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R e v i e w

Ion channels are membrane-bound enzymes whose cat-
alytic sites are ion-conducting pores that open and close 
(gate) in response to specific environmental stimuli (volt-
age, ligand concentration, membrane tension, temper-
ature, etc.; Hille, 2001). These stimuli activate highly 
specialized regulatory domains (an example is the volt-
age-sensing domain [VSD] found in many cation-selective 
channels) that are coupled to the pore gate through as 
yet incompletely understood mechanisms. Ion channels 
are important contributors to cell signaling and homeo-
stasis and are strictly necessary for electrical conduction 
in nerve and muscle tissue. Our current understanding 
of channel gating is the product of over 60 years of volt-
age-clamp recording augmented by experimental inter-
vention in the form of environmental, chemical, and 
mutational perturbations. Macroscopic ionic or capaci-
tive gating currents reflecting the collective behavior of 
many channels can be interpreted with the help of de-
scriptive (phenomenological) models that range from 
the standard two-state Boltzmann fit to more sophisticated 
analysis using multistate kinetic schemes (Hodgkin and 
Huxley, 1952; Vandenberg and Bezanilla, 1991; Zagotta 
et al., 1994; Schoppa and Sigworth, 1998b; Horrigan 
and Aldrich, 2002). Elementary gating events are resolv-
able using fluctuation analysis (Neher and Stevens, 
1977; Sigworth, 1980, 1981; Conti and Stühmer, 1989; 
Sigg et al., 1994) or by measuring single-channel ionic 
currents (Colquhoun and Hawkes, 1995a). More recently, 
fluorometry and other optical techniques have been 
added to the repertoire of electrophysiological record-
ings (Mannuzzu et al., 1996; Cha and Bezanilla, 1997; 
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Perozo et al., 1999). The tradition of modeling electro-
physiological data dates back to the early 50s, when 
Hodgkin and Huxley published their celebrated 1952 
papers culminating with a general description of the 
squid giant axon action potential (Hodgkin and Huxley, 
1952). Alan Hodgkin writes about this time period 
(Hodgkin, 1976): “As soon as we began to think about 
molecular mechanisms it became clear that the molecular 
data would by itself yield only very general information 
about the class of system likely to be involved. So we settled 
for the more pedestrian aim of finding a simple set of 
mathematical equations which might plausibly represent 
the movement of electrically charged gating particles.”

What began as a quest to understand the physics of 
axon excitability (Hodgkin and Huxley had originally 
favored a carrier scheme) evolved into the slightly less 
ambitious objective of computing the time course of 
the action potential using mathematically defined units 
of activation, each containing four independent gating 
particles, thus anticipating the four-subunit structural 
motif now known to describe most ion channels. A plan 
to improve the fitting of voltage-clamp records by add-
ing more gating particles was apparently tempered by the 
laborious necessity of performing numerical integration 
with a hand-cranked calculator: “Better agreement might 
have been obtained with a fifth or sixth power, but the 
improvement was not considered to be worth the addi-
tional complication” (Hodgkin and Huxley, 1952).

The past 60 years have seen tremendous advances in 
technique, including the ability to clone, mutate, and in-
sert channels of any species into heterologous expression 
systems and the determination of x-ray crystal structures 
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8 Modeling ion channels: Past, present, and future

namely to simulate the shape and threshold nature of 
stimulated action potentials through simple kinetic equa-
tions, succeeded brilliantly, setting the stage for countless 
papers applying the HH formulism to model excitabil-
ity in a variety of tissues. The building block of the HH 
model is the gating particle, which transitions between 
resting and activated states in a voltage-dependent man-
ner. Because ion channels are composed of modular 
domains, each with its own specialization and distinct 
evolutionary origin (Schreiber et al., 1999; Anderson 
and Greenberg, 2001; Murata et al., 2005; Sasaki et al., 
2006), the gating particle concept remains a viable one, 
although gating schemes have grown in complexity. 
The opening of a potassium (K+) channel in the origi-
nal HH scheme required four randomly fluctuating “n” 
particles to be simultaneously active (the sodium chan-
nel description was similar but used three activating 
“m” particles and one inactivating “h” particle). K+ con-
duction in the HH model is therefore proportional to 
n4, with particle kinetics satisfying n n n= −( )∞λ .  The 
gating parameters  =  +  and n = / are functions 
of the voltage-dependent unidirectional rate constants 
 and . The HH phenomenological equations are con-
sistent with the notion that gating particles undergo 
transitions between macrostates (Fig. 1 A). The inven-
tion of the patch clamp (Neher and Sakmann, 1976) 
allowed single-channel experiments to confirm the exis-
tence of stochastic transitions between discrete conduc-
tance levels as predicted by the HH model.

The physics of particle transitions concerns the study 
of chemical escape from a metastable state, known as 
reaction rate theory, which has a long and interesting 
history (reviewed by Hänggi and Borkovec, 1990). The 
particular flavor of reaction rate theory best known to 
the ion channel community is the transition state theory 
(TST) of Eyring, which is premised on the somewhat 
tenuous assertion that reactants (R) rapidly thermalize 
with their surroundings until they reach the separatrix 
of the transition barrier (b), whereupon they inexora-
bly turn to product (P). A one-dimensional bistable 
landscape serving as a model of unimolecular gating 
particle kinetics is shown in Fig. 1 A. The TST rate con-
stant for the forward reaction is
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where the “universal prefactor” kT/h equals the reactive 
frequency of barrier crossing, the activation energy is 
E* = Eb  ER, and the Zs are statistical weights (partition 
functions) for the translational, vibrational, and rota-
tional degrees of freedom of the reactant and barrier 
states (Eyring, 1935a,b). Pressure-volume work added to 
E* yields the activation enthalpy H* = E* + v*P. The 
barrier partition function Zb is primed to indicate that 
it is missing the unstable forward translational component 

(Doyle et al., 1998; Long et al., 2005) in selected chan-
nels (and faster computers!). This has put us on the 
path to a residue-level understanding of ion channel 
structure and function. The need for good phenome-
nological models has evolved commensurately. More 
than two centuries after Luigi Galvani (1737–1798) for-
mulated his “electrical hypothesis” of muscle contrac-
tion, we are approaching the threshold of a molecular 
and mechanistic description of membrane excitability. 
The goal is to develop gating schemes that do more 
than describe data: they also accurately reflect struc-
tures and mechanisms of action. This is an opportune 
time, then, to reflect on various kinetic and equilibrium 
models that have been used in the past, note recent ad-
vances, and comment on possible directions for the fu-
ture of ion channel modeling.

The aim of this review is to explore common ground 
in the phenomenology of three fields that have contrib-
uted to the study of ion channels: traditional Eyring  
kinetic theory, statistical thermodynamics, and, most re-
cently, molecular dynamics (MD) analysis. Much of the 
text will be devoted to the application of these fields as 
expressed by the following quantities: the transition rate 
constant (), the potential of mean force (W [PMF]), 
and the partition function (Z). The emphasis will be on 
activated (barrier) processes with slow (millisecond) re-
laxation rates (readers wishing instead to review low-
barrier electrodiffusion may start with these references: 
Bowman and Baglioni, 1984; Im and Roux, 2002). An 
essential component of the stated goal is a shared termi-
nology. In view of the central role played by the voltage 
clamp in ion channel experimentation, the discussion 
of kinetics will use electrical analogues to the usual me-
chanical variables; for example, charge (q) ↔ distance, 
voltage (V) ↔ force, inductance (L) ↔ mass, and so on. 
However, recognizing that ion channels demonstrate 
tremendous variety in their responses to external stimuli, 
a subsequent section on thermodynamics is developed 
around canonical displacement-force pairs (, Ω), thereby 
broadening the discussion from voltage-dependent  
(q, V) channels to ligand-gated (n, ) and other types of 
channels. The scope of ion channel physiology is vast, and 
this review cannot hope to cover every facet of its phe-
nomenology. As a former experimentalist turned itinerant 
modeler, the author does not claim a practicing knowl-
edge in many areas touched upon here; in these an ex-
perimental viewpoint is adopted. Hopefully, the reader 
will be able to fill in any deficiencies from references 
spanning 80 years of theoretical and experimental work.

Ion channel kinetics
Kinetic modeling of ion channels began with the Hodgkin–
Huxley (HH) scheme (Hodgkin and Huxley, 1952) and 
continues unabated today with the widespread use of 
multistate Markov models and single-channel analysis. 
The “pedestrian aim” expressed by Hodgkin and Huxley, 
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ZR reestablishes term balance in the ratio of statistical 
weights, yielding the more meaningful prefactor (R/2)
(Zb/ZR). The rate constant is further simplified by mov-
ing the Z ratio into the exponent, resulting in

	 k
G *
kTTST

R=
−
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





ω
π2

exp ,
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where G* = H*  S*T is the Gibbs activation energy, 
whose entropy S* = kln(Zb/ZR) contains the nonreac-
tive degrees of freedom. Contributions from external 
forces such as voltage V or chemical potential  add new 
terms to G* and generate the expanded free energy 
change W* = G*  q*V  n* …, where q* 
(charge) and n* (binding number) are the canonical 
activation displacements to V and  and other force-
displacement pairs may be added.

The major failing of the TST (apart from Eyring’s 
misleading emphasis on the universal prefactor kT/h, a 
mere accounting trick) is that it does not properly ac-
count for the influence of the solvent or heat bath. Sol-
vent interactions contribute not only additional degrees 
of freedom to S*, but also generate fluctuations in the 
reacting coordinate that might reduce the rate of reac-
tion (because not all barrier crossings lead to product). 
Eyring recognized the latter as a deficiency in his theory 
and suggested an empirical fix by multiplying kTST by a 
“transmission coefficient” . With these considerations, 
Eyring’s rate constant for the one-dimensional barrier 
assumes its final form:

	 α κ κ
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Despite its theoretical shortcomings, Eyring’s theory 
has been the mainstay of rate constant phenomenology 
in the ion channel literature. Voltage-dependent rate 
constants are usually expressed as variants of the follow-
ing Eyring-like equations:
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where  and  are the forward (usually defined as posi-
tive charge carrying) and backward rates, respectively. 
The net charge displacement for the transition is q = 
q + q. The preexponential factors in Eq. 2 (a and b) 
are related to Eyring’s theory through o = (R/2)
exp(G*/kT) and o = (P/2)exp[(G*  
G)/kT], where G = GP  GR.

Channel gating is typically modeled by a network of dis-
crete states, with each state connected to its neighbors 

Ztran = (2mkT)1/2/h per unit length that, when multi-
plied by the mean forward velocity (kT/2m)1/2, is the 
source of the kT/h prefactor (Eyring, 1935b). The sta-
ble degree of freedom in ZR matching Ztran is the vibra-
tional function Zvib = 2kT/hR, where R is the oscillator 
frequency of the reactant state. Separating Zvib from 

Figure 1.  Transition rates across a one-dimensional barrier. 
(A) Piecewise-harmonic bistable PMF landscape for V = 0 (Gibbs 
energy G(q), black curve) and V = 100 mV (W(q) = G(q)  qV, 
blue curve). Forward and backward rate constants are designated 
a and b. State coordinates (qX, X); X = {R, b, P} are marked by the 
vertices of color-matched “discrete landscapes” (dashed lines). 
(B) The transmission coefficient  as a function of friction R de-
rived from the G landscape in A. GH, GH solution of the GLE 
with memory friction R(t) = Roexp(t)[cos(t) + (/)sin(t)], 
where /b = /b = 0.1 (Grote and Hynes, 1980); Kr, Kramers’ 
intermediate-to-large friction equation; LF, LF approximation 
in the Smoluchowski regimen; MM, Mel’nikov and Meshkov 
exact solution of Langevin equation encompassing small friction 
(Mel’nikov and Meshkov, 1986). The GH curve was obtained 
numerically by finding the positive root  of ϑ γ ω− = + −1 2 2s s b



consistent with ( )  ( )/s R s L≡ɵγ = (Ro/L)(s + 2)/[(s + )2 + 2] 
and plotting  = /b against the zero-frequency friction  ( )0R  
= 2Ro/(2 + 2). The value of the TST rate constant is TST = 71 
ms1 for L = 1015 mV · ms2/eo (= 9.7 kDÅ2/eo

2).
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channels were made available (Doyle et al., 1998; Long 
et al., 2005), providing the starting point for all-atom MD 
simulations and the theoretical ability to compute rate 
constants in silico. Although most of the MD work on ion 
channels has focused on ion permeation in pores (Roux 
and Karplus, 1991; Allen et al., 1999; Shrivastava and 
Sansom, 2000; Bernèche and Roux, 2001), long-time scale 
trajectories of voltage sensor activation have recently been 
published (Delemotte et al., 2011; Jensen et al., 2012), set-
ting the stage for detailed MD studies of gating.

Because of the large time scale difference between the 
step size (approximately femtoseconds) of MD integra-
tion and intervals between ion hops in pores (nanosec-
onds to microseconds) or the relaxation time of a gating 
particle (approximately milliseconds), special techniques 
are required to compute rate constants from MD trajec-
tories. The progenitor of these techniques is the reactive 
flux method of Chandler (1978), which utilizes as the 
source of calculation an ensemble of short MD trajecto-
ries originating at the barrier peak. With the right choice 
of reaction coordinate q and provided the precise loca-
tion of the q barrier is known, the reactive flux of the 
forward reaction kf(t) can be computed from

	 k t
q q q H q t

H qf
b( ) =

( ) ( ) −  ( ) 
− ( )

 0 0

1

δ
, 	 (3)

where brackets signify stationary averaging. The delta 
function [q(0)  qb] restricts the numerator to trajecto-
ries starting at the barrier peak at time t = 0, and the 
Heaviside function H[q(t)] (=1 if q(t) > qb, otherwise =0) 
ensures that only trajectories on the product side are 
counted. The denominator 1  H(q) is the equilibrium 
probability of the reactant state. At time t = 0+, one ob-
tains kf = kTST because only positive velocities can enter 
the product side. However, after a brief (approximately 
picoseconds) time period mol during which one or more 
barrier crossings may occur, the fate of the trajectory is 
determined (R or P), and the reactive flux averaged over 
many trajectories plateaus to a value equal to the pheno
menological rate constant  (Eq. 1). Thus, the ratio of 
reactive flux taken at t = 0+ and t = mol yields the transmis-
sion coefficient  = /kTST. It is worth nothing that nei-
ther  nor kTST is independent of the choice of reaction 
coordinate or the location of the transition state, only the 
product  = kTST holds that distinction, but a poor choice 
of reaction coordinate leads to poor statistics and possi-
bly an erroneous estimate of  (Berne et al., 1988; Crouzy 
et al., 1994). Subsequent developments in reactive flux 
theory have improved computational speed (White et al., 
2000) and broadened the application to energy land-
scapes with complicated topographies lacking a well- 
defined transition state (Dellago et al., 1999).

Although successfully predicting the value of a rate con-
stant by MD simulation is a notable achievement, a more 

through unimolecular rate constants. Such a network 
may be referred to as a discrete-state Markov (DSM) 
model. The word “Markovian” describes the absence of 
“memory,” in which predictions of future events de-
pend solely on the present state. The number of states 
in DSM gating schemes is typically small (the HH model 
of the K+ channel consists of a linear arrangement of n = 
5 states, and many empirical schemes do not exceed 10 
states, although with allosteric models n may rise con-
siderably). The existence of discrete closed-state transi-
tions is supported by fluctuation analysis of gating currents 
(Conti and Stühmer, 1989; Sigg et al., 1994). Alternative 
gating models (Millhauser et al., 1988; Liebovitch, 1989) 
characterized by a “rough” energy landscape designed to 
simulate power-law kinetics seen in low-temperature pro-
tein motions (Frauenfelder et al., 1991) have not gained 
traction, primarily because the multiexponential kinet-
ics predicted by DSM models adequately describe most 
electrophysiological data (McManus et al., 1988). The 
kinetics of an n-state DSM model are obtained by solv-
ing the master equation dp/dt = pA, where p(t) is the 
1 × n vector of state probabilities and A is an n × n array 
of rate constants ij known as the “Q-matrix” (Colquhoun 
and Hawkes, 1995b). Knowing A, one can derive the 
nonstationary mean value and flux for any observable a 
through the vector relations a = p|a and a  = pA|a, 
where a is the n × 1 state vector of a values, and p(t) is 
solved as an initial value problem through numerical 
integration or eigenvector decomposition. The latter 
method yields

	 p p v u= ( ) −( )
=

−

∑ 0
0

1

r r r
r

n

texp ,λ 	

where ur and vr are the left and right eigenvectors of 
A and the corresponding eigenvalues r are the macro-
scopic decay rates. In a closed (gating) system satisfying 
detailed balance, all r are distinct, real, and positive, ex-
cept for the zeroth eigenvalue 0 = 0, whose left eigenvec-
tor u0 is the equilibrium probability distribution p(). 
Eigenvalues for the simple HH K+ channel scheme are 
integer multiples of  =  + . In contrast, an open sys-
tem (pore, transporter) may decay with damped oscilla-
tions (Re[r] ≥ 0) toward a nonequilibrium steady-state 
(Schnakenberg, 1976). An important element of Q-matrix 
theory is kinetic analysis of single-channel data, but this 
subject is too vast to cover here (reviewed by Qin, 2007).

Although DSM models have been immensely helpful 
in studying gating at the network level, the physical origin 
of the rate constant, specifically the basis for the Eyring 
variables , q, , and G*, remains poorly understood. 
One obstacle to experimentally determining rate con-
stants is the difficulty in measuring single transition 
rates without the aid of empirical models. An important 
step forward was achieved when crystal structures of ion 
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first order in V, is then given by W(q) = G(q)  qV (Roux, 
1999, 2008). The zero-voltage PMF G(q) is obtained 
from G(q) = kTlnp(q), where p(q) is the probability 
histogram of q acquired over a long MD trajectory at 
constant simulated temperature and pressure. Sampling 
statistics for the infrequently visited barrier region are 
improved by confining the simulation to sequential re-
gions (umbrella windows) along the activation land-
scape (Torrie and Valleau, 1977; Roux, 1995). The same 
umbrella-sampled simulations can be used to compute 
R(q,t) from the stationary velocity autocorrelation func-
tion   q q t q0 2 1( ) ( ) −

(Straub et al., 1987).
Extracting the GLE parameters W(q) and R(q,t) from 

MD simulations is not a trivial undertaking, particularly 
if the reaction pathway (which may be multidimensional) 
is not well known. This is certainly true for the case of 
gating transitions in ion channels because available crys-
tal structures provide only frozen “snap shots” of a par-
ticular configuration, and mechanisms of gating are 
poorly understood. For this reason, the early focus has 
been on ion permeation, where the inconvenience of 
dealing with an open system (grand canonical ensemble) 
is compensated by the existence of a relatively straight-
forward reaction pathway, where permeant ions have 
well-defined masses (Roux and Karplus, 1991). To com-
pute rate constants from the landscape parameters W(q) 
and R(q,t), dynamic Langevin simulations can be per-
formed (Lange and Grubmüller, 2006; Gordon et al., 
2009), or the Eyring parameters R, W*, and  can be 
extracted, allowing  to be calculated from Eq. 1. To 
execute the latter, one generally resorts to approximating 
the energy landscape by a piecewise sequence of parabolic 
basins and barriers (Fig. 1 A), treating R as constant. Each 
segment (basin or barrier) of the landscape behaves as an 
oscillator satisfying the simplified GLE equation:

	  q q q t+ ∗ + = ( )γ εω ξ2 , 	 (4)

where the memory kernel (t) = R(t)/L and the frequen-
cies  of local oscillations are equal to (LC)1/2. The fluc-
tuating force (t) = (t)/L satisfies (0)(t) = (kT/L)(t). 
The inverse “spring constant” C is related to the curva-
ture of the basin or barrier through C1 = W(q), where 
 is 1 for (stable) basins and 1 for (unstable) barriers. 
Damped oscillations in the reactant and product basins 
( = 1) are exactly described by an electrical RLC cir-
cuit, where R is resistance, L is inductance, and C is ca-
pacitance. It is straightforward to demonstrate that for a 
linear voltage drop over a distance D, the variables R, L, 
C, and q are related to their mechanical equivalents 
(friction, mass, spring constant, and distance) through 
factors of z/D, where z is the charge valence of the oscil-
lating degree of freedom.

With Eq. 4 governing the reactant (R = 1) and bar-
rier (b = 1) segments of the PMF, we easily derive 

informative picture of the transition process is obtained 
by mapping out the energy conformational landscape 
with phenomenological models. Similar to how experi-
mentalists interpret voltage-clamp data using DSM  
models, molecular dynamicists can project the complete 
phase space (system plus heat bath) sampled by MD 
simulation onto a small number of degrees of freedom 
described by a low-dimensional stochastic differential 
equation. The generalized Langevin equation (GLE) is 
such an equation. Given a reaction coordinate q with 
mass L, the GLE describes the motion of q influenced 
by three forces: the gradient of a free energy landscape 
W(q), also known as the PMF, a dissipating force involv-
ing a time-dependent friction coefficient R(q,t), and 
a rapidly fluctuating force (t). The one-dimensional 
GLE has the following form (Straub et al., 1987):

	 Lq W q R q t q q t = − ′( ) − ( ) ∗ + ( ), , ,Λ 	

where dots and primes denote time and spatial deriva-
tives, respectively. The convolution operation

	 R q R q s q t s ds
t

∗ = ( ) −( )∫ ,
0

	

“filters” the velocity q  through the friction kernel R, 
introducing memory into the short time-scale dynamics. 
 is generally assumed to be Gaussian and is therefore 
completely specified by the first and second moments: 
 = 0 and (0)(t) = kTR(t). The latter equation 
establishes a relation between the friction-damping  
and fluctuating forces known as the second fluctuation-
dissipation theorem (Kubo, 1966).

The task of designing MD protocols to compute W(q) 
and R(q,t) specific to electrophysiological processes has 
been systematically undertaken over the past two decades, 
much of it through the efforts of the Roux laboratory 
(Crouzy et al., 1994; Roux, 1997, 1999; Bernèche and 
Roux, 2001, 2003; Im and Roux, 2001). Recent work has 
sought to improve upon traditional MD force fields by 
incorporating polarization effects that play an impor-
tant role in determining the strength of electrostatic in-
teractions (Lopes et al., 2009; Bucher and Rothlisberger, 
2010). Regardless of MD methodology, the process  
of coarse-graining trajectory data onto the GLE begins 
with the identification of a reaction coordinate q. The 
obvious (though not necessarily the most efficient for 
sampling purposes) choice of q in voltage-dependent 
transitions is the gating (or ionic) charge displacement, 
which hereafter will be understood to be synonymous 
with the reaction coordinate q. Determining the charge 
displacement as a function of configuration requires com-
puting the detailed membrane potential profile in the 
channel with fixed (i.e., nonmobile and nonpolarizable) 
charges turned off (Roux, 1997). The PMF, correct to 
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Kramers actually derived Eqs. 6 and 7 by implicitly as-
suming rapid (“memory less”) friction damping, which 
we can invoke by specifying (t) = 2(t). In this case 
γ γ = for all frequencies, reducing Eq. 4 to the conven-
tional Langevin equation:

	  q q q t+ + = ( )γ εω ξ2 , 	 (8)

where (0)(t) = 2kT(/L)(t). Substituting the now 
time-independent  for γ 0( )  in Eqs. 7 and 8, we ob-
tain the explicit forms of Kramers’ intermediate-large 
(Kr) and LF expressions for  (plotted as a fraction of 
kTST in Fig. 1 B). Contraction to a pure spatial diffusion 
(classical Brownian motion) occurs in the LF limit where 
the system is always at terminal velocity, enabling one 
to neglect the acceleration term in Eq. 8. This yields, 
after dividing by ,

	 q
q

F t+ = ( )ε
τ

, 	 (9)

where  = /2 = RC is a novel relaxation time that was 
implicated in the early fast component of Shaker K+ 
channel gating currents (Sigg et al., 2003). The fluctu-
ating force in Eq. 9 satisfies F(0)F(t) = 2D(t), where 
the diffusion constant D is related to the friction R through 
D = kT/R (known as the Einstein relation). Evaluating 
Eq. 9 for the barrier region at constant R again yields 
λ ω γ= b

2 / ,  from which the following forward and back-
ward rate constants can be derived, in analogy to Eq. 2 
(a and b) and consistent with Eq. 7:
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An expression analogous to Eq. 10b was used to evaluate 
the reverse transition in the first barrier of the Shaker K+ 
channel activation sequence (Sigg et al., 2003).

The oscillator dynamics described by Eq. 9 can be gen-
eralized to arbitrary landscape topologies W(q), which is 
described by the LF Smoluchowski equation, shown here 
in Fokker–Planck form (Van Kampen, 1992):
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R = (LCR)1/2 and W* = G*  q*V. Obtaining the 
transmission coefficient  from Eq. 4 (known as the lin-
earized GLE because the restoring force is linear in q) is 
more involved, but several derivations have been pub-
lished (Grote and Hynes, 1980; Hänggi and Mojtabai, 
1982; Pollak, 1986), including an elegant treatment 
based on reactive flux described by Eq. 3 (Kohen and 
Tannor, 2000). The satisfyingly simple result, attributed 
to Grote–Hynes (GH), is

	 κ
λ
ω

=
b

. 	 (5)

In Eq. 5,  is the largest positive root ofϑ γ ω− = + −1 2 2s s b
 ,  

where (s) is the transfer function of Eq. 4 within the 
barrier region and

	 γ γ s t st dt( ) = ( ) −( )
∞

∫ exp
0

	

is the Laplace transform of (t). Although evaluating  
requires specific knowledge of (t), it is instructive to ex-
amine limiting cases. When coupling forces to the bath 
are weak, implying a small value of (t) or the combina-
tion of a narrow barrier and/or small L leads to a large 
b, then the rapidly accelerating q at the barrier is de-
coupled from slower frictional forces, and the positive 
root of 1 is  = b, leading to the TST result  = 1. (In 
reality the TST value represents an upper limit to the rate 
constant because a transition from spatial and velocity 
diffusion to energy diffusion occurs as R is reduced to 
very low values, which again diminishes the value of  
[Kramers, 1940; Mel’nikov and Meshkov, 1986], although 
the so-called small friction regime [Fig. 1 B] is irrelevant 
under physiological conditions.) In contrast, the combi-
nation of a broad barrier, large L, and strong friction 
coupling (all probable characteristics of a gating pro-
cess) reduces the relative contribution of the b

2 term in 
1, leading to a smaller value of  and enabling (̂ )γ λs =  
to approach its zero-frequency value

	 γ γ 0
0

( ) = ( )
∞

∫ t dt. 	

Under these so-called intermediate-to-large friction 
conditions, the positive root of 1 is easily obtained:
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If γ ω 0( ) >> b ,  Eq. 6 reduces to λ ω γ= ( )b
2 0/ ,  leading to 

the large friction (LF; Smoluchowski) limit κ ω γ= ( )b /  0  
and the following well-known expression for the rate 
constant (Kramers, 1940):
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Smoluchowski) equations of motion by focusing on an 
area of common ground: the rate constant value as de-
termined by the Eyring, reactive flux, GH, and Kramers 
formulas. Confidence in the validity of a phenomeno-
logical description is increased if an experimentally de-
termined rate is consistent with the prediction of MD. 
However, kinetic modeling may not necessarily be the 
most efficient method of assigning a gating mechanism 
to experimental findings. To take a specific example, 
the mechanism by which VSDs gate the pore in voltage-
dependent ion channels remains unclear. Barring di-
rect visualization of the gating process (a distinct future 
possibility given advances in MD!), the researcher must 
infer the nature of VSD–pore coupling using indirect 
methods, for example by fitting ionic or gating currents 
to a DSM model (Vandenberg and Bezanilla, 1991; 
Schoppa and Sigworth, 1998b; Rothberg and Magleby, 
2000) or by identifying key residues of interaction (typi-
cally highly conserved across channels) through muta-
tion analysis or other means of functional disruption 
(Yang and Horn, 1995; Holmgren et al., 1998; Horn et al., 
2000; Tiwari-Woodruff et al., 2000; Arcisio-Miranda  
et al., 2010). Model-independent methods such as mutant 
cycle analysis (Horovitz, 1996; Yifrach and MacKinnon, 
2002; Zandany et al., 2008) can quantitatively measure 
coupling between residues of interacting domains such 
as the pore and the VSD provided that the free energies 
associated with the observed process are accurately mea
sured. Mutant cycle analysis relies on conservation of 
energy and displacement and the ability to sum these 
extensive variables across a series of perturbations. Re-
laxation rates (eigenvalues) obtained from a multistate 
ion channel are not additive, although small perturba-
tions in the activation energy of a single rate constant 
do add, a fact which has been used to an advantage in 
studying mutant cycles (Schreiber and Fersht, 1995). 
The problem is that, as previously stated, determining 
rate constants from single-channel analysis is resource 
intensive and typically model dependent (Colquhoun 

where p(q,t) is a probability distribution and R(q) is al-
lowed to vary across q. The behavior of Eq. 11 applied to 
various landscape models of gating has been extensively 
described in Sigg et al. (1999). Operating in the spatial 
Smoluchowski regimen has advantages over the use of 
“ballistic” equations (such as the GLE), which feature ve-
locity as well as spatial diffusion and thus require a reduced 
mass L. The absence of mass in Eqs. 9 and 11 benefits gat-
ing models because it may be difficult to define the masses 
of regulatory domains functioning as gating particles.  
Provided the energy barrier in an arbitrary {W(q), R(q)} 
Smoluchowski landscape is sufficiently large (>5 kT), then 
the forward transition rate constant is equal to the inverse 
of the mean first passage time (Van Kampen, 1992), which 
is easily computed from the following double integral 
(refer to Fig. 1 A for limits of integration):
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Direct evidence for the validity of the LF assumption in 
gating dynamics is still lacking, although in one study of 
primitive gating in the gramicidin channel there was good 
agreement between Kramers’ LF theory and experimen-
tal rates (Crouzy et al., 1994). There is more experience 
with MD studies of barrier hopping of permeant and 
blocking ions in pores. The results from three such stud-
ies are summarized in Table 1. In each case, Langevin 
dynamics were found to be overdamped with  ranging 
from 0.1 to 0.25. In two studies (Roux and Karplus, 1991; 
Tolokh et al., 2002), comparisons of  values were made 
between the “gold-standard” reactive flux method (Eq. 3), 
the GH equation (Eq. 5), and Kramers’ intermediate-
to-large friction formula (Eq. 7). There was excellent 
agreement between the reactive flux and GH methods, 
whereas Kramers’ theory underestimated  by 20–40%, 
suggesting memory friction plays a nonnegligible role in 
ion permeation. In contrast, it is likely, based on our ear-
lier arguments, that the larger scale of conformational 
changes associated with gating implies Markovian dynam-
ics, and in the presence of extensive external (solvent, 
lipid) and internal (protein) damping, the Kramers–
Smoluchowski condition (Eqs. 7 and 9–12) should apply. 
In an interesting side note, comparing Na+ conduction 
in the gramicidin pore (Roux and Karplus, 1991) with 
Ba2+ block in the KcsA channel (Rowley and Roux, 2013), 
the computed 107-fold difference in kTST was primarily 
caused by differences in barrier height G* because in 
both cases the reactant state frequency R/2 was within 
an order of magnitude (!) of the universal rate constant 
kT/h ≈ 6 × 1012 s1.

Comments on kinetic models
The preceding discussion sought to bridge macroscopic 
(DSM and TST) and microscopic (GLE, Langevin, and 

Ta b l e  1

MD studies of rate constants in pores

Parameter Gramicidin (Na+)a IRK1 (K+)b KcsA (Ba2+)c

RF 0.11 0.1 -

GH 0.1 0.1 0.25

Kr 0.08 0.06 -

G* (kcal/mol) 4.5 - 15

R/2 (s1) 5.2 × 1012 - 4.1 × 1013

kTST (s1) 2.1 × 109 - 208

 = GHkTST (s1) 2.1 × 108 - 52

exp (s1) 4.0 × 108 - 204

exp, experimental rate constant; Kr, Kramers theory; RF, reactive flux 
method.
aRoux and Karplus (1991).
bWhite et al. (2000); Tolokh et al. (2002).
cRowley and Roux (2013).



14 Modeling ion channels: Past, present, and future

which we’ll refer to as the parsing principle. In a confor-
mational energy landscape with large barriers, we can 
divide the landscape into stable (positive curvature) and 
unstable (negative curvature) regions. For example, the 
partition function of the bistable potential in Fig. 1 A 
may be written Z = ZR + Zb + ZP, where

	 Z W q kT dqX
X

= − ( )( )∫ exp /
{ }

	

is the subpartition function for the region {X} bounded 
by turning points in the curvature G (q). The local po-
tentials are second-order expansions around local ex-
trema (qX, GX) with G  = ±CX

1 and additionally subject 
to a linear voltage term qV. A large barrier minimizes 
the contribution of Zb, effectively yielding Z ≈ ZR + ZP. 
After integrating and choosing (qR, GR) as the zero ref-
erence, we obtain
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In Eq. 13b, W = G  qV, where, as previously, we 
define G = GP  GR and q = qP  qR.

We also find it useful to propose a modified partition 
function that emphasizes the barrier region:

	 Z W q kT dqb
b

* exp / ,
{ }

= ( )( )∫ 	

which differs from the usual definition of Z by assigning 
a positive sign to the exponent. Performing the inte-
gral, we obtain:
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where W* = G*  q*V.
The preceding exercises lay the groundwork for a ra-

tional method of discretizing a continuous energy land-
scape into a finite set of basin and barrier coordinates 
(qX, X). These coordinates are derived from the rela-
tions: qX = ±kTlnZX/V and X = kTlnZX, where the 
upper sign applies to basins and the lower sign to barri-
ers. Applying these expressions to Eqs. 13 and 14 yielded 
the coordinates of the discretized landscapes in Fig. 1 A 
(dashed lines). Several results ensue from this coarse-
graining procedure. Revisiting kinetic theory, we see 
that in evaluating Eq. 12 for the bistable potential at 
constant R, the inner integral is almost complete and 
approximates ZR at the value of q where the outer inte-
gral begins to increase in value. After factoring out ZR, 

and Hawkes, 1995a; Qin, 2007). Extreme conditions are 
necessary to measure elementary rates directly from 
macroscopic currents (Sigg et al., 2003; Chakrapani 
and Auerbach, 2005). As a result, it is common to ana-
lyze perturbation effects through the use of standard 
equilibrium curves of observable quantities such as con-
ductance (G) and gating charge (Q). This falls under 
the scope of thermodynamics, and although DSM mod-
els have equilibrium conditions baked into their struc-
ture, there exist simpler and more powerful methods 
of analyzing equilibrium curves that yield the desired 
energies and displacements, often in model-independent 
fashion. This is the subject of the next two sections.

Thermodynamic models
In modeling electrophysiological data, thermodynam-
ics has traditionally taken a backseat to kinetic theory, 
which through the use of DSM schemes enjoys widespread 
familiarity, but is clumsy at handling thermodynamic 
derivations. The thermodynamic counterpart to the  
Q-matrix is the partition function Z, a statistically weighted 
sum (or integral) of states from which all macroscopic 
quantities are derived (discussed in any statistical me-
chanics textbook; e.g., Hill, 1960). For a one-dimensional 
PMF, the partition function is

	 Z W q kT dq= − ( )( )∫exp / , 	

where the integral is taken over all q. A normalizing fac-
tor for Z is unnecessary because it merely adds a constant 
value to the principle quantity of interest, the channel’s 
chemical potential , obtained from the “bridge” equa-
tion  = kTlnZ. The Gibbs–Duhem equation, which 
describes the interdependence of intensive quantities in 
a thermodynamic system (Waldram, 1985), relates d to 
incremental changes in system constraints (T, P, V, ,…, 
Ω) through: d = sdT + vdP  qdV  nd … 
dΩ, where canonical displacements s, v, q, n,…, 
 are written in lower case to indicate division by N 
(channels). In this way, we can derive the value of each 
displacement using  = /Ω = kTlnZ/Ω (an ex-
ception of sorts is entropy, which is not typically thought 
of as a “displacement” and possesses an extra term: s = 
kTlnZ/T + klnZ). For example, the mean gating charge 
displacement is obtained from

	 q kT Z V Z q W q kT dq≡ ∂ ∂ = − ( )( )− ∫ln / exp / ,1
	

the derivation of which requires energy to be linearly re-
lated to charge: W(q) = G(q)  qV. We’ll examine the ther-
modynamics of a piecewise-harmonic two-state landscape 
in some detail before discussing more complex systems.

One of the many convenient properties of Z is the 
unrestricted ability to subpartition it into smaller parts, 
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which agrees with Eq. 10 (a and b) and the detailed bal-
ance requirement: pR() = pP().

We note the parallel between q/q = K/(1 + K) and 
the venerable Boltzmann function B = KB/(1 + KB), 
where KB = exp(B/kT) and the bias potential B = B(Ω 
 ΩB) is a function of the force-displacement Boltzmann 
parameters ΩB and B. The practice of Boltzmann fitting 
is both widely used and often abused, as shoehorning 
the complexity of a multidomain channel into two states 
requires rigorous justification (for example, Yifrach 
and MacKinnon, 2002). Nevertheless, Boltzmann fitting 
is a convenient bookkeeping technique for tracking 
changes to activation curves in response to systemic per-
turbations. Nonsymmetrical activation curves can be fit-
ted with m Boltzmann functions, although strictly speaking 
the physical basis underlying such a procedure is the 
existence of m independently gating domains described 
by Z = (1 + K1)f1(1 + K2)f2…(1 + Km)fm, where the fi values 
are population fractions. Faced with choosing between 
Boltzmann fitting or analysis with an n-state Markov 
model, the Boltzmann method may in many cases be the 
more sensible alternative (see commentary by Shem-Ad 
and Yifrach, 2013). Nevertheless, a systematic approach 
that (a) measures thermodynamically relevant quanti-
ties, (b) uses fewer adjustable variables than a compa-
rable kinetic model, and (c) acknowledges known or 
proposed structural and functional relationships be-
tween channel components is a welcomed addition to 
the modeling armamentarium. Such an approach (link-
age analysis) has recently been applied to channel gat-
ing (Chowdhury and Chanda, 2010, 2012a, 2013; Sigg, 
2013), but before discussing it, we should review ion 
channel thermodynamics a bit more.

One consequence of the parsing principle is the vari-
ous ways Z may be expressed for a multistate channel. 
Four parsing methods (mathematically equivalent to al-
ternative factoring schemes) applied to a linear three-
state model are shown in Fig. 2. These fall into three 
general categories based on the method of computing 
the equilibrium mean for an arbitrary observable a:

	 	 (18a)

		  (18b)

 

	 	 (18c)

The absolute and relative methods (Eq. 18, a and b) 
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the outer integral is roughly equal to Zb*. We therefore 
conclude that
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where * = b  R and the Einstein relation was 
again used. Inserting Eqs. 13a and 14 into Eq. 15 and 
neglecting V2 terms that introduce small capacity cor-
rections to the barrier height, we see that the result is 
consistent with Eq. 10a obtained from Kramers’ LF the-
ory. Also, q* formally equals q from Eq. 2a. The 
right side of Eq. 15 has a pleasing simplicity. The preex-
ponential factor is the diffusion constant D = kT/R, and 
the activation energy * is easily determined for any 
shape of the barrier landscape. Detailed examination of 
the fast component of gating current in Shaker yielded 
an estimate of D = 41 eo

2/ms, corresponding to the early 
stages of activation (Sigg et al., 2003).

Returning to the subject of thermodynamics, we de-
rive the average charge displacement for the bistable 
potential using q = pRqR + pPqP, where pX = ZX/Z are 
state probabilities of the stable R and P regions. Evaluat-
ing the response to a change in voltage V with the aid 
of Eq. 13 (a and b), we obtain two components of 
charge movement (Fig. 1 A):

	 	 (16)

The first term in Eq. 16 is a small capacity charge q = 
pRqR + pPqP, where the “drift” charges qX = CXV would 
be experimentally indistinguishable from the linear 
membrane capacitance if not for the fact that basin 
states vary in width (Sigg et al., 2003). We recall from 
earlier that the “fast” gating current described by q de-
cays with time constant RC.

The second term in Eq. 16 relates to the much slower 
(relaxation time 1) “hopping” or transition charge q, 
which is easily distinguished experimentally from the fast 
component, both from a temporal standpoint (1 >> 
RC) and also in magnitude: q >> |qP  qR| (the minus 
sign in the fast charge |qP  qR| is a peculiarity of the 
linear subtraction methods used in gating current mea-
surements). Thus, in describing q, we typically neglect 
the fast charge in favor of the larger transition charge, 
whose equilibrium distribution is q = [K/(1 + K)]q, 
where K ≡ pP()/pR() = ZP/ZR is the equilibrium con-
stant. Substituting Eq. 13 (a and b) into the above expres-
sion for K, again neglecting the V2 terms corresponding 
to the fast capacity charge, we obtain
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(e.g., ion, ligand, or solvent binding), and, relevant to 
allosterically regulated channels, energies of interac-
tion WKJ between K and other particles J. Written explic-
itly, K = EK  sKT + vKP  qKV  nKK +…+ 
WKJ. If one wishes to emphasize a particular extensive 
parameter K, one can factor it out of the sum and re-
group the remaining terms in the form of a correspond-
ing half-activation value ΩK, yielding K = K(Ω  
ΩK). For example, rewriting Eq. 17 for the equilibrium 
constant of a two-state system in a way that emphasizes 
gating charge, one obtains: K = exp(K/kT) = exp[q(V 
 VK)/kT], where VK = q1[G  (kT/2)ln(CP/CR)]. If 
positive Ω activates a particle (the usual convention), 
then we can substitute K for K, where K = K(Ω  
ΩK) is the bias potential introduced earlier in the con-
text of the Boltzmann function.

The last of the four categories in Fig. 2 is the hierar-
chical approach, which parses Z in order of most to 
least relevant equilibrium constants (L is the obvious 
top choice given the central role of the pore). Hierar-
chical parsing can be seen as a relational method that 
leaves open the possibility of deeper categorization as 
new functionalities are elicited (Sigg, 2013).

Linkage analysis
In light of the exponential dependence of an equilib-
rium constant K to its bias potential K = K(Ω  ΩK), a 
plot of lnA versus Ω, in which A = Na is a marker of 
K activation, should yield information about Ω-linked 
processes relevant to K, specifically the canonical dis-
placement K and coupling energies WKJ linking K to 
other Ω-dependent particles J. This is the basis for site-
specific (local) linkage analysis developed by Jeffries 
Wyman to study cooperative oxygen binding in hemo-
globin (Wyman, 1967) and recently adapted to ion 
channels (Chowdhury and Chanda, 2010, 2012a, 2013; 
Sigg, 2013). The parameter of interest in local linkage 
analysis is the Hill energy, operationally defined for an 
observable A as WH[a] = kTln[(A  Amin)/(Amax  A)]. 
Defining the probability of K activation by PK ≡ PA = (A  
Amin)/(Amax  Amin) and rearranging, we see that WH[a] = 
kTln[PA/(1  PA)] is the change in negative system en-
ergy  from K activation: K = kTlnPA  kTln(1  PA). 
Provided the particle of interest K is weakly coupled to 
other gating particles, a plot of WH[a] versus Ω is sigmoi-
dal with linear lower and upper asymptotes that run 
parallel to K but are vertically separated by the total 
coupling energy WKΩ between K and the various J parti-
cles. An example of a local variable is the pore conduc-
tance G. In principle, a plot of WH[g] versus V should 
yield model-independent estimates of the intrinsic pore 
charge qL and the total energy of pore–VSD coupling 
(Sigg, 2013).

Wyman also described “global” linkage, which con-
cerns energies of interaction between mediators of  
dissimilar forces (Ω = V, T, u1, u2, etc.; Wyman, 1967; 

in deriving thermodynamic relations (Conti, 1986; Sigg 
and Bezanilla, 1997). The relational method (Eq. 18c) 
differs from the other two in that the sum runs over in-
dividual transitions rather than over all states. For a lin-
ear scheme, this is no great advantage because there 
exist up to n  1 distinct transitions in an n-state model, 
but for allosteric models possessing a small number of 
transitions, the dimensionality of the system can be sub-
stantially reduced. For example, the classic Monod–
Wyman–Changeux (MWC) model (Monod et al., 1965) 
has 10 states but only two unique transitions (and one 
allosteric factor). A 70-state model of the BK channel 
(Horrigan and Aldrich, 2002) is described by three 
transitions and three allosteric factors. The quantity K 
in relational parsing is the equilibrium curve for the 
transition K with range {0...nK}, where nK is the number 
of identical K particles. Channel opening is typically de-
scribed by a pore gate with equilibrium constant L cou-
pled to other processes (J, K). The open probability Po 
in such cases is equal to L = lnZ/lnL, which varies 
from 0 to 1. It is generally straightforward to compute 
K for any transition K because for DSM models, Z can 
always be expanded as a polynomial of K.

The “particle potential” K in Eq. 18c, defined as the 
potential difference K between reactant and product 
states of a particle, deserves special attention because it 
contains local thermodynamic information related to  
K activation. Contributions to K may include particle 
changes in volume (vK) and entropy (sK), charge move-
ment (qK), stoichiometries (nK) of chemical reactions 

Figure 2.  Energy landscape of a linear three-state model. State 
coordinates (qi, i) are indicated by cross-hairs. (A–D) Equiva-
lent representations of the partition function Z as expressed in 
Eq. 18 (a–c) and the accompanying text: (A) absolute, (B) rela-
tive, (C) relational, and (D) hierarchical.
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Conti (1986) that has languished in relative obscurity 
within the ion channel literature for nearly 30 years but 
covers much of the thermodynamic theory described 
here. Starting from the equilibrium relations

	 a p ai i
i

=∑ , 	

pi = Zi/Z, and i = kTlnZi/Ω, Conti derived

	 kT
a a

a

∂
∂
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,
Ω

cov ξ
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where cov(a,) = a  a is the covariance between 
any state-dependent observable a and the Ω-linked dis-
placement . Eq. 19 was derived for discrete states but 
also covers diffusion landscapes as a consequence of the 
parsing principle. In the special case of a = , Eq. 19 sim-
plifies to the well-known relation for capacitance: 
kT/Ω = 2. The Conti relation is insensitive to the 
number of channels N because replacing a with A = 
Na leaves Eq. 19 unchanged. We can equate the open 
probability Po with the unit-normalized G-V curve = (G  
Gmin)/(Gmax  Gmin), where G = Ng and Gmin is a baseline 
conductance. Applying Eq. 19 to Po with Ω = V, we obtain 
an expression for the “activation charge” qa ≡ kTdln
(G  Gmin)/dV = qo  q, where qo = Poq/Po is the mean 
charge displacement among open states (Sigg and  
Bezanilla, 1997). Similarly, defining the closed probabil-
ity Pc = 1  Po, we obtain the complementary quantity qd 
≡ kTdln(Gmax  G)/dV = q  qc, where qc = Pcq/Pc 
is the closed-state charge displacement, and we also have 
q = Pcqc + Poqo. Finally, we recognize that for positive 
voltage-activating channels the slope of the conductance 
Hill plot m = dWH[g]/dV ≡ qa + qd = qo  qc asymptoti-
cally approaches qL for extreme negative (m() ≈ qa) 
and positive (m(+) ≈ qd) voltages because under these 
limiting conditions, the voltage sensor is locked into ei-
ther the resting or activated position and the pore can 
gate quasi-independently. Channels for which m() = m(+) 
measured under experimental conditions may be said to 
exhibit “weak” pore–VSD coupling, and gating schemes 
can either conform to this condition or violate it through 
“strong” or “obligatory” coupling, as discussed presently.

Allosteric models of gating
Some 10 years after Hodgkin and Huxley’s groundbreak-
ing work on the action potential, a different, nonkinetic 
approach yielding the well-known MWC allosteric 
model was applied to the problem of oxygen binding in 
hemoglobin. The MWC scheme proposed that the O2 
affinities of the n = 4 hemoglobin subunits increased si-
multaneously with the flip of a two-state L parameter 
(Monod et al., 1965). The ligand-gated ion channel 
community was quick to catch on, with publication two 
years later of an n = 2 MWC model for the acetylcholine 

Chowdhury and Chanda, 2013; Sigg, 2013). The param-
eter of interest here is the total energy of activating 
Ω-sensitive particles: Ω = maxΩM, where max is total 
displacement related to Ω, and ΩM, which has been 
called the median (or mean, depending on interpreta-
tion) force of activation, and is defined as the value of Ω 
that divides the plot of  versus Ω into equal areas (the 
median interpretation; Wyman, 1967; Chowdhury and 
Chanda, 2012a), or equivalently, as the average Ω with 
respect to capacitance d/dΩ (the mean interpreta-
tion; Di Cera and Chen, 1993; Sigg, 2013). The voltage 
parameter VM was extensively discussed in Chowdhury 
and Chanda (2012a), where they demonstrated that for 
multistate channels marked differences may exist be-
tween VM and the Boltzmann-fit parameter VB.

The model-independent displacements (K, max) 
and energies (K, Ω) obtained from local and global 
linkage plots are characteristic thermodynamic quanti-
ties and, when possible, should be obtained in lieu of 
corresponding Boltzmann parameters B and BΩB 
(Chowdhury and Chanda, 2012a; Bezanilla and Villalba-
Galea, 2013; Sigg, 2013). The Boltzmann equation has 
been used as an all-purpose tool to fit any activity curve 
(most typically G-V or Q-V), but its validity not does ex-
tend beyond n > 2. Linkage analysis is theoretically pref-
erable where an accurate measurement of energy or 
displacement is critical to the interpretation of results. 
A pertinent example introduced earlier is the method 
of double mutant cycle analysis, in which the nonaddi-
tivity of single mutant perturbation energies in double 
or higher dimensional mutants is considered strong evi-
dence of interaction between mutated residues (Carter 
et al., 1984; Horovitz, 1987). Amino acid residues sepa-
rated by 6 Å or less have been shown to interact with 
energies ranging from 0.5 to 7 kcal/mol (Schreiber and 
Fersht, 1995), with electrostatic interactions contribut-
ing to larger energies. Applied to ion channels, double 
mutant cycle analysis with Boltzmann fitting has been 
used to measure pore–VSD interactions (Yifrach and 
MacKinnon, 2002; Zandany et al., 2008). Chowdhury 
and Chanda (2010) have suggested that a local (K 
based) linkage analysis, which they call  analysis, be 
considered as a universally applicable method for quan-
tifying mutational effects, although to date no practical 
application of the technique has been published, at 
least in part because of the technical difficulty of mea-
suring logarithmic-scale sensitivities of local markers of 
activation. Chowdhury and Chanda have more recently 
presented a global (Ω based) method of quantifying 
pore–VSD interactions based on the Q-V curve that was 
used to quantify energetic interactions in a triad of in-
teracting residues in the Shaker K+ channel (Chowdhury, 
S., et al. 2014. Biophysical Society 58th Annual Meeting. 
3748-Pos Board B476).

Before turning to allosteric channels, a subject ideally 
suited to linkage analysis, we highlight a key result from 
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subunit. An allosteric model of Shaker consistent with 
the ILT experiments that nearly achieves this coupling 
requirement is presented later.

The second of the aforementioned Aldrich papers 
(Horrigan and Aldrich, 2002), which focused on the 
large conductance (BK) Ca2+- and voltage-activated K+ 
channel, is arguably the most complete characteriza-
tion of allosterism in a voltage-gated cation channel to 
date. The energies of interaction between the VSD (J par-
ticle), the pore (L particle), and the Ca2+-binding do-
main (K particle) obtained in this landmark study ranged 
from 0.5 to 1.9 kcal/mol (0.9 to 3.2 kT) per subunit, 
with the upper limit in energy corresponding to J-L cou-
pling. The negative limiting slope m() in BK for Po < 103 
(high [Ca2+]) and 107(low [Ca2+]) yielded qL = 0.3 eo. 
Weak allosterism has been implicated in gating models 
of other channels, with derived interaction energies 
ranging from 1.0 to 1.2 kcal/mol (1.7 to 2.0 kT) in the 
voltage- and temperature-gated TRPM8 channel (Brauchi 
et al., 2004), 0.9 to 1.8 kcal/mol (1.6 to 3.2 kT ) in voltage- 
and cyclic nucleotide-gated HCN channels (Altomare 
et al., 2001; Chen et al., 2007; Ryu and Yellen, 2012), 0.4 
to 1.0 kcal/mol (0.7 to 1.8 kT) in the voltage-gated 
KCNQ1 channel (Osteen et al., 2012), 2.9 kcal/mol 
(5.0 kT) in a sodium channel (Arcisio-Miranda et al., 
2010), and 1.6 kcal/mol (2.7 kT) in a calcium channel 
(Marks and Jones, 1992).

The basic unit of interaction in an allosteric scheme is 
the pairwise coupling between two gating particles that 
we’ll refer to as a “cooperon.” Consider an isolated coo-
peron between J and L particles whose Gibbs energy 
landscapes are shown in Fig. 3 A. The corresponding 
single particle partition functions are ZJ = 1 + Jo and ZL = 1 
+ Lo, where Jo and Lo represent native equilibrium constants. 
Interactions between the activation states of J and L, if 
not too strong or distorting, generate a two-dimensional 
landscape of four basins arranged in a cycle (Sigg and 
Bezanilla, 2003). The partition function in each basin 
state can be constructed from the particle states (j, l) 
and their strengths of interaction Djl. Thus, the coo-
peron partition function is Z = D00 + JoD10 + LoD01 + 
JoLoD11. The interaction free energies and charges are 
given by Wjl = kTlnDjl and qjl = kTlnDjl/V, with the 
latter usually set to zero. Dividing Z by D00 and reassign-
ing terms yields the more compact expression Z = 1 + 
J + L + JLD, where J = JoD10/D00, L = LoD01/D00, and D = 
D00D11/D10D01 are renormalized variables derived from 
native equilibrium constants and raw coupling factors 
(Chowdhury and Chanda, 2010). There are no restric-
tions on manipulations of this type because, as noted 
earlier, normalizing factors do not change energy rela-
tions between states. Because the global coupling factor 
D targets the double product state A-O (Fig. 3), we refer 
to the renormalized scheme as “product coupled.” The 
fact that D is a composite of all four native interactions 
implies that an apparent absence of interaction between 

channel (Karlin, 1967). The physical basis of L in both 
hemoglobin and ligand-gated channels is thought to lie 
with symmetry-preserving residue interactions at the in-
terfaces between subunits (Changeux and Edelstein, 
2005). In voltage-dependent ion channels, a case can be 
made equating the pore with the “L particle” because 
pore opening is a binary process n-fold connected to 
neighboring VSDs. It wasn’t until the 1990s that alloste-
ric models of voltage-gated channels were considered 
seriously, culminating in two influential papers from 
the Aldrich laboratory. The first (Ledwell and Aldrich, 
1999) studied a late opening transition in the voltage-
sensitive Shaker K+ channel by mutating three noncharged 
residues of the mid-to-distal portion of the VSD S4 seg-
ment that interact with the pore domain (Pathak et al., 
2007). The authors found that this so-called ILT mutant 
(Smith-Maxwell et al., 1998) led to single-exponential 
time courses in the ionic current and a far right-shifted 
G-V curve, consistent with a rate-limiting opening tran-
sition. They interpreted their findings in the context of 
traditional obligatory gating models of Shaker activa-
tion (Bezanilla et al., 1994; Zagotta et al., 1994; Schoppa 
and Sigworth, 1998b) in which pore opening occurs 
only at the end of the activation sequence, as originally 
prescribed by the HH scheme. The apparent absence of 
more than one open state in obligatory gating is at odds 
with the notion of weak allosterism, but a kind of strong 
coupling is inferred by the requirement that all four 
VSDs must activate before pore opening. Support for 
obligatory gating in Shaker and other homologous volt-
age-gated K+ channels came from “limiting slope” experi-
ments (Almers, 1978; Sigg and Bezanilla, 1997), in which 
the activation charge qa experimentally approaches 
the value of total activation charge qmax at very low Po 
107 (Islas and Sigworth, 1999). At such low Po, the 
gating charge versus voltage curve (Q-V) is negatively 
saturated (q ≈ 0) and qa = m() = qmax). Evidently, the 
open state charge qo remains maximal in Shaker even 
at very low open probabilities, as demonstrated by qo ≡ 
qa + q ≈ qmax. This rules out the existence of interme-
diate-charged open states, for which qo < qmax. Obliga-
tory gating in Shaker is consistent with single-exponential 
open time distributions in singles analysis (Hoshi et al., 
1994; Schoppa and Sigworth, 1998a) and the observa-
tion that just one charged voltage sensor is sufficient to 
gate the pore shut (Gagnon and Bezanilla, 2009). How-
ever, if one takes the position that obligatory gating  
represents the strong coupling limit of an underlying 
allosteric scheme (a position which is admittedly at 
odds with current conventional wisdom), then one ob-
tains a lower estimate of the pore–VSD coupling energy 
W required to approach the limiting slope m() = qmax 
for Po = 107 by assuming that the corresponding point 
in WH[g] occurs halfway between lower and upper asymp-
totes (corresponding to the steepest portion of the Hill 
plot), yielding W = 2kTln(107) ≈ 32 kT, or 8 kT per 
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L radially coupled to n J particles is straightforward, 
where Z = (1 + J)n + L(1 + JD)n for the pull-open mecha-
nism, Z = (1 + J)n + L(D + J)n with L = LDn for the push-
closed mechanism, and Z = (1 + J)n + LJ n for the (n + 
2)-state obligatory model.

If, practically speaking, one could eliminate the source 
of cooperativity D (or D) from a product-coupled 
scheme, then the ensuing position of VL (or VL) on the 
V axis should favor a particular gating mechanism (pull-
open or push-closed). It is in this context that an alter-
native interpretation of the ILT experiments is proposed, 
one that regards Shaker gating as the manifestation of 
strong coupling rather than following a strictly obliga-
tory scheme. We entertain the possibility that the ILT 
mutation completely uncouples the pore from the volt-
age sensor, reducing the value of D to the neutral value 
1.0. In fact, some residual pore–VSD coupling may exist 
in the ILT mutant (Smith-Maxwell et al., 1998), but 
we’ll treat this as negligible. The observed G-V shift to 
the right in ILT experiments should therefore favor the 
pull-open hypothesis. The difficulty with this interpreta-
tion relates to the change in the Q-V curve in response 
to ILT, which undergoes an opposite shift to the left 
(Ledwell and Aldrich, 1999). It is generally the case that 
changes to a single coupling factor or equilibrium con-
stant is inconsistent with opposing activation shifts 
(Chowdhury and Chanda, 2012b). Similar examples of 
diverging G-V and Q-V curves have since been observed 
in a handful of Shaker mutants, mostly involving resi-
dues found in the interaction region between the VSD 
and the pore (segments S5 and S6 in the pore and the 
S4–S5 linker; Soler-Llavina et al., 2006; Haddad and 
Blunck, 2011). Interestingly, neutralizing salt bridge–
forming charged residues in the S2 and S3 segments of 

two particles (D = 1) does not necessarily imply complete 
particle independence, but may be a consequence of 
balanced energies, specifically W ≡ W00 + W11  W10  
W01 = 0. We also consider the possibility of excess charge 
q = kTlnD/V, which renders D voltage dependent pro-
vided that q = q00 + q11  q10  q01 ≠ 0. Evidence has 
been offered in support of a small (0.2 eo) q in internal 
coupling between BK voltage sensor particles (Pantazis 
et al., 2010).

In most voltage-gated ion channels, Po increases with 
voltage. A physical mechanism consistent with this prop-
erty is when voltage sensors assist the opening of a reluc-
tant pore gate through positive interaction (negative 
W ) in the A-O state. This “pull-open” mechanism is il-
lustrated on the right side of Fig. 3 B; it satisfies the 
product-coupled partition function Z = 1 + J + L + JLD, 
with D > 1. However, one can also imagine a “push-
closed” mechanism (Fig. 3 B, left) in which the pore opens 
intrinsically, but only after activation of the J particle 
relieves a steric hindrance D in the R-O state, which pre-
vents pore opening while J is at rest (Chowdhury and 
Chanda, 2012b; Horrigan, 2012). The push-closed 
mechanism is described by Z = 1 + J + LD + JL with D 
< 1. It is entirely equivalent to the pull-open mechanism 
provided we set D = 1/D and L = LD. The conductance 
Hill plots of the two mechanisms coincide if their re-
spective L particle biases L and L are vertically sepa-
rated by the coupling energy W = kTlnD (Fig. 3 B). In 
either case, if we allow L to become very small and D 
very large, then Z ≈ 1 + J + JL (Arcisio-Miranda et al., 
2010), which describes the three-state obligatory model 
of Fig. 2 and represents the limiting case of L-J coupling 
in Fig. 3 B (dotted red line). The extension to a multi-
cooperon scheme consisting of a central pore particle  

Figure 3.  Allosteric linkage between 
two gating particles. (A) L-J cooperon 
with native interactions between (C, 
O) states of the L particle (pore) and 
(R, A) states of the J particle (voltage 
sensor) indicated by gray dashed lines 
connecting state (q, ) coordinates. 
(B) Conductance Hill energy WH[g] ver-
sus V (solid red trace) calculated from 
the cooperon in A under conditions of 
weak coupling (W = kTlnD = 100 
meV = 2.31 kcal/mol). The negative 
(lower) asymptote L = qL(V  VL) 
represents intrinsic pore gating con-
sistent with the pull-open mechanism 
(color scheme purple, D > 1 favoring 
A-O state). The positive (upper) as-
ymptote is displaced vertically by kTlnD 
as a result of L-J interaction in the pull-

open scheme, but it could also represent intrinsic pore activation L = qL(V  VL) consistent with the push-closed mechanism (blue 
color scheme, D < 1 destabilizes R-O state). The strong coupling curve (dash-dotted red line) was obtained by increasing the magnitude 
of the coupling energy W from 100 to 200 meV while maintaining L = LD constant. The asymptotic limit of large coupling (L → 0, 
D → ) yields an obligatory scheme (dotted red line) with limiting slope qmax = qJ + qL. The mean (median) voltage of activation 
VM = kTln(LJ)/qmax (value indicated by arrow to V axis) is independent of W under these conditions.
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One could argue that, by factoring out the quantity C 4 
from Eq. 20 to obtain Z = (1 + J)4 + L(1 + J CD)4, with 
effective coupling constant CD and redefined equilib-
rium constants J = J/C and L = L/C 4, one simply reverts 
back to a product-coupled scheme of the pull-open or 
reformulated push-closed type. This is true, but the 
above function differs from those of the earlier schemes 
in that both J  and L are decreased in value with in-
creasing C (recall that J in the pull-open or push-closed 
schemes was unchanged in the limit of large coupling). 
Hence, if C → , the doubly coupled scheme reduces to 
a two-state model described by Z = 1 + LJ 4(D/C)4, pro-
vided we also have a large D to maintain energy bal
ance (note the absence of opening bias if D = C). A 
limiting doubly coupled scheme of this type might ex-
plain the binary activation of the four-subunit pore 
gate, which prefers all S6 helical bundle segments to be 
in the closed or open state, thereby satisfying quater-
nary symmetry required by MWC theory (Chapman and 
VanDongen, 2005).

A mechanistic interpretation compatible with the 
doubly coupled scheme is if disruption of packing inter-
actions between the pore and VSD is necessary for inter
mediate gating transitions to occur, a conjecture 
supported by the findings of long MD trajectories of K+ 
channel activation ( Jensen et al., 2012). Although the 
doubly coupled scheme is overly simplistic, neglecting 
for example the multistep activation of the VSD (Zagotta 
et al., 1994; Schoppa and Sigworth, 1998b; Gamal El-Din 
et al., 2010; Delemotte et al., 2011; Haddad and Blunck, 
2011; Yarov-Yarovoy et al., 2012), it adopts a thermo
dynamic viewpoint in which the parameters of interest 
consist solely of energies and displacements. This lines 
up perfectly with the way we often think of mecha-
nisms of action, which focus on mechanical details such 
as which residues in domain X interact with those in 
domain Y and how these interactions are modified 
when there is a change in conformation. Kinetic mod-
eling provides additional information about the time 
course of events, but this may not be of central impor-
tance in determining structure–function relationships, 
and the added complexity of a kinetic model can ob-
scure interpretation. The double coupling framework is 
easily expanded to include multistep VSD transitions 
and could be used to explore other features of gating, 
such as intersubunit pore domain interactions and chan-
nel inactivation. Adding new gating particles and transi-
tions to a multimeric allosteric model can result in an 
unwieldy proliferation of kinetic states, although equi-
librium curves can still easily be calculated using the 
partition function formulism. Of course, a successful 
model must be able to predict gating and ionic currents, 
and for this purpose it is necessary to adopt a systematic 
approach to kinetic analysis of allosteric models, as dis-
cussed next.

the VSD (Papazian et al., 1995; Tiwari-Woodruff et al., 1997) 
have also generated opposing shifts (Seoh et al., 1996).

Muroi et al. (2010) provided a plausible mechanism 
to explain the divergence of G-V and Q-V curves upon 
observing the phenomena in sodium channel mutants 
targeting the domain III VSD–pore linkage region. 
They showed that if a mutation were to simultaneously 
affect separate coupling factors in the L-J cooperon, 
specifically if one factor targets the doubly “reactant” 
state (R-C) and the other the “product” state (A-O), a 
scheme referred to here as “doubly coupled,” then re-
lieving both sources of coupling could generate oppos-
ing shifts in L and J and also therefore in the G-V and 
Q-V curves. The concept of interactions favoring “agree-
ment” states such as R-C and A-O is a common one in 
statistical mechanics. It explains the quaternary symme-
try requirements of the MWC model (Monod et al., 
1965) and underlies the Lenz–Ising model of lattice in-
teractions (Niss, 2005).

Incorporating double coupling into an n = 4 radial 
cooperon scheme (Fig. 4) yields the partition function

	 Z C J L JD= +( ) + +( )4 41 , 	 (20)

where, as before, L and J are the pore and voltage sensor 
equilibrium constants, and the coupling factors associated 
with R-C and A-O configurations are C = exp(WC/kT) 
and D = exp(WD/kT), respectively. Assuming in Shaker 
a total charge per channel qmax = 13 eo (Aggarwal and 
MacKinnon, 1996; Noceti et al., 1996; Seoh et al., 1996; 
Islas and Sigworth, 1999), Eq. 20 adequately describes the 
changes made by the ILT mutations to the G-V and Q-V 
curves using just five adjustable parameters (qL, VL, VJ, 
WC, and WD), all related to displacements and energies ob-
tained from linkage analysis (Fig. 4, B and C).

Although the n = 4 doubly coupled scheme is alloste-
ric, with half of its 32 states conducting, the ILT fits ac-
count for obligatory-like gating in Shaker (Fig. 4 C) by 
distributing the total energy of interaction Wtot = 4|WC + 
WD| ≈ 26 kT equally among the four subunits, with 70% 
of Wtot allotted to R-C interactions (4|WC| ≈ 18 kT) and 
30% to A-O interactions (4|WD| ≈ 8 kT). This value of Wtot 
is roughly 80% of the earlier back-of-the-envelope esti-
mate of 32 kT for the minimum VSD–pore coupling en-
ergy required to emulate obligatory gating in Shaker, 
leaving open the possibility that a more completely un-
coupled mutant (see Haddad and Blunck, 2011) might 
yield a larger value of Wtot through greater separation of 
G-V and Q-V curves. We note that mathematically there is 
no difference between stabilizing the double reactant 
and product configurations and destabilizing intermedi-
ate states. Therefore, ILT or similarly acting mutations 
could conceivably act by weakening favorable interac-
tions in agreement states R-C and A-O as suggested above 
or by relieving “strain” in intermediate states R-A and 
C-O (Pathak et al., 2005; Haddad and Blunck, 2011).
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exp[x(/Ω)Ω/kT]. For the familiar case of Ω = V 
and substituting /V = q, we obtain  = 
oexp(xqV/kT), where, comparing with Eq. 2a, we es-
tablish that qa (=q*) = xq. Extending the above argu-
ment to both forward and backward rates, we can write 
α α= oΓV

x  andβ β= −
oΓV

x 1 , where V = exp(qV/kT) is 
the voltage perturbation factor. The ratio / yields the 
usual expression for the equilibrium constant K = 
Koexp(qV/kT), where Ko = o/o. We can introduce 
additional factors for other applied forces (T, P, 
,…) as well as for allosteric interactions ( D DJ

j
L
l, , …), 

where j, l,... are the number of activated J, L,… particles. 
Generally speaking, the LFER parameter x of a particu-
lar perturbation Ω depends on the position of the tran-
sition peak along the coordinate  = kT/Ω. 
However, we can make the zero-order assumption that x 
has the same value for any perturbation and further 
specify a transition-specific relaxation rate  = o

(1x)o
x, 

allowing us to economically write:  = Kx and  = Kx1, 
where K K D Do T P V J

j
L
l= Γ Γ Γ Γµ ... ....  Expressing this as a 

particle potential K = kTlnK, we have

Kinetics in allosteric models
Constructing a kinetic model of allosterism can be a 
daunting task. Thermodynamics offers only incomplete 
guidance on constraints placed by allosteric interac-
tions on the perturbation of rate constants, and the 
number of kinetic states rises geometrically with coo-
peron number. A reasonable solution to the first prob-
lem is the concept of linear free energy relationships 
(LFERs; Leffler, 1953; Hammond, 1955; Grosman et al., 
2000; Azaria et al., 2010; Edelstein and Changeux, 
2010). The basic idea is that if, structurally speaking, 
the transition state (b) is intermediate between the re-
actant (R) and product (P) states, then the perturba-
tion of state potentials X by an arbitrary force Ω should 
satisfy the weighted average: b/Ω = xP/Ω + (1  x)
R/Ω, where the weighting factor x (LFER parame-
ter) is a number between 0 and 1. Rearranging terms, 
we have: */Ω = x/Ω, where * = b  R 
and  = P  R. We obtained earlier (Eq. 15)  = 
Dexp(*/kT), from which we derive, assuming  is 
linear in Ω, (Ω)/(0) ≡ exp[(*/Ω)Ω/kT] = 

Figure 4.  Application of the n = 4 doubly coupled allosteric scheme (Eq. 20) to the G-V and Q-V curves predicted by the ILT model. 
Doubly coupled scheme parameters: qL = 1.37 eo; VL = 73.0 mV; VJ = 86.6 mV; WC = 113 meV (2.61 kcal/mol); WD = 49.3 meV (1.14 
kcal/mol). The VSD charge qJ was derived from (qmax  qL)/4 = 2.91 eo with qmax = 13 eo. (A) G-V curves; Po = lnZ/lnL evaluated for 
the wild-type Shaker B channel (ShB, red trace) and ILT mutant (green trace, coupling parameters C and D set to zero). The open circles 
are Boltzmann fits to experimental G-Vs reported by Ledwell and Aldrich (1999). The five-particle ShB doubly coupled scheme and the 
reduced ILT scheme are shown next to their respective traces. (B) Q-V curves: q = (lnZ/lnJ)qJ + (lnZ/lnL)qL evaluated for ShB 
and ILT. Open circles are derived from the 2 + 1 Shaker kinetic model (notation from Schoppa and Sigworth, 1998b) with parameters 
obtained from Ledwell and Aldrich (1999). The shaded rectangle is the difference in global energy of activation, bounded left and right 
by the VM value for ILT and ShB, respectively. The leftward extension of the rectangle (dashed lines) denotes the apparent VM for the ILT 
mutant upon neglecting the right-shifted pore contribution to the Q-V curve. The pore charge is difficult to detect within the gating current 
because the rate of pore opening in ILT is slow (Ledwell and Aldrich, 1999), although independent verification of its existence comes from 
fluorescence experiments (Pathak et al., 2005). (C) Conductance Hill energy WH[g] = kTln[Po/(1  Po)] for ShB and ILT predicted by the 
doubly coupled scheme. Cross-hairs indicate the locations of Po = 0.5, 107. The limiting slope = qmax of obligatory gating is denoted by the 
black line. (D) Activation charge displacement qa = kTd(lnPo)/dV for ShB and ILT predicted by the doubly coupled scheme. The dotted 
line is qmax  q, which equals qa in the case of the obligatory coupled (strong allosteric) model (Sigg and Bezanilla, 1997).
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where Zx = f(JDx, KC x,…) is a sliding partition function 
which varies from Zc to Zo in the range x = {0…1}. The 
fast gating particles are “slaved” to L and therefore relax 
with rate L after an initial rapid decay. An approach 
mathematically analogous to Eq. 22 was used to com-
pute ionic current relaxation rates in the BK channel, 
whose pore kinetics are roughly 10 times slower than those 
of its regulatory domains (Cox et al., 1997; Horrigan 
and Aldrich, 2002).

Conclusion
The history of modeling ion channels is filled with many 
successes and some dead ends. Even the dead ends are 
useful in that they test the limits of our understanding. 
This review has attempted to bridge microscopic and 
macroscopic views of ion channel dynamics through an 
exploration of common ground approaches to the phe-
nomenology of gating. Although the lion’s share of  
attention was directed toward voltage-dependent 
channels, the methods discussed here are easily gener-
alized to other stimuli and are applicable to any chan-
nel and indeed any macromolecule. Looking forward, 
close cooperation between the disciplines of MD and 
electrophysiology will likely play an important role in 
unraveling the molecular mechanism of gating. Along 
these lines, a consensus view of the activation pathway 
for voltage-gated ion channels based on decades of ex-
perimentation and simulation modeling has recently 
been published (Vargas et al., 2012). A logical next step 
would be to map out potentials of mean force for the 
gating landscape under physiological conditions. This 
would require a large effort (some might call it a pipe 
dream) but offers a substantial payoff: the validation, 
based on a channel’s molecular structure, of specific 
gating models used with confidence to interpret experi-
mental data, with the ultimate aim of improved drug 
development and alleviation of disease. A combined ap-
proach has recently been applied (Ostmeyer et al., 
2013) to the question of why recovery from C-type inac-
tivation in the K+ pore is so slow (5–20 s). The answer? 
Three water molecules trapped behind the selectivity 
filter of each subunit bolster the pinched conformation 
of the inactivated pore. PMF calculations in this study 
demonstrated a large energy barrier (25 kcal/mol) to 
pore conduction unless all (or most) of the 12 waters 
were released into solution. With the benefit of hind-
sight and using thermodynamic arguments, one might 
have guessed the role of inactivating waters based on 
earlier work that studied the pressure dependence of 
slow inactivation in Shaker (Meyer and Heinemann, 
1997), but molecular simulation combined with kinetic 
modeling was necessary to illustrate the precise mecha-
nism in nearly cinematic detail. We should expect more 
such exciting developments arising from the interface 
between molecular and macroscopic dynamics. Whether 
an accurate phenomenology of gating dynamics follows 
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Eq. 21 is a complete thermodynamic description of  
K activation that includes allosteric interactions with 
other particles. After incorporating Eq. 21 into the 
above expressions for K, , and , the resulting rela-
tions represent the basis for a phenomenological rate 
description. Combinatorial factors (K = 1…n) must 
be included as part of a global kinetic scheme if there 
are n identical K particles. A heuristic model of the BK 
channel comprising m = 4 particle species arranged in 
fourfold symmetry around the pore for a total of 17 
particles and 7,752 configurational states (twice the 
number of ways n = 4 subunits can occupy 2m = 16 sub-
unit states) was recently evaluated in this manner (Sigg, 
2013), although the large state space made kinetic 
analysis computationally intensive, requiring Monte 
Carlo methods.

A shortcut bypassing the rigorous Q-matrix proce-
dure of kinetic analysis would be of considerable bene-
fit when dealing with large-scale allosteric models. The 
earlier trick of computing equilibrium curves by sum-
ming over elementary transitions using the relational 
form of the partition function (Eq. 18c) suggests one 
might construct an analogous set of coupled HH-like 
kinetic equations, one for each gating particle, where 
the discrete coupling numbers j, l,… in Eq. 21 are re-
placed with the time-varying J, L,… in the form of a 
mean-field approximation. Unfortunately, the Q-matrix 
of allosteric models is not so easily coarse grained. Al-
though the mean-field procedure satisfies equilibrium 
requirements, it distorts the time course of relaxation 
even for the simple cooperon scheme. However, if one 
particle is rate limiting, a successful approach analo-
gous to the Born–Oppenheimer strategy from quantum 
chemistry can be used. Consider an n-meric channel 
with a rate-limiting pore L relative to other regulatory 
particles (L << J, K,…). The partition function can be 
written as Z = Zc

n + LZo
n, where the closed-state compo-

nent Zc = f(J, K,…) is a polynomial function of subunit 
equilibrium constants J, K,…. The same polynomial de-
scribes the open state partition function Zo = f(JD, 
KC,…) except that the equilibrium constants are multi-
plied by allosteric factors D, C,…. The pore then acti-
vates in the manner of an HH particle, characterized by 
ϕ λ ϕ ϕL L L L= −∞( ),  where L = lnZ/lnL and L = L 

+ L. The rate constants L and L are Boltzmann-
weighted sums of elementary pore rates across {J, K,…} 
substates, each individually constructed in the manner 
detailed in the previous paragraph. Evaluating the two 
sums yields the compact expression

	 λ νL x
x
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