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Abstract. Bacterial drug resistance is increasingly 
becoming an important problem that needs to be solved 
urgently in modern clinical practices. Infection caused 
by Acinetobacter baumannii is a serious threat to the 
life and health of patients. The drug resistance rate of 
Acinetobacter baumannii strains is increasing, thus research 
on the drug resistance of Acinetobacter baumannii has also 
seen an increase. When patients are infected with drug‑resis‑
tant Acinetobacter baumannii, the availability of suitable 
antibiotics commonly used in clinical practices is becoming 
increasingly limited and the prognosis of patients is worsening. 
Studying the molecular mechanism of the drug resistance 
of Acinetobacter baumannii is fundamental to solving the 
problem of drug‑resistant Acinetobacter baumannii and 
potentially other ‘super bacteria’. Drug resistance mechanisms 
primarily include enzymes, membrane proteins, efflux pumps 
and beneficial mutations. Research on the underlying mecha‑
nisms provides a theoretical basis for the use and development 
of antibiotics and the development of novel treatment methods.
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1. Introduction

The problem of bacterial resistance is ever increasingly 
becoming a serious threat to humans, and superbugs now account 
for >540,000 infections and nearly 14,000 deaths each year in 
the United States alone (1). The discovery of penicillin and the 
synthesis and application of antibacterial sulfonamides in the 
20th century have greatly eased the suffering of patients, but the 
uncontrolled abuse of antibiotics in the past 50 years has made 
‘ESKAPE’ (Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae,  Acinetobacter baumannii, 
Pseudomonas aeruginosa and Enterobacter species) increas‑
ingly resistant and treatment of these bacterial infections has 
become increasingly difficult (2). Amongst these superbugs, 
drug‑resistant Acinetobacter baumannii infections are notably 
serious with the increasing number of its infections (3). The 
purpose of this review is to highlight the molecular mecha‑
nisms underlying drug resistance in Acinetobacter baumannii 
and to summarize novel ideas for solving the problem of drug 
resistance.

2. Epidemiology of Acinetobacter baumannii

The history of Acinetobacter can be traced back to 1991 
when the Danish microbiologist Martinus Willem Beijerinck 
discovered Micrococcus calcoaceticus (4). The first identifi‑
cation analysis of Acinetobacter species was based on their 
biochemical characterization, while the use of molecular 
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methods, in particular DNA‑DNA hybridization, identified 
at least 33 genetically distinct species of Acinetobacter (5). 
In the majority of laboratories, Acinetobacter baumannii, 
Acinetobacter pittii and Acinetobacter nosocomialis are 
difficult to distinguish (6), as they possess closely related 
microbiological characteristics. Hence, this review will use 
Acinetobacter baumannii in the comprehensive sense to 
refer to these three species collectively. The identification of 
Acinetobacter baumannii can be distinguished by multilocus 
sequence typing, as it utilizes 16s ribosomal RNA as well as 
conserved regions of seven housekeeping genes: gltA, gyrB, 
gdhB, recA, cpn60, gpi and rpoD (7).

Acinetobacter baumannii, once even considered benign, 
is now considered a global threat in healthcare settings, 
and it is gaining resistance at an unforeseen rate (8). In 
early 2019, the World Health Organization stated that 
Acinetobacter baumannii is considered the most dangerous 
multidrug‑resistant bacteria (9). Until the early 1970s, 
Acinetobacter strains showed susceptibility to most antibi‑
otics (10). Extensive resistance to carbapenem antibiotics is 
considered to be a sign of extensively drug‑resistant bacteria, 
and carbapenem‑resistant Acinetobacter baumannii is now 
causing serious problems in Asia and the Americas. In Southern 
Europe, Middle East and Asia and North Africa ~90% of 
clinical isolates of Acinetobacter baumannii are resistant to 
carbapenems (11). Globally, ~45% of Acinetobacter baumannii 
isolates are multi‑drug resistant, with >70% of isolates in 
Latin America and the Middle East exhibiting multi‑drug 
resistance (12).

3. Features of Acinetobacter baumannii

Acinetobacter baumannii was considered a low‑virulence 
bacterium in the past, and its severity was not taken seri‑
ously until the mid‑1990s (13). In recent years, following the 
continual increase in its virulence and the difficulty in treating 
infections due to drug resistance has resulted in increased atten‑
tion from public health bodies (14). Acinetobacter baumannii 
is a Gram‑negative bacterium that is a strictly aerobic, cata‑
lase‑positive, oxidase‑negative and non‑lactose‑fermentative 
opportunistic pathogen (6). Acinetobacter baumannii is 
almost everywhere such as waterbodies, soil, mines, crude 
oil, sewage, sludge, solid surfaces, human skin and wild 
animals (11), it is not only difficult to treat but also difficult 
to eliminate. This is due to its excellent anti‑starvation (15), 
anti‑desiccating (16), seasonal adaptation and high‑tempera‑
ture resistance properties (17), in addition to reduced sensitivity 
to disinfectants (18) and biofilm protection (19). Drug‑resistant 
Acinetobacter baumannii is one of the most common pathogens 
of nosocomial infections, especially in immunocompromised 
patients and in ICU wards (20). In addition, prolonged use 
of antibiotics, major surgery, severe burns and immunosup‑
pression increase the risk of Acinetobacter baumannii 
infections (21). Acinetobacter baumannii infections can lead 
to ventilator‑associated pneumonia, bacteremia, urinary tract 
infection and meningitis (22). The overall prevalence of multi‑
drug‑resistant strains of Acinetobacter baumannii in patients 
with hospital‑acquired pneumonia and ventilator‑associated 
pneumonia is estimated at 79.9%, with an overall mortality 
rate that can be as high as 56.2% (23).

4. Mechanisms of drug resistance and their clinical 
implications

With improvements in research equipment and methods 
in the fields of modern medicine and microorganisms, the 
mechanisms underlying Acinetobacter baumannii drug 
resistance have become increasingly understood. The known 
mechanisms of Acinetobacter baumannii drug resistance and 
potential developmental directions are summarized in Table I 
and Fig. 1, with treatment options being listed in Table II. 
Below, an in‑depth summary of the known body of knowledge 
on Acinetobacter baumannii drug resistance is provided.

β‑lactams. Since the first β‑lactam antibiotic was discovered 
(penicillin), they have become incorporated as a core part of 
clinical practice as treatments for various bacterial infections; 
β‑lactam antibiotics are chosen as the antibacterial drug of 
choice (16). β‑lactam antibiotics act on the peptidoglycan in the 
cell walls of fungi and bacteria, and they work by suppressing 
bacterial cell division or inducing bacterial rupture (24). 
However, bacteria can produce β‑lactamase to enzymatically 
break down β‑lactam antibiotics, which is the most prevalent 
mechanism of drug resistance. In the Ambler classification, 
β‑lactamases can be grouped into one of four classes (A‑D) 
according to the sequences of the amino acids that make up 
the enzyme (25).

Ambler class A enzymes. The serine β‑lactamases of 
molecular class A are the most important enzymatic source of 
both natural and acquired resistance to β‑lactams, particularly 
in Acinetobacter baumannii (26). TEM, SHV, CTX‑M and 
KPC are the primary Ambler class A enzymes (27). TEM, 
CTX‑M and KPC can hydrolyze penicillin, cephalosporin and 
carbapenem. Additionally, the use of antibiotics allows these 
enzymes to evolve and develop stronger drug resistance (28).

Ambler class B enzymes. Zinc‑dependent metallo‑
β‑lactamases (MBLs) are typically associated with gene 
cassettes of integrons and thus spread easily amongst 
bacteria (29). MBLs are classified into 3 subclasses. B1 and 
B3 are catalytically inactivated by two Zn2+ ions, and B2 is 
catalytically inactivated by one Zn2+ ion (14). NDM, VIM, 
SPM and IMP are the primary Ambler class B enzymes. The 
presence of the plasmid enables the rapid spread of the MBL 
gene, and the spread of NDM‑1 is closely associated with 
drug resistance in Acinetobacter baumannii (30,31). Since 
the discovery of NDM‑1 in India, over 24 NDM variants have 
been identified (32). NDM enzymes, composed of 270 amino 
acids, hydrolyze most β‑lactams (including carbapenems) but 
not monobactams. However, NDM enzymes cannot be coun‑
tered by clinically available β‑lactamase inhibitors, including 
avibactam, clavulanate, sulbactam and tazobactam (33). 
Studies have shown that the percentage of NDM‑1‑positive 
isolates tends to be the highest, and Acinetobacter baumannii 
with the NDM gene show resistance to ampicillin (34). The 
acquisition of the NDM‑1 gene is likely facilitated by the 
action of Tn125 (35).

Ambler class C enzymes. Acinetobacter‑derived 
cephalosporinases (ADCs) are responsible for resistance to 
cephalosporin antibiotics. ADC is the primary Ambler class 
C enzyme (27). ADC‑mediated drug resistance is achieved 
through overexpression of ADC, and this overexpression 
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itself is achieved through an ISAba1 insertion sequence, 
which is located in close proximity to the genes which confer 
resistance (36). The production of AmpC β‑lactamases may 
be either chromosomally mediated or plasmid‑mediated. 
AmpC β‑lactamases are not inhibited by clavulanic acid, 
but are inhibited by cloxacillin or boronic acid (37). 
Acinetobacter baumannii can rapidly develop drug resistance 
due to the chemical similarity of the molecules between 
β‑lactamase inhibitors and β‑lactams, thus β‑lactamase inhibi‑
tors, such as sulbactam and clavulanic acid, eventually become 
ineffective against Acinetobacter baumannii (38).

Ambler class D enzymes. Amongst the D‑type β‑lactamases, 
oxacillinase (OXA) is associated with resistance to 
carbapenems (39). The primary reason for carbapenem resistance 
is the presence of oxacillinase, which belongs to class D Ambler 
β‑lactamases. To date, >400 OXA enzymes encoded by chromo‑
somal or plasmid‑localized genes have been characterized (40). 
The hydrolytic activity of OXA‑type groups is more potent for 
oxacillin than benzylpenicillin; however, OXA‑type enzymes 
are not considered extended‑spectrum β‑lactamases (ESBLs) as 
they do not hydrolyze broad‑spectrum cephalosporins (7). The 
OXA‑23 enzyme is encoded by a chromosomal gene or located 
on a plasmid, and it confers resistance to several antibiotics 
including ticarcillin, meropenem, amoxicillin and imipenem. The 
OXA‑40 enzyme can hydrolyze penicillin; however, its ability 
to hydrolyze cephalosporins and carbapenems is weak, and it is 

resistant to inhibitors such as tazobactam, sulbactam, clavulanic 
acid and NaCl. The OXA‑51 gene is generally non‑transferable, 
encoded by chromosomal DNA. Clavulanic acid, tazobactam, 
or NaCl effectively blocks the activity of OXA‑51. OXA‑58 is 
found on a non‑transferable 30k plasmid. When this plasmid is 
incorporated into the gene chain of Acinetobacter baumannii, 
carbapenem susceptibility is reduced (7). Because of certain 
insertion sequences, such as ISAbaI, ISAba125 and ISAba825, 
the overproduction ADC and OXA‑51 confer high‑level 
resistance to third‑ and fourth‑generation cephalosporins (41). 
Carbapenem antibiotics, as the most commonly used antibi‑
otics for nosocomial infections in the world, have successfully 
led to the enhancement of drug resistance in microorganisms 
such as Acinetobacter baumannii (16). The prevalence of 
carbapenem‑resistant Acinetobacter Baumannii (CRAB) is 
increasing rapidly in many countries and regions, and this has 
complicated treatment choices (42). Carbapenem resistance is 
primarily mediated by B‑type and D‑type. The most common 
OXA‑type carbapenemases include OXA‑23, OXA‑24, OXA‑48, 
OXA‑51 and OXA‑58. Among them, OXA‑23, OXA‑24, 
OXA‑48 and OXA‑58 are acquired carbapenemases, whereas 
OXA‑51 is intrinsic to Acinetobacter baumannii (43). The genes 
encoding these enzymes are regulated by upstream insertion 
sequences (IS), specifically ISAba1, ISAba2, ISAba3, ISAba9 
and IS18. They lead to increased resistance to carbapenems 
through the expression of the blaOXA gene. In addition to OXA 

Table I. Mechanisms of resistance employed by Acinetobacter baumannii.

Antibiotic Resistance mechanism Enzyme or target Key point (Refs.)

β‑lactams β‑lactamases Ambler class A TEM, SHV, CTX‑M, KPC (26‑28)
  Ambler class B NDM, VIM, SIM, IMP (30,31)
  Ambler class C AmpC, ADC (27,36,37) 
  Ambler class D OXA (7,39‑41,43,44) 
 Permeability Outer membrane CarO (46)
 lesions porin
   OmpA (46‑48) 
 Efflux pump RND pump AdeABC (49,50)
 overactivity
Tetracyclines Efflux pump RND pump AdeABC, AdeIJK (79,80)
 overactivity
  Tet pump TetA, TetG (81)
Quinolones Target mutation DNA gyrase GyrA (88)
  DNA ParC (88)
  topoisomerase IV
 Efflux pump RND pump AdeABC (89)
 overactivity
Aminoglycosides Drug inactivating Aminoglycoside aadB, apa6, aadA, aacc1 (92)
 enzymes modifying enzymes
 Target mutation 16s RNA methylase armA (93)
  genes
 Efflux pump RND pumps AdeABC (94)
 overactivity
Polymyxins Target mutation Abnormalities of PmrC, PmrB, lpx gene (68‑71)
  lipid A and LPS
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carbapenemases, the transferable MBL family, including VIM, 
IMP, GIM, SIM and NDM enzymes are also associated with 
the drug‑resistant phenotype of Acinetobacter baumannii (44).

Other aspects aside from enzymes. Outer membrane 
proteins (OMPs) in general are β‑barrel‑shaped monomeric or 
trimeric porins that allow the diffusion of small molecules into 
and out of the periplasmic space of Gram‑negative bacteria (45). 
The outer membrane of Acinetobacter baumannii contains 
several OMPs, including OmpA, CarO, OprD‑like OMPs, Omp 
33‑36 kDa, AbuO, TolB, DcaP, Oma87/BamA, NmRmpM, 
CadF and OprF, amongst others. OMP has multiple functions, 
which confers bacterial resistance to threats such as harsh 
environments and antibiotics (46). OmpA is the most abundant 
outer membrane porin in Acinetobacter baumannii, and it 
functions by binding to efflux pumps and expelling antimi‑
crobial compounds from the periplasm (47). OmpA increases 
the sensitivity of Acinetobacter baumannii to nalidixic acid, 
chloramphenicol, aztreonam, imipenem and meropenem, 
this feature is inseparable from its C‑terminal region and 
Acinetobacter baumannii peptidoglycan (PG) coupling regu‑
lates outer membrane vesicle (OMV) stability (48). In addition, 
OmpA also actively siphons extracellular drugs to mediate anti‑
biotic resistance and isogenic mutants, which in turn leads to a 
loss of cell wall integrity that sensitizes bacteria to colistin and 

also confers virulence (46). The outer membrane protein CarO 
is a carbapenem drug resistance‑related OMP encoded by the 
CarO gene. CarO is divided into two subgroups, namely CarOa 
and CarOb. Facing different environments and hosts, the rapid 
adaptation of Acinetobacter baumannii results in alterations 
of the CarO gene (46). The resistance‑nodulation‑cell division 
(RND) efflux pump system is also associated with resistance 
in Acinetobacter baumannii. The efflux pump can extrude 
a variety of antibacterial agents, reducing the accumulation 
of antibiotics (49). The overexpression of adeABC plays an 
important role in acquired resistance to antibiotics. Cefepime, 
cefpirome and cefotaxime are the β‑lactams most affected by 
the adeABC efflux system (50). Moreover, penicillin‑binding 
protein 7/8 increases susceptibility to complement and contrib‑
utes either directly or indirectly to serum resistance (51).

Novel options for resistance against β‑lactam‑based 
antibiotics. In recent years, researchers have found that the 
amino acid sequence of OmpA is highly conserved (>89%) 
in various clinical isolates, and OmpA mediates the adhe‑
sion and invasion of Acinetobacter baumannii to epithelial 
cells. OmpA can stimulate the innate immune response 
and induce biofilm formation, thus OmpA is a potential 
therapeutic target, although it has been shown that OmpA 
is not necessary for bacterial survival (22). It has been 

Figure 1. Schematic diagram of the resistance mechanisms employed by Acinetobacter Baumannii. Common resistance mechanisms include β‑lactamase 
hydrolysis, mutations in target genes, overexpression of efflux pumps, drug inactivation of enzymes, and permeability impairment caused by outer membrane 
porins.
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shown that increased iron content enhances OmpA protein 
expression in Acinetobacter baumannii, and strains with 
high OmpA protein expression are more aggressive, thus 
iron control strategies can be used in the management of 
Acinetobacter baumannii to reduce drug resistance (52). 
Cefiderocol, a member of the β‑lactam antibiotics family, 
inhibits the synthesis of Gram‑negative bacterial cell walls 
by binding to penicillin‑binding proteins. However, due to 
its siderophore‑like properties, it can enter the periplasmic 
space in bacteria and exhibits high stability to various 
β‑lactamases such as AmpC and ESBLs (53,54). In an in vitro 
study, Cefiderocol was shown to be effective against OXA‑23, 
OXA‑40 and OXA‑58. as well as NDM and IMP‑producing 
Acinetobacter baumannii isolates (55). Efflux pumps are 
an important part of drug resistance. The efflux pump 
inhibitor carbonyl cyanide m‑chlorophenylhydrazone can 
enhance the susceptibility of Acinetobacter baumannii to 
imipenem and cefepime (56). Equally effective efflux pump 
inhibitors include Quercetin, particularly when combined 
with imipenem, and it has a significant inhibitory effect 
on NDM and mexB/adeB (57). Acinetobacter baumannii 
vaccine studies has shown that the most effective vaccines 
tend to be multiplexed (consisting of outer membrane 

vesicles, bacterial ghosts, or multi‑subunits) and are usually 
composed of antigens from OmpA, OmpW, OmpK and 
Omp22 (58). For resistance to carbapenem antibiotics, the 
development of β‑lactamase inhibitors has shown favorable 
results. β‑lactamase inhibitor diazabicyclooctanes combined 
with sulbactam restored the sensitivity of sulbactam to 
carbapenem‑resistant Acinetobacter (59). QPX7728 is a boric 
acid‑lactamase inhibitor, which was shown to inhibit class 
A ESBLs, class B carbapenemases (NDM, VIM and IMP), 
class C and class D (OXA‑23), and it enhanced its action 
against carbapenem‑resistant Acinetobacter baumannii 
when combined with meropenem, ceflorazone, piperacillin 
and cefepime (60). Additionally, the combination of ampi‑
cillin and sulbactam (18 g per day) is an effective regimen 
for reducing the mortality of patients with CRAB (61). In 
addition, in terms of vaccine development, vaccines against 
BauA and OmpA that are vital virulence factors in pathoge‑
nicity of Acinetobacter baumannii play a certain role and 
combination of these antigens that can bind BauA and OmpA 
enhanced clearance of bacteria in liver and spleen (62). 
TCM ingredients can also be used to treat drug‑resistant 
Acinetobacter baumannii. Possibly due to the synergistic 
action with antibiotics on efflux pump AdeB, Berberine 

Table II. Treatment options for drug‑resistant Acinetobacter baumannii infections.

Resistance to antibiotics Treatment (for reference only) (Refs.)

β‑lactams Cefiderocol (53‑55)
 CCCP and imipenem/cefepime (56)
 Quercetin and imipenem (57)
 DBOs and sulbactam (59)
 QPX7728 and meropenem/ceflorazone/piperacillin/cefepime (60)
 Ampicillin and sulbactam (61)
 Berberine hydrochloride and sulbactam (63)
 Piper betle and antibiotics (65)
 Vaccines (preventative) (58,62)
 Iron control (52)
 Cilantro oil combined with piperacillin or cefoperazone (64)
Tetracyclines KBP‑7072 and omadacycline (83)
 Omadacycline and sulbactam (84)
 Tetracycline and D‑LANA‑14 (85)
Quinolones Ciprofloxacin/imipenem and Mentha longifolia/Menthol (90)
 Ciprofloxacin and Na‑3DH‑DCA/Na‑3DH‑CDCA (91)
Aminoglycosides Tobramycin and colistin (97)
 Aminoglycosides and L‑lysine (96)
 Colistin and Silver nanoparticles (74)
 Macolacin (75)
 Polymyxin B and rifampicin/imipenem/meropenem/tigecycline (76)
 Scutellaria barbata (77)
Biofilm Myrtenol and antibiotics (102)
 Polymyxin B/E and azithromycin (103)
 Illicium verum Hook (104)
 Phage (105)
 Antimicrobial photodynamic therapy (106)
 Antimicrobial peptides (107)
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hydrochloride combined with sulbactam can improve the anti‑
bacterial efficiency against Acinetobacter baumannii (63). 
Cilantro oil combined with piperacillin or cefoperazone can 
enhance the efficacy of the latter (64); however, the mecha‑
nism underlying the improved efficacy when combined needs 
to be determined. Other TCMs such as Piper betle combined 
with antibiotics are also worthy of research (65).

Polymyxins. The resistance of Acinetobacter baumannii to 
Polymyxins include: i) modification of the lipid A structure, 
ii) complete loss of Lipopolysaccharide (LPS) via muta‑
tions in the genes that synthesize lipid A, iii) reduction in 
the expression of cofactors involved in LPS synthesis, and 
iv) downregulation of proteins that participate in the export 
and/or stabilization of outer membrane precursors (66). 
LPS is part of the outer membrane of bacteria. Polymyxins 
inhibit bacterial membranes after binding to LPS, interact 
with lipid A of the bacterial outer membrane, and cause cell 
permeability and death by destroying membrane phospho‑
lipids. However, polymyxins antibiotics take a long time to 
work, and the use of colistin may increase the probability 
of nephrotoxic and neurotoxic complications (67). Colistin 
resistance in Acinetobacter baumannii is primarily caused 
by mutations in the PmrBTCS sensor kinase resulting in 
overexpression of PmrC. It has been shown that by knocking 
out the colistin PmrA mutant, its MICs is reduced by 64 to 
1,024‑fold, thereby restoring sensitivity to polymyxins (68). 
In Acinetobacter baumannii, various mutations and small 
fragments in the PmrB region are the primary cause of 
colistin resistance, and the most common PmrB muta‑
tion is A138T (69). The mutation of PmrA and PmrB of 
Acinetobacter baumannii can lead to resistance to poly‑
myxins, and its virulence and fitness are also reduced. In 
addition, impaired virulence and fitness are also related to the 
lpx gene (70). Mutations in lpxA, lpxC and lpx affect lipid A 
synthesis. These spontaneous mutations include single‑base 
changes, large deletions, and insertions of IS elements, 
all of which contribute to the high resistance exhibited by 
Acinetobacter baumannii (71). In addition, the induction of 
endogenous production of reactive oxygen species (ROS) by 
polymyxins, thus leading to oxidative killing of bacteria via 
hydroxyl radicals. Acinetobacter baumannii via inhibiting 
the formation of hydroxyl radicals attenuates polymyxin 
killing (72).

In the face of increasing drug resistance, it is a novel 
direction to identify new targets for use in combination with 
multiple drugs, such as the development of inhibitors against 
the targets of the modified bacterial outer membrane LPS 
two‑component signal transduction system (73). Solving 
the problem of drug resistance should not only rely on 
antibiotics, instead, it may be favorable to combine current 
therapeutics with silver nanoparticles. Silver nanoparticles 
can penetrate microbial cell walls and alter cell membrane 
structure; this may reduce the MIC by 8‑32X when used 
in combination with colistin (74). In addition, maco‑
lacin, a chemically synthesized substance that targets the 
plasmid‑borne polymyxin resistance gene mcr‑1, is also 
effective for Gram‑negative pathogens expressing mcr‑1 
including Acinetobacter baumannii (75). The combination 
of polymyxin B with imipenem, meropenem, tigecycline 

and rifampicin in the treatment of Acinetobacter baumannii 
was superior to any of these alone, and the combination 
with rifampicin had the best effect (76). In terms of TCMs, 
the extract of Scutellaria barbata was shown to exhibit a 
good inhibitory effect on Acinetobacter baumannii, and the 
mechanism may be related to ROS (77), and the combination 
of Scutellaria barbata and polymyxin may have unexpected 
effects.

Tetracyclines. Tigecycline, a unique semi‑synthetic anti‑
bacterial agent of the glycylcycline class, is derived from 
tetracycline and designed to overcome common resistance 
mechanisms to tetracycline (78). Its mechanism of action is to 
inhibit bacterial growth by binding to the bacterial 30S ribo‑
some and blocking the entry of tRNA, ultimately preventing 
protein synthesis. Although tigecycline circumvents resis‑
tance mechanisms of tetracycline, Acinetobacter baumannii 
can acquire tigecycline resistance through overexpression 
of efflux pumps, particularly AdeABC, and modification 
of the tigecycline‑binding site in the ribosome through 
rpsJ mutations (79). Likewise, the adeIJK of the RND 
efflux pump confers Acinetobacter baumannii resistance 
against tetracycline antibiotics (80). It has been shown that 
Acinetobacter baumannii expressing tetracycline transporter 
gene (tet)A have significantly increased MICs for tetracycline 
and tigecycline. Acinetobacter baumannii that express tetG 
also show resistance to these tetracyclines in addition to drug 
resistance to tigecycline (81). Although there are also genetic 
studies showing that the increased resistance of strains 
induced by tigecycline can be recovered, this also indicates 
that the use of tigecycline therapy may increase the risk of 
multidrug‑resistant gaining additional resistance (82).

It has been shown that third‑generation tetracyclines 
(aminomethylcycline) KBP‑7072 and omadacycline over‑
come efflux and ribosomal protection resistance mechanisms 
observed during tetracycline resistance, highlighting a novel 
direction for the development of tetracycline‑based antibi‑
otics (83). In addition, Omadacycline in combination with 
sulbactam was shown to be synergistic and bactericidal against 
80% of isolates (84). A study showed that D‑lysine conjugated 
aliphatic norspermidine analogue bearing tetradecanoyl chain 
(also known as D‑LANA‑14) increased the permeability of 
cell membranes. When D‑LANA‑14 was combined with tetra‑
cycline and other inactive antibiotics, it exhibited synergistic 
activity against Acinetobacter baumannii (85).

Quinolones. Through gene knockout studies, it has been 
shown that the transporter AbaQ is primarily involved in the 
extrusion of quinolones from Acinetobacter baumannii (86). 
Resistance to quinolones has also been attributed to spon‑
taneous mutations in genes, including DNA gyrase and 
topoisomerase IV. This leads to high levels of resistance to 
quinolones in Acinetobacter baumannii (87). Changes in 
antibiotic target sites are an important mechanism of bacte‑
rial resistance, that manifests through random point mutations 
with a minimal impact on bacterial cell homeostasis. In 
Acinetobacter baumannii, the most common mechanism of 
resistance is fluoroquinolone resistance, which is acquired 
by spontaneous mutations in the gyrA, gyrB and parC genes 
which encode gyrase and topoisomerase IV (88). The existence 
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of the efflux pump adeABC is still an important cause of drug 
resistance in Acinetobacter baumannii (89).

A newer study shows that Mentha longifolia and Menthol 
can facilitate the entry of material into the cell membrane of 
bacteria and mitochondria, thereby facilitating the inhibition 
of the adeABC efflux pump in Acinetobacter baumannii. 
When Mentha longifolia and Menthol are combined with 
ciprofloxacin and imipenem, it can significantly reduce the 
MIC for Acinetobacter baumannii (90). Bile salt derivatives, 
Na‑3DH‑DCA and Na‑3DH‑CDCA, have synergistic effects 
on certain strains of Acinetobacter baumannii when used in 
combination with ciprofloxacin, highlighting a potential future 
direction (91).

Aminoglycosides. The most common aminoglycoside 
resistance gene in Acinetobacter baumannii is aadB (42%), 
followed by apa6 (26%), while aadA1 (18%), with aacc1 (12%) 
being rare (92). The armA gene is an effective factor for the 
resistance of Acinetobacter baumannii to aminoglycosides; 
the gene encodes 16S rRNA methylase, which leads to the 
limited access of aminoglycosides into the bacterial ribo‑
somes, and furthermore leads to high‑level aminoglycoside 
resistance (HLAR) to gentamicin, bruomycin, amikacin and 
kanamycin (93). In addition, AdeABC has a restrictive effect 
in reducing the susceptibility of Acinetobacter baumannii to 
aminoglycoside antibiotics (94).

It has been shown that strains with a single well‑defined 
resistance mechanism lack cross‑resistance to gentamicin, 
amikacin, tobramycin and prazomycin (95). Thus, the cross‑use 
of aminoglycosides is a temporary solution. Additionally, 
L‑lysine combats drug‑resistant Acinetobacter baumannii 
by increasing the transmembrane DpH difference which 
in‑turn increases the bacterial proton motive force and 
stimulates the uptake of aminoglycoside antibiotics (96). The 
combination of antibiotics is another method of treatment. 
Tobramycin and colistin can be used to treat or eradicate 
Acinetobacter baumannii by reducing the expression of the 
universal stress protein (uspA) (97).

Biofilm. Several pathogens, including Acinetobacter Baumannii, 
produce biofilms in response to dry conditions, nutrient short‑
ages, resistance to antibiotics, and other challenges (98). The 
formation of Acinetobacter Baumannii is associated with the 
Quorum sensing pathway, two‑component system signal trans‑
duction pathway, cyclic‑di‑GMP signaling and the capsular 
polysaccharide synthesis pathway. Biofilm‑associated proteins 
such as Bap in Acinetobacter Baumannii also serve a vital 
role in biofilm (99). Several studies have shown that csuE, 
pgaB, epsA, ptk, bfmS and the ompA biofilm‑related genes 
are involved in biofilm formation (99,100). However, resis‑
tance due to biofilms is specific and these genes are not direct 
factors for the resistance of Acinetobacter Baumannii (101). 
Thus, additional research is required to clarify the specific 
mechanisms involved.

Myrtenol is an important dicyclic monoterpene alcohol, 
which inhibits the growth of biofilms by affecting the adhesion 
factors associated with biofilms and improves the sensitivity of 
certain antibiotics to Acinetobacter baumannii. Myrtenol has 
the potential to be used in combination with antibiotics (102). 
The combination of polymyxin B or E with azithromycin can 

inhibit biofilm formation (103). These studies suggest that the 
combination of antibiotics is still a valuable method for the 
treatment of multiple drug resistant infections. The extract of 
star anise (Illicium verum Hook.) has a significant inhibitory 
effect on biofilm, which does not affect the growth of cells. 
The underlying mechanism may involve the disruption of the 
cell membrane of bacteria due to the lipophilic nature of the 
extract (104). In addition, phage (105), antimicrobial photo‑
dynamic therapy (106) and antimicrobial peptides (107) are 
seen as non‑antibiotic therapies with significant potential for 
the future.

5. Conclusions and future perspectives

Bacterial infections are the cause of several diseases and can 
aggravate already present diseases as well. The develop‑
ment of drug resistance caused by its unique physiological 
characteristics makes infections caused by drug‑resistant 
Acinetobacter baumannii considerably more difficult to treat. 
Therefore, a deeper understanding on the drug resistance 
mechanisms is required to improve our armamentarium against 
said infections. At present, differing combinations of antibiotics 
is the easiest and most effective way to manage infections. 
However, novel therapeutics will likely be required going 
forward as drug resistance increases. Thus, robust clinical 
trials will also be required for any novel therapeutics. That is, 
to manage the ever‑increasing drug resistance, improved drugs, 
newer treatment technologies and alternative treatment methods 
are required.
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