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Abstract

Exposure to environmental factors can induce the epigenetic transgenerational inheritance

of disease. Alterations to the epigenome termed “epimutations” include “primary epimuta-

tions” which are epigenetic alterations in the absence of genetic change and “secondary

epimutations” which form following an initial genetic change. To determine if secondary epi-

mutations contribute to transgenerational transmission of disease following in utero expo-

sure to the endocrine disruptor vinclozolin, we exposed pregnant female rats carrying the

lacI mutation-reporter transgene to vinclozolin and assessed the frequency of mutations in

kidney tissue and sperm recovered from F1 and F3 generation progeny. Our results confirm

that vinclozolin induces primary epimutations rather than secondary epimutations, but also

suggest that some primary epimutations can predispose a subsequent accelerated accumu-

lation of genetic mutations in F3 generation descendants that have the potential to contrib-

ute to transgenerational phenotypes. We therefore propose the existence of “tertiary

epimutations” which are initial primary epimutations that promote genome instability leading

to an accelerated accumulation of genetic mutations.

Introduction

Since the initial report of the induction of epigenetic transgenerational inheritance of adult-onset

disease in F3 generation progeny from an F0 generation gestating female rat exposed to the endo-

crine disruptor vinclozolin [1], there have been numerous reports of similar effects caused by

exposure of fetuses or adults to a variety of different environmental factors (see [2,3] for reviews),

as well as reports of epigenetic transgenerational inheritance in numerous additional species [1,4–

9]. These environmental factors include various toxicants, including many different endocrine

disruptors, nutrition effects including famine, caloric restriction, high fat diets or folate deficien-

cies, and other stressors such as drought, smoking, alcohol or heat. Exposure of fetuses to these

agents in utero, or of adults to these environmental factors, is associated with transgenerational

increases in the incidence of adult-onset disease or abnormalities impacting the reproductive
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systems and fertility in both sexes, the incidence of cancer, the immune system, kidney function,

the prostate, obesity, cardiovascular function, growth, insulin sensitivity, glucose tolerance, pul-

monary function, neuronal function and social behavior, among other effects [3]. These reports

have revealed a novel etiology of adult-onset disease and a mechanism underlying the develop-

mental origins of health and disease (DOHAD) [10]. In addition, these observations suggest that

the phenomenon of epigenetic transgenerational inheritance of disease is significantly more

extensive than previously thought.

While it is not surprising that exposure to environmental factors or toxicants can alter the

epigenome, especially during key developmental periods when epigenetic reprogramming is

taking place [11], it is surprising that such alterations, known as epimutations, can persist over

multiple generations in the absence of any further exposure to the disruptive agent [12–14].

Persistence of abnormalities for one or two generations following in utero exposure may sim-

ply reflect toxicity related effects induced by direct exposure of an F0 generation female, an F1

generation fetus, and/or the germ cells within that fetus that will give rise to the F2 generation.

This phenomenon has been termed a “multigenerational exposure” [15] or more recently

“intergenerational inheritance” [16], but, in fact, does not really represent true “inheritance” at

all if it is limited to direct exposure toxicity effects. However, transmission of phenotypes

through three or more generations following a single transient exposure to the causative agent

requires some mechanism of transgenerational inheritance [1,13,17]. Epimutations induced

by certain effects, for example the use of assisted reproductive technologies (ART), have been

shown to be corrected by normal germline-specific epigenetic reprogramming such that they

are detected in the F1 generation, but are not transmitted to subsequent generations [18].

These are examples of intergenerational epimutations that are not transgenerational. This begs

the question of how epimutations caused by exposure to certain environmental factors, such as

endocrine disruptors, during critical windows of development are able to avoid subsequent

correction by germline epigenetic reprogramming such that they persist over multiple genera-

tions via transgenerational inheritance.

One potential explanation for the observed transgenerational transmission of epimutations

induced by a single exposure to vinclozolin or similar agents in utero is that this exposure

could promote the formation of genetic mutations that impact epigenetic programming, such

that the phenotype of these mutations is manifest as epimutations, but the underlying source

of these defects is one or more genetic mutations. Indeed, two distinct types of epimutations

have been previously described [19]. “Primary epimutations” are epigenetic aberrations that

occur in the absence of any genetic change and are propagated via mitosis to daughter cells or

via meiosis to subsequent generations on the basis of epigenetic rather than genetic inheri-

tance. “Secondary epimutations” are those that form as a consequence of, and thus subsequent

to, an initial genetic change (mutation), and can therefore be transmitted on the basis of

genetic transmission of the initial mutation or on the basis of epigenetic transmission of the

subsequent epimutation, or both. Primary epimutations in the germ line would have the

potential to be corrected by germline epigenetic reprogramming, whereas secondary epimuta-

tions would not be corrected so would be transmitted transgenerationally as genetic traits.

Thus to understand the mechanism of epigenetic transgenerational inheritance, it is important

to distinguish between primary and secondary epimutations.

Mutation-reporter transgenes provide a convenient and sensitive approach to assess the fre-

quency of genetic mutations. Such systems can facilitate testing of tens or hundreds of thou-

sands of copies of a reporter transgene to accurately determine the frequency of point

mutations in this gene without the need to sequence most of these copies. One of the most

extensively studied mutation-reporter systems is the “Big Blue” rodent system originally devel-

oped by Stratagene (now part of Agilent) in the 1990s [20,21]. This approach provides a
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method to examine the frequency of mutations accumulated in a transgene that is integrated

into the same genomic location in all cells, but is not expressed in any cell type of the animal so

does not impact the function of those cells in any way. Specifically, the Big Blue system is

based on the colorimetric detection of expression of the lacZ reporter gene as an indicator of

mutations that have occurred in the lacI (repressor) gene. Copies of the transgene expressing

the mutant phenotype are sequenced to confirm the presence and type of the relevant muta-

tion in the lacI gene and to identify clonal mutations which are counted as a single mutagenic

event regardless of how many times they are detected in the same sample.

To determine if in utero exposure to vinclozolin leads to the direct induction of genetic

mutations, and, thus, potentially to the induction of secondary epimutations, we exposed preg-

nant female Big Blue Rats carrying the lacI mutation-reporter transgene to vinclozolin as pre-

viously described [1,10] and compared the frequency of mutations in the lacI mutation-

reporter transgene in kidney tissue and sperm recovered from F1 generation offspring of vin-

clozolin-treated or control (vehicle-treated) dams. In addition, we bred F1 generation off-

spring to generate both vinclozolin- and control-lineage F2 generation and subsequently F3

generation descendants as described [3,22], and analyzed the frequency of spontaneous muta-

tions in kidney and sperm cells from the F3 generation progeny as well. Our results reveal the

unexpected finding of a third type of epimutation which we term “tertiary epimutations.” Ter-

tiary epimutations are distinct from primary or secondary epimutations and have the potential

to contribute to epigenetic transgenerational inheritance.

Materials and Methods

Samples

The lacI mutation-reporter transgene (‘Big Blue’) system has been used extensively for the

assessment of relative mutation frequencies in different animals, cell types and/or samples for

nearly 25 years [23,24]. Big Blue rats homozygous for 2–4 copies of the lacI mutation-reporter

transgene per genome [25] were obtained from Stratagene (La Jolla, CA). In the Skinner lab

the Big Blue rats at 70 to 100 days of age were fed ad lib with a standard rat diet and ad lib tap

water. To obtain timed-pregnant females, female rats in proestrus were pair-mated with male

rats. Sperm-positive (day 0) rats were monitored for diestrus and body weight. On days 8–14

of gestation, the females were administered daily intraperitoneal injections of vinclozolin (100

mg/kg BW/day) or dimethyl sulfoxide (vehicle) as a control as described [26]. Generally sibling

females were used for the control and vinclozolin lineage F0 generation females, respectively.

In addition, sibling F0 generation males were used to generate control and exposure lineage

offspring. A minimum of three distinct lineages were used for each exposure. Vinclozolin was

obtained from Chem Service Inc. (West Chester, PA), and was injected in a 200 microliter

DMSO/sesame oil vehicle as previously described [27].

The initial gestating female rats and the males to which they were mated were designated as

the F0 generation. Offspring of F0 generation matings formed the F1 generation. Non-sibling

females and males aged 70–90 days from F1 generation control or vinclozolin lineages were

bred to generate F2 generation offspring. F2 generation rats were then bred to obtain F3 gener-

ation offspring. Only the F0 generation gestating female was directly treated transiently with

vinclozolin. Different F0 generation females were used for each different experiment and one

male per litter was selected as the individual animal to be analyzed for each specific experi-

ment. Control and vinclozolin lineage animals were housed in the same room and racks with

identical lighting and food + water supply as previously described [10,27,28]. Samples for anal-

ysis were recovered from F1 and F3 generation vinclozolin-lineage and control-lineage male

descendants to distinguish between potential immediate mutagenic effects (F1 generation
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samples) and an indirect, subsequent increase in mutation frequencies (F3 generation sam-

ples). To collect tissue or cell samples, rats were placed into a chamber and exposed to CO2

until breathing ceased, followed by cervical dislocation as a secondary euthanasia method.

Kidney and sperm were selected as the cell types to be analyzed because pathological defects

have previously been documented in each of these cell types recovered from both F1 and F3

generation male descendants of dams exposed to vinclozolin [1–3,10]. In addition, this pro-

vided one example of a somatic tissue (kidney) and one example of germline cells (sperm)

among the cell types to be analyzed for mutation frequencies. To obtain sperm samples, the

epididymis was dissected free of connective tissue and a small cut was made in the cauda por-

tion, which was then placed in 5 ml of F12 culture medium containing 0.1% bovine serum

albumin for 10 minutes at 37˚C to allow sperm to emerge from the tissue and then kept at 4˚C

to immobilize the sperm. The epididymal tissue was minced and the released sperm centri-

fuged at 13, 000 x g and stored in fresh nucleus isolation medium buffer at -70˚C as described

[10,27,28]. Kidneys were also dissected and snap frozen at -70˚C. Each tissue or cell sample

was shipped to the McCarrey lab on dry ice for further analysis (see below). All experimental

protocols for the procedures with rats were pre-approved by the Washington State University

Institutional Animal Care and Use Committee (IACUC approval # 02568–039), and carried

out in accordance with relevant guidelines and regulations.

Epigenetic transgenerational phenotypes were not monitored in this study because the Big

Blue rat model is maintained on the Fisher inbred rat genetic background which has previ-

ously been shown to repress the occurrence of such phenotypes [22], and because frequencies

and spectra of mutations in the lacI reporter gene were assessed in animals at<1 year of age

which is prior to the age at which transgenerational phenotypes typically become evident.

Analysis of mutation frequencies and spectra

High molecular weight DNA was prepared from each tissue or cell sample using the Recover-

Ease kit protocol from Stratagene with modifications as described [29,30,31]. Briefly, each

sample was homogenized with a Dounce tissue homogenizer, filtered through a 100 μm filter

(Millipore, Billerica, MA), subjected to digestion with ribonuclease (RNace-it, Stratagene) and

proteinase K, then drop dialyzed against 1X TE using a 0.025 μm dialysis membrane

(Millipore).

High molecular weight DNA recovered from each kidney or sperm sample was subjected to

a phage packaging reaction using Transpack packaging extract (Stratagene) following the man-

ufacturer’s protocol. Resulting infectious phage particles were plated onto a 25cm x 25cm lawn

of SCS-8 E. coli cells to facilitate formation of phage plaques (up to 15,000 plaque forming

units [pfu]/plate).

The lacI gene normally encodes a repressor of the lac operon that inhibits production of

beta galactosidase by infected E. coli [32]. However, point mutations incurred in the lacI gene

while it was present as a transgene in the cells of the Big Blue rats can result in defective func-

tion of the lac repressor such that it fails to repress expression of the lac operon, resulting in

production of beta galactosidase by E. coli infected with phage carrying a mutated lacI gene.

The addition of X-gal and IPTG to the plating medium facilitated a blue/clear color selection

method to distinguish rare mutant phage expressing beta galactosidase (blue plaques) from

abundant wild type phage in which expression of beta galactosidase remained repressed (clear

plaques) on each plate. Plaques displaying an apparent mutant (blue) phenotype were then

picked and re-plated to confirm the mutant phenotype in� 50% of the resulting phage. Pla-

ques carrying an abundance of mutant phage were then prepared for Sanger sequencing of the

lacI gene to confirm the presence of a mutation at the molecular level and to determine the
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position and type of mutation present. Sequencing was outsourced to the DNA Sequencing

Facility at UT Austin.

DNA sequence data from each mutant plaque was used to determine the final frequency of

spontaneous point mutations in each sample. Only confirmed independent (non-clonal)

mutations were used to calculate the final frequency of mutations. Thus, if the same mutation

in the same position within the lacI gene was detected more than once in the same DNA sam-

ple, it was assumed that this represented a single original mutation that was subsequently clon-

ally amplified in the tissue or cell type, and such ‘clonal’ mutations were counted as a single

mutation no matter how many times they were detected in a particular sample. Mutation fre-

quencies were calculated by dividing the number of distinct, confirmed, non-clonal mutant

plaques by the total number of pfu examined from each DNA sample. In general, sufficient

total numbers of pfu were examined to identify at least five separate mutant plaques from each

sample to facilitate statistical comparisons of the data from different samples. The DNA

sequence data were also used to establish a mutation spectrum for each sample by cataloguing

the relative prevalence of different types of point mutations detected in each sample, including

base substitutions–transitions or transversions, small insertions, small deletions, or multiple

base changes.

Numbers of mutations were analyzed by a Poisson model with parameter estimates

obtained by the method of maximum likelihood [33]. Because of the low expected frequencies,

exact P-values were calculated by the exact conditional test for Poisson variables to compare

differences between mutation frequencies, using the Exactci package implemented in R

[34,35]. P� 0.05 was considered statistically significant. Note that the extent of the standard

error associated with each mutation frequency is dictated by the number of pfu examined and

the number of independent mutations detected in those pfu.

Results

Mutation frequencies

Frequencies of point mutations detected in kidney and sperm cells from F1 generation off-

spring of dams exposed during pregnancy to either vehicle (DMSO) plus vinclozolin (vinclo-

zolin-lineage animals) or vehicle alone (control-lineage animals) are shown in Table 1. No

significant differences in frequencies of mutations were observed between vinclozolin- and

control-lineage kidney or sperm samples, respectively, except for one vinclozolin-lineage

sperm sample (marked with an asterisk in Fig 1A) in which we detected a mutation frequency

that was significantly lower than the mean frequency of the F1 generation control-lineage

sperm samples (p = 0.0352). Previous studies in the mouse revealed enhanced maintenance of

genetic integrity in germline cells relative to that in differentiated somatic cells [31,36]. This

distinction was not as robust between rat germ cells (sperm) and somatic cells (kidney). These

data confirm previous reports that vinclozolin is not directly mutagenic [37], and suggest that

neither the immediate phenotypic abnormalities observed in vinclozolin-lineage F1 generation

offspring nor the transmission of those defects to the F2 generation can be ascribed to the

direct induction of genetic mutations.

Frequencies of mutations detected in kidney and sperm cells from vinclozolin- or control-

lineage F3 generation descendants of dams exposed during pregnancy to either vehicle plus

vinclozolin or vehicle alone, respectively, are shown in Table 2. Interestingly, for both the con-

trol- and vinclozolin-lineage animals the frequencies of mutations detected in the F3 genera-

tion were consistently higher than those detected in F1 generation animals. The F1 and F3

generation samples were not generated or analyzed simultaneously, however, the control

and vinclozolin-exposed samples within each generation were generated and analyzed
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simultaneously. Therefore, the relevant comparison in each case is between control and vinclo-

zolin-exposed samples within the same generation.

When compared to mutation frequencies detected in kidney and sperm samples from F3

generation control-lineage animals, one subset of the kidney samples (7 of 10) and one subset

of the sperm samples (5 of 8) from F3 generation vinclozolin-lineage animals showed mutation

frequencies that were not statistically different from the control values, although the mutation

frequencies detected in some of these F3 vinclozolin-lineage samples trended higher than

those in the F3 control-lineage animals (Fig 1B). However, another subset of kidney samples (3

of 10) and sperm samples (3 of 8) from F3 generation vinclozolin-lineage animals showed

mutation frequencies that were significantly higher than the mean frequency in the corre-

sponding control-lineage samples (marked with astrices in Fig 1B; p< 0.05). Indeed, mutation

frequencies detected in these divergent samples were 2–13 fold higher than the mean mutation

frequency detected among the corresponding F3 generation control-lineage samples. This sug-

gests that in utero exposure to vinclozolin predisposes a subsequent accumulation of muta-

tions at an accelerated rate in some descendants. This effect appears to occur in a gradual and

stochastic manner, such that it is not detectable in any vinclozolin-lineage F1 generation off-

spring but is manifest in a subset of vinclozolin-lineage F3 generation descendants.

Mutation spectra

The lacI gene from each mutant (blue) plaque recovered from each cell or tissue sample was

sequenced to confirm that a mutation had occurred in each case and to determine the range of

Table 1. Mutation Frequencies in F1 Generation Control- and Vinclozolin-Lineage Samples.

Mutation

Sample Tissue Total Mutant frequency

Number Type pfu plaques ± SE (x 10−5)

Control-lineage

F1CLK1 Kidney 6,15,930 8 1.30 ± 0.459

F1CLK2 Kidney 5,35,547 6 1.12 ± 0.457

F1CLK3 Kidney 2,98,750 7 2.34 ± 0.886

F1CLK4 Kidney 1,97,925 6 3.03 ± 1.240

F1CLS1 Sperm 7,01,848 5 0.71 ± 0.319

F1CLS2 Sperm 2,87,672 5 1.74 ± 0.777

F1CLS3 Sperm 5,09,007 5 0.98 ± 0.439

F1CLS4 Sperm 3,17,744 9 2.83 ± 0.944

F1CLS5 Sperm 8,38,565 6 0.72 ± 0.292

F1CLS6 Sperm 2,55,000 7 2.75 ± 1.040

F1CLS7 Sperm 3,61,750 6 1.66 ± 0.677

Vinclozolin-lineage

F1VLK1 Kidney 3,71,736 6 1.61 ± 0.659

F1VLK2 Kidney 2,71,845 6 2.21 ± 0.901

F1VLK3 Kidney 3,10,250 5 1.61 ± 0.721

F1VLK4 Kidney 2,18,275 5 2.29 ± 1.020

F1VLK5 Kidney 2,88,000 5 1.74 ± 0.776

F1VLS1 Sperm 13,23,987 9 0.68 ± 0.227

F1VLS2 Sperm 4,86,858 7 1.44 ± 0.543

F1VLS3 Sperm 2,53,250 5 1.97 ± 0.883

F1VLS4 Sperm 2,91,250 6 2.06 ± 0.841

doi:10.1371/journal.pone.0168038.t001
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Fig 1. Mutation frequencies in F1 and F3 generation samples. (A) Mutation frequencies in kidney

and sperm samples from F1 generation control- and vinclozolin-lineage animals. There were no statistically

significant differences among the mutation frequencies detected in kidney or sperm samples from F1 generation

control- and vinclozolin-lineage samples, except for one of the vinclozolin-lineage sperm samples (F1VL–marked

with an asterisk) which showed a mutation frequency that was significantly lower than the mean of the F1

generation control-lineage samples (p = 0.00352). (B) Mutation frequencies in kidney and sperm samples from

F3 generation control- and vinclozolin-lineage animals. A subset of both kidney and sperm samples from F3

vinclozolin-lineage descendants showed mutation frequencies that were not significantly different than the mean

of the corresponding F3 generation control-lineage samples, although several of the F3 generation vinclozolin-

lineage samples trended higher than the mean of the corresponding F3 generation control-lineage samples.

However another subset of both kidney and sperm samples from F3 generation vinclozolin-lineage descendants

showed mutation frequencies that were significantly higher than the mean of the corresponding F3 control-

lineage samples. These mutation frequencies are marked with astrices, and include those found in the following

samples: F3VLK6 (p = 0.00342), F3VLK7 (p = 0.00131), F3VLK8 (p = 0.0222), F3VLS1 (p = 0.00185), F3VLS2

(p = 0.03611)) and F3VLS6 (p = 0.00018). F1 = samples from F1 generation descendants, F3 = samples from F3

generation descendants, CL = samples from control-lineage descendants, VL = samples from vinclozolin-lineage

descendants, K = kidney samples, S = sperm samples.

doi:10.1371/journal.pone.0168038.g001
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types of mutations associated with each cell sample. A comprehensive list of the position and

type of each mutation detected in the lacI reporter gene recovered from each set of tissues is

shown in S1 Table, and a summary of the spectrum of mutations detected in each set of sam-

ples is shown in Table 3.

Discussion

The discovery of environmentally induced germline epimutations that are transmitted trans-

generationally for three or more generations following exposure of only the F1 generation

fetus suggests these epimutations are not corrected by the extensive epigenetic reprogramming

that normally occurs in the developing germ line [11,13]. Many environmentally induced epi-

mutations have been reported to be manifest as abnormalities in locus- or allele-specific pat-

terns of DNA methylation [38–42], while others appear to reflect changes in patterns of

Table 2. Mutation Frequencies in F3 Generation Control- and Vinclozolin-Lineage Samples.

Mutation

Sample Tissue Total Mutant frequency

Number Type pfu plaques ± SE (x 10−5)

Control-lineage

F3CLK1 Kidney 1,92,021 8 4.17 ± 1.470

F3CLK2 Kidney 3,44,629 20 5.80 ± 1.300

F3CLK3 Kidney 2,80,976 10 3.56 ± 1.130

F3CLK4 Kidney 4,08,408 14 3.43 ± 0.916

F3CLK5 Kidney 3,42,510 13 3.80 ± 1.050

F3CLK6 Kidney 2,29,108 9 3.93 ± 1.310

F3CLK7 Kidney 2,98,833 15 5.02 ± 1.300

F3CLS1 Sperm 2,33,588 10 4.28 ± 1.350

F3CLS2 Sperm 3,37,211 11 3.26 ± 0.984

F3CLS3 Sperm 3,63,529 7 1.93 ± 0.728

F3CLS4 Sperm 1,58,172 5 3.16 ± 1.410

Vinclozolin-lineage

F3VLK1 Kidney 1,35,475 9 6.64 ± 2.210

F3VLK2 Kidney 4,84,872 22 4.54 ± 0.967

F3VLK3 Kidney 2,64,136 5 1.89 ± 0.847

F3VLK4 Kidney 6,81,660 23 3.37 ± 0.704

F3VLK5 Kidney 3,75,254 13 3.46 ± 0.961

F3VLK6 Kidney 36,358 9 24.75 ± 8.250

F3VLK7 Kidney 2,61,008 23 8.81 ± 1.840

F3VLK8 Kidney 94,996 9 9.47 ± 3.160

F3VLK9 Kidney 2,60,167 6 2.31 ± 0.942

F3VLK10 Kidney 1,28,520 8 6.22 ± 2.200

F3VLS1 Sperm 53,656 7 13.05 ± 4.930

F3VLS2 Sperm 1,17,677 8 6.80 ± 2.400

F3VLS3 Sperm 91,889 6 6.53 ± 2.670

F3VLS4 Sperm 2,62,559 7 2.67 ± 1.010

F3VLS5 Sperm 3,92,605 8 2.04 ± 0.720

F3VLS6 Sperm 33,843 6 17.73 ± 7.240

F3VLS7 Sperm 1,62,386 6 3.70 ± 1.510

F3VLS8 Sperm 3,44,389 5 1.45 ± 0.649

doi:10.1371/journal.pone.0168038.t002
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histone modifications [43]. In particular, vinclozolin has been shown to induce aberrations in

DNA methylation patterns in F1 generation offspring [1,39]. Thus, studies of genome-wide

DNA methylation patterns in both somatic and germ cells in descendants of pregnant dams

treated with vinclozolin or vehicle only (controls) have revealed the occurrence of abundant

alterations to DNA methylation patterns (epimutations) throughout the genomes of vinclozo-

lin-lineage, but not control-lineage descendants [22]. DNA methylation epimutations were

found on all chromosomes except the Y in F1-F3 generation vinclozolin-lineage descendants,

but occurred most frequently in CpG-poor regions of the genome (CpG deserts) [44]. These

DNA methylation epimutations were evident in F1 generation offspring of vinclozolin-treated

dams and persisted until the F3 generation and beyond [39]. Specific characteristics of vinclo-

zolin-induced transgenerational differential DNA methylation regions (DMRs) in sperm

included the nonrandom occurrence of unique consensus DNA sequences including zinc fin-

ger motifs and G-quadruplex sequences [44,45]. A recent report also documented alterations

in small noncoding RNAs (sncRNAs) in the sperm from F3 generation control and vinclozolin

lineage rats [46].

However, inherited patterns of both DNA methylation and histone modifications are

largely erased in the developing germ line and then reset so as to provide proper epigenetic

programming to support development of the subsequent generation during embryonic, fetal

and postnatal stages [11,47]. This germline-specific epigenetic reprogramming has the poten-

tial to correct environmentally induced epimutations, thus preventing their transmission to

subsequent generations, and such a correction process has been documented in some cases

[18]. Nevertheless, a growing number of cases of transgenerational transmission of

Table 3. Mutation Spectra Detected in Control- and Vinclozolin-Lineage Samples.

Generation/

Tissue TS1 TV2 I/D3 DBS4

F1 Generation

Control-lineage

Kidney 6/(40.00) 2/(13.33) 6/(40.00) 1/(6.67)

Sperm 10/(40.00) 6/(24.00) 7/(28.00) 2/(8.00)

Total 16/(40.00) 8/(20.00) 13/(32.50) 3/(7.50)

Vinclozolin-lineage

Kidney 8/(66.67) 2/(16.67) 2/(16.67) 0/(0)

Sperm 8/(50.00) 2/(12.50) 5/(31.25) 1/(6.25)

Total 16/(57.14) 4/(14.29) 7/(25.00) 1/(3.57)

F3 Generation

Control-lineage 17/(22.37) 11/(14.47) 46/(60.53) 2/(2.63)

Kidney 10/(26.32) 13/(34.21) 15/(39.47) 0/(0)

Sperm 27/(23.68) 24/(21.05) 61/(53.51) 2/(1.75)

Total

Vinclozolin-lineage

Kidney 27/(21.26) 15/(11.81) 81/(63.78) 4/(3.15)

Sperm 21/(47.73) 4/(9.09) 17/(38.64) 2/(4.55)

Total 48/(28.07) 19/(11.11) 98/(57.31) 6/(3.51)

1Transitions
2Transversions
3Single+ Base Insertions or Deletions
4Double+ Base Substitutions

doi:10.1371/journal.pone.0168038.t003
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environmentally induced epimutations have now been reported [2–10], indicating that expo-

sure of individuals to environmental factors or stressful circumstances can induce epimuta-

tions that are transmitted transgenerationally and thus, somehow, escape normal germline

reprogramming [19]. These germline epimutations appear to be sustained in a manner similar

to imprinted genes [38], and have the potential to promote a novel etiology of various types of

disease or abnormal phenotypes in the exposed individuals and in their descendants, even in

the absence of any ongoing exposure to the causative agent [2,10]. Our observation that there

were no significant differences in the spectra of mutations detected in F1 or F3 generation vin-

clozolin-lineage or control-lineage samples, respectively (Table 3), suggests that a variety of

different DNA repair and/or cell death pathways were impacted by exposure to vinclozolin in

a stochastic manner, thus leading to a general increase in the frequency of all types of point

mutations.

The well documented alteration of DNA methylation patterns in cells of offspring exposed

to vinclozolin noted above suggests that vinclozolin induces primary epimutations in the form

of direct alterations of DNA methylation patterns that are subsequently propagated by epige-

netic transgenerational inheritance. We tested the hypothesis that in utero exposure to vinclo-

zolin might also induce genetic mutations that could contribute to secondary epimutations by

which abnormalities in epigenetic programming result from alteration of one or more genetic

functions normally required to establish such programming, because secondary epimutations

would be expected to contribute to transgenerational transmission of the resulting phenotype

on the basis of genetic inheritance. However, our data showing no difference in mutation fre-

quencies between F1 generation vinclozolin- and control-lineage offspring corroborate previ-

ous reports that vinclozolin is not directly mutagenic [37]. This argues against the likelihood

that exposure to vinclozolin induces secondary epimutations, or any mutator effect [39],

involving an initial genetic mutation that subsequently predisposes the accelerated accumula-

tion of additional mutations.

We next investigated mutation frequencies in F3 generation vinclozolin- and control-line-

age descendants of dams that were or were not exposed to vinclozolin, respectively. Surpris-

ingly, we detected an elevated frequency of point mutations in a subset of F3 generation

vinclozolin-lineage descendants that distinguished these animals from the F3 generation con-

trol-lineage animals and from the other F3 generation vinclozolin-lineage animals. Thus, our

results suggest that in utero exposure to vinclozolin promotes the initial induction of primary

epimutations, at least some of which have the potential to predispose an elevated accumulation

of point mutations in subsequent generations, and that this could contribute to transmission

of transgenerational phenotypes. We propose that this represents a third type of epimutation

which we term a “tertiary epimutation” and define as an initial disruption of epigenetic pro-

gramming that leads to a subsequent change in the frequency of genetic mutations.

The addition of tertiary epimutations to the list of possible scenarios by which heritable phe-

notypic alterations can be introduced and/or transmitted completes the options for potential

combinations of genetic and epigenetic events involved in this process (Table 4). These include

1) disruption of genomic DNA sequence leading to genetic mutations transmittable by genetic

inheritance, 2) disruption of epigenetic parameters leading directly to altered epigenetic pro-

gramming (primary epimutations) transmittable by epigenetic inheritance, 3) disruption of

genomic DNA sequence leading to subsequent aberrations in epigenetic programming (second-

ary epimutations) transmittable by either genetic or epigenetic inheritance, and 4) disruption of

epigenetic programming leading to the subsequent accumulation of genetic mutations at an

accelerated rate (tertiary epimutations) transmittable by either epigenetic or genetic inheritance.

Our finding that the frequency of point mutations is not increased in vinclozolin-lineage

F1 generation offspring, but is increased in a subset of vinclozolin-lineage F3 descendants

Tertiary Epimutations
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exemplifies the expected gradual inheritance pattern of a tertiary epimutation. These results

are consistent with a recent report of an increase in copy number variations (CNV) in F3 gen-

eration, but not F1 generation descendants of vinclozolin-exposed dams [48], and corroborate

previous reports suggesting that disruption of epigenetic programming can predispose multi-

ple types of genetic aberrations [49–58].

Abnormalities in epigenetic programming could predispose genome instability through a

variety of mechanisms. The most well documented example is predisposition of C-to-T transi-

tions via deamination of methylated cytosines [31,49,50,57,59]. Thus, a change in the methylation

status of a CpG dinucleotide, particularly the addition of DNA methylation where it normally

does not occur, typically increases the likelihood that a C-to-T transition will change a G-C base

pair into an A-T base pair. However, we did not observe a significant increase in C-to-T transi-

tions in samples from F3 generation vinclozolin-lineage animals (Table 3), so this does not appear

to be the primary source of the increased mutation frequencies we observed in these samples.

It is well established that epigenetic programming regulates chromatin structure [60,61]

and that more or less condensed chromatin appears less or more susceptible, respectively, to

either spontaneous or induced mutagenesis [62,63]. We have no data describing the extent of

chromatin condensation associated with the lacI mutation-reporter transgene in kidney or

sperm cells from F3 generation vinclozolin-lineage animals, so cannot comment on whether

or not this source of accelerated mutagenesis may have contributed to the elevated mutation

frequencies in a subset of F3 generation vinclozolin-lineage animals.

Finally, it has been shown that specific cellular states, such as those that distinguish pluripo-

tent and differentiated cell types, or germ and somatic cell types are correlated with more or

less enhanced maintenance of genetic integrity, and that this is at least partially controlled by

epigenetic mechanisms that coordinate the function of different gene networks in cells that

regulate pluripotency and genetic integrity [64,65]. To the extent that this type of coordinate

regulation normally governs the relative level of expression of genetic integrity (DNA repair or

cell death) genes, disruptions of epigenetic programming could alter maintenance of genetic

integrity resulting in the subsequent accumulation of point mutations at an accelerated rate.

This would only occur if regulation of a relevant gene network was impacted by the initial epi-

genetic disruption, which would normally occur stochastically, such that changes in mutation

frequencies would be expected to occur in only a subset of descendants of animals exposed to

the initial disruptor. Our observation that only a subset of F3 vinclozolin-lineage descendants

displayed significant increases in mutation frequency is consistent with this notion. In addi-

tion, a multiple step process of this sort (initial disruption of the epigenome! dysregulation

of a genetic integrity gene network! an increase in the rate at which spontaneous point

mutations are accumulated) would likely lead to a gradual increase in mutation frequency.

Table 4. Transmission of Genetic and Epigenetic Defects.

Type of Initial Manifestation Mode of

Defect Disruption1 of Disruption2 Transmission

Genetic Mutation Genome Genome Genetic

Primary Epimutation Epigenome Epigenome Epigenetic

Secondary Epimutation Genome Genome & Epigenome Genetic or Epigenetic

Tertiary Epimutation Epigenome Epigenome & Genome Epigenetic or Genetic

1Site of initial disruption
2Site of subsequent detectable defect

doi:10.1371/journal.pone.0168038.t004
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This is consistent with our observation of a detectable increase in mutation frequency in F3

generation, but not in F1 generation vinclozolin-lineage descendants.

Conclusion

Taken together, our results support a novel mechanism by which initial epimutations can pre-

dispose a subsequent accelerated accumulation of genetic mutations, and such tertiary epimu-

tations could contribute to transgenerational transmission of defective phenotypes on the

basis of either epigenetic or genetic inheritance, or both. As summarized in Table 4, tertiary

epimutations complete the list of possible combinations of epigenetic and genetic effects that

can contribute to the initial occurrence and subsequent transgenerational transmission of heri-

table phenotypic alterations. It is likely that various combinations of genetic and epigenetic

mechanisms of transmission are involved in the propagation of many epimutations. Therefore

future studies should include comprehensive genome-wide analyses of both mechanisms.
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