and 4(b)). In samples
from CIN-1 patients positive for HPV-16, HPV-16+CI, and
HPV-16neg, the average Ado concentration was 106 14 ±
23 96, 71 5 ± 7 23, and 64 21 ± 13 41 and 515 ± 51 32,
357 ± 50 55, and 328 5 ± 63 nM, respectively (Figures 4(a)
and 4(b)). On the other hand, the addition of 5 mM of
POM-I or APCP, specific inhibitors of CD39 and CD73,
respectively, decreased the capacity of the supernatants to
hydrolyze ATP or AMP by more than 90% in all cases
(Figure 4). Interestingly, the addition of doses lower than 5
mM (500 μM, 50 μM, and 5 μM) of POM-1 or APCP in

supernatants of patients positive for HPV-16, which showed
the highest contents of CD39 and CD73, suppressed in a
dose-dependent manner the conversion from ATP to AMP
or AMP to Ado (Figures 5(c) and 5(d)). The inhibition
obtained of more than 50% supports the specific effect of
these inhibitors. These results suggest that HPV-16 infection
in CIN-1 patients can lead to the generation of an immuno-
suppressive microenvironment due to its greater association
with higher levels of ectonucleotidases CD39 and CD73
and, therefore, its greater capacity to produce Ado.

3.5. Serum Samples from Patients with CIN-1 Positive for
HPV-16 Infection Showed Higher Concentration of TGF-β1
Compared with Those from CIN-1 Patients Negative for
HPV-16 and NDs. It has been suggested that TGF-β1 plays
a key role in promoting human papillomavirus infection, as
well as generating an immunosuppressive state in the local
microenvironment of the cervix in HPV-infected women.
Additionally, it has been reported that TGF-β1 levels
increase in correlation with the severity of the lesions, and
strong expression of this cytokine has been associated with
poor survival in patients with CeCa [24–26]. Considering
that we previously reported that TGF-β1 enhances CD73
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Figure 4: Hydrolytic activity of CD39 and CD73 solubilized in cervical samples from CIN-1 patients and NDs. Aliquots of 2 μg of total
protein obtained from the supernatants of cervical samples from NDs negative for HPV (ND, black bars) and CIN-1 patients, positive
either for HPV-16 (HPV-16, white bars) or for coinfection with HPV-16 and other HPV types (HPV-16+CI, diagonal lines), or HPV
patients negative for HPV-16 (HPV-16neg, horizontal lines) were incubated in the presence of 5 mM of ATP or AMP and in the presence
or absence of POM-I or APCP, specific inhibitors of CD39 and CD73, respectively. After 72 h of incubation, the Ado product of ATP (a)
or AMP (b) hydrolysis was evaluated by UPLC. ∗ indicates a significant difference (P < 0 01) of the Ado product of CIN-1 samples
compared to NDs. Data represent three independent experiments.
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expression in cervical cancer cells [27], we proceeded to ana-
lyze the levels of this cytokine in serum samples of the CIN-1
patients and NDs. Interestingly, patients positive for
HPV-16, either by mono-HPV-16 or by coinfection with
other HPV genotypes (HPV-16+CI), which showed the high-
est contents of CD73 in their cervical samples, also showed
the highest levels of TGF-β1 (Figure 6). The average of
TGF-β1 concentration contained in serum samples from
NDs was 337 ± 59 pg/mL, while that from CIN-1 patients
positive for HPV-16, HPV-16+CI, and HPV-16neg was
768 ± 85, 735 ± 65, and 494 ± 136 pg/mL, respectively
(Figure 6(a)). In addition, we observed a positive correla-
tion between CD73 and TGF-β1 contents in both the
ND (0.5764, P < 0 001) (Figure 6(b)) and CIN-1 (0.695,
P < 0 001) groups (Figure 6(c)).

4. Discussion

The development of CeCa is followed by several mechanisms
of suppression and evasion of the immune response [28]. For
example, during persistent infection with HR-HPV, the levels
of viral proteins continue to be low, while capsid proteins are

only expressed in the outer layers of the epithelium and, con-
sequently, are out of reach of antigen-presenting cells [29].
Likewise, the pattern of Th1 cytokines, which are produced
during the inflammatory state of infection and are important
for the activation of CD4+ and CD8+ T lymphocytes and
regression of the infection [30, 31], is inverted to a pattern
of immunosuppressive cytokines, such as interleukin 10
(IL-10) and tumor growth factor beta (TGF-β), whose levels
in tissues and plasma are directly correlated with the severity
of the infection [32, 33], making it more likely to progress to
CeCa [34, 35]. Additionally, it has been reported that pro-
teins derived from high-risk HPVs, such as HPV-16, inter-
fere with the immune response. For example, E6 and E7
proteins block IFN production by the infected cells [36]
and reduce the expression of TLR9 [37] and cytokines, such
as IL-8 [38] and IL-18 [39], which are proinflammatory mol-
ecules. Likewise, the proteins E5, E6, and E7 downregulate
the expression of MHC class I molecules, reducing recogni-
tion of the HPV-infected cells by NK cells and by specific
CTLs [40].

In turn, several studies have reported that the Ado pro-
duced by the functional activity of ectonucleotidases CD39
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Figure 5: Effect of POM-1 and APCP to inhibit the capacity of supernatants of cervical samples from patients with CIN-1 HPV-16+ to
hydrolyze ATP or AMP. Aliquots of 2 μg of total protein obtained from the supernatants of cervical samples from patients with CIN-1
HPV-16+ were incubated in the presence of 5 mM of ATP or AMP and in the presence or absence of (5 mM, 0.5 mM, 0.05 mM, and
0.005 mM) of POM-I or APCP, specific inhibitors of CD39 and CD73, respectively. After 72 h of incubation, the ATP to AMP (a) and
AMP to Ado (b) conversions were detected by TLC. The percentages of ATP to AMP (c) and AMP to Ado (d) conversions in the
presence of several concentrations of POM-1 or APCP were determined by densitometric analysis in relation to the respective basal
conversion (in the absence of the inhibitors), which was considered 100%. A representative assay from three independent experiments
is shown.
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and CD73 participates in the suppression of the antitumor
immune response and favors tumor progression in several
types of cancer [14, 41–43]. We recently reported that HPV
infection promotes the constitutive expression of CD73 in
tumor cells of CeCa to contribute to the production of Ado
and to inhibit the effector function of cytotoxic T lympho-
cytes [15]. However, it is unknown whether HPV infection
is associated with the expression of CD39 and CD73 in pre-
cancerous lesions of the cervix. Therefore, in this study, we

analyzed the hydrolytic activity of these ectonucleotidases
in cervical samples from CIN-1 patients positive for HPV
and compared them to cervical samples from NDs free of
HPV infection. Interestingly, samples from CIN-1 patients,
particularly those positive for HPV-16, as either mono- or
coinfection with other HPV genotypes, showed higher levels
of CD39 and CD73 than those from CIN-1 patients negative
for HPV-16 and NDs. Likewise, we detected a greater
amount of CD39 and CD73 solubilized in the supernatants
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of cervical samples from these patients, which is associated
with a high capacity to produce Ado from ATP and AMP
hydrolysis. TGF-β increases the levels of CD39 and CD73
in activated T cells and suppressive myeloid cells in both
mice [44, 45] and humans [46, 47]. The expression of
TGF-β1 in CeCa has been directly related to the degree of
disease progression [24, 46] and to the expression of onco-
genes E6 and E7 of HR-HPV [25]. In fact, oncogenes E6
and E7 of HPV-16 induce the activation of the human
TGF-β1 promoter by recognizing the Sp1 sequence [48]. A
recent study revealed that CeCa tumor cells infected with
HR-HPV constitutively produce TGF-β, which is important
for maintaining the expression of CD73 in tumor cells. We
showed that the Ado product of the enzymatic activity of
CD73 induced the production of TGF-β in tumor cells by
interacting with A2AR and A2BR, suggesting an important
connection between the adenosinergic pathway and TGF-β
production in cells infected with HPV [25]. The transcrip-
tional activation of CD39 and CD73 is also regulated by
the transcription factor induced by hypoxia-inducible fac-
tor 1-alpha (HIF-1α) [49]. Therefore, TGF-β1 stabilizes
HIF-1α [50]. Likewise, it has also been reported that onco-
genes E6 and E7 of HPV-16 promote an increase in the
expression of HIF-1α [51]. In the present study, high con-
tents of ectonucleotidases CD39 and CD73 were found in
the cervical samples from CIN-1 patients, positive for
HPV-16, either by mono-HPV-16 or by coinfection with
other HPV genotypes (HPV-16+CI). Interestingly, sera
from these patients also showed the highest levels of
TGF-β1; in consequence, it will be very interesting to know
whether these contents of TGF-β are capable to inducing
and maintaining CD39 and CD73 expression in the cervical
microenvironment of CIN-1 patients HPV-16+. On the
other hand, these patients exhibited significantly a greater
number of sexual partners (averages 3.4 and 2.5) and preg-
nancies (averages 2.4 and 2.5), respectively, than NDs, whose
averages were 1 and 1.2, respectively (Table 3). It is important
to mention that high correlation between the number of sex-
ual partners and CD39 and the number of pregnancies with
the expression of CD39 and CD73 was observed in
CIN-1 patients (Table 4). In fact, a large number of sexual
partners and pregnancies have been reported as the main risk
factors associated with persistent HPV infection and an
increased risk of developing cervical dysplasia and cancer
[52, 53]. Therefore, the present pilot study suggests that the
production of TGF-β, associated with persistent infection

with HPV-16, may induce and maintain the expression of
the ectonucleotidases CD39 and CD73 and contribute to the
generation of an immunosuppressive microenvironment in
preneoplastic lesions of the uterine cervix and favor its pro-
gression. Due to the important role of the adenosinergic path-
way in the suppression of the antitumor immune response
[14, 41–43], its clinical relevance as a therapeutic target to
several tumors, and the fact that CD73 expression in cervical
cancer cells has been associated with increased metastatic
potential [54], it would be interesting to repeat these exper-
iments using a larger number of cervical samples from both
patients with CIN-1 presenting infection with both low- and
high-risk HPVs and including other lesional tissues, such as
CIN-3 and cervical cancer. Consequently, it remains to be
determined if CD39 and CD73 could be biomarkers in cervi-
cal cancer.

5. Conclusions

In this study, we provide evidence that cells obtained from
cervical samples of CIN-1 patients positive for HPV-16
showed higher CD39 and CD73 contents compared to cells
from samples of CIN-1 patients negative for HPV-16 and
NDs. Interestingly, solubilized cervical mucus from these
patients also showed higher contents of soluble CD39 and
CD73, which were associated with a greater capacity to pro-
duce Ado from the hydrolysis of adenosine triphosphate
(ATP) and adenosine monophosphate (AMP). In addition,
serum samples of these patients showed higher levels of
TGF-β than those of CIN-1 patients negative for HPV-16
and ND.

These results suggest that persistent infection with
HR-HPV, mostly HPV-16, which is present in approximately
50% of CeCa cases [55, 56], may promote the expression of
CD39 and CD73 through the production of TGF-β in pre-
cursor lesions to generate an immunosuppressive microenvi-
ronment and allow its progression to CeCa.

Abbreviations

Ado: Adenosine
AMP: Adenosine monophosphate
APCP: 5′-(α,β-Methylene)diphosphate
ARs (A1R, A2AR, A2BR,
and A3R):

Adenosine receptors

ATP: Adenosine triphosphate

Table 4: Correlation analysis of the clinical data of normal donors and patients with CIN-1 and the expression of CD39 and CD73 in their
cervical cytology.

Cell marker
expression

Normal donors CIN-1 patients
P valuesAge

(years)
Number of sexual

partners
Number of
pregnancies

Age
(years)

Number of sexual
partners

Number of
pregnancies

CD39 0.052 0.258 0.177 0.156 0.435a 0.7b <0.029a
<0.0001b
<0.027c
<0.0003d

CD73 0.26 0.439c 0.234 0.011 0.326 0.665d

Values of Pearson’s coefficient (r) are shown.
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CeCa: Cervical cancer
CD39: Ectonucleoside triphosphate

diphosphohydrolase-1
CD73: 5′-Nucleotidase
CI: Coinfections
CIN-1: Grade 1 cervical intraepithelial

neoplasms
HR-HPV: High-risk human papillomavirus
NDs: Normal donors
PCR: Polymerase chain reaction
POM-1: Sodium polyoxotungstate
TED: Total expression density
TGF-β: Transforming growth factor-β
UPLC: Ultraperformance liquid

chromatography.
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