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Summary: A major challenge in the development of a cure for
human immunodeficiency virus (HIV) has been the incomplete
understanding of the basic mechanisms underlying HIV persistence
during antiretroviral therapy. It is now realized that the establishment
of a latently infected reservoir refractory to immune system recogni-
tion has thus far hindered eradication efforts. Recent investigation
into the innate immune response has shed light on signaling path-
ways downstream of the immunological synapse critical for T-cell
activation and establishment of T-cell memory. This has led to the
understanding that the cell-to-cell contacts observed in an immuno-
logical synapse that involve the CD4+ T cell and antigen-presenting
cell or T-cell–T-cell interactions enhance efficient viral spread and
facilitate the induction and maintenance of latency in HIV-infected
memory T cells. This review focuses on recent work characterizing
the immunological synapse and the signaling pathways involved in
T-cell activation and gene regulation in the context of HIV
persistence.
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Introduction

Lymph nodes (LNs) were identified as major sites of viral

replication in HIV-infected subjects (1, 2). Both solid and

diffused secondary lymphoid organs (SLOs), such as the

gut-associated lymphoid tissues (GALT), were also shown to

be the primary sites of viral replication in human immuno-

deficiency virus (HIV)/simian immunodeficiency virus (SIV)

infections (3, 4). A large number of studies in humans and

non-human primates have reported higher frequencies of

HIV/SIV-infected cells as well as higher copy numbers of

viral transcripts in CD4+ T cells isolated from lymphoid tis-

sues (GALT, LN) when compared with the peripheral blood

(1, 5–8). This enrichment in HIV-infected cells can be

attributed to several important characteristics of lymphoid

tissues. These include (i) a privileged tissue architecture that
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favors close cellular contact between immune cells, thereby

promoting cell-to-cell transmission of HIV and ensuring

viral dissemination; (ii) a significant enrichment in the fre-

quency of cells that are highly permissive to HIV infection,

such as activated CD4+ T cells that can produce large num-

bers of viral particles; and (iii) a proinflammatory environ-

ment that enhances viral production from infected cells and

promotes new infections. These factors contribute to the

high levels of HIV replication observed in lymphoid organs

from HIV- infected subjects and provide an explanation of

the major role played by these compartments in the patho-

physiology of HIV infection.

High frequencies of HIV-infected cells have also been

reported in lymphoid tissues from subjects who have

received suppressive antiretroviral therapy (ART) for pro-

longed periods of time (9–12), indicating that lymphoid

organs are not only important sites of HIV production in

untreated disease, but also play a major role in HIV persis-

tence during therapy. The three aforementioned characteris-

tics of lymphoid organs that contribute to HIV replication in

untreated disease are likely to play a similar role during ART

by promoting residual levels of viral replication (13). In

addition to the close T-cell–T-cell and dendritic cell (DC)–T-

cell contacts that favor viral transmission (the ‘virological

synapses’), recent observations suggest that contact and cros-

stalk between immune cells (the ‘immunological synapse’)

may play a critical role in HIV persistence by promoting the

establishment and maintenance of viral latency (14). There-

fore, although the immunological synapse and virological

synapse share several common features, they may result in

very distinct outcomes when their impact on viral persistence

is examined (Fig. 1). Whereas the virological synapse func-

tions to promote viral dissemination, the immunological syn-

apse may result in the inhibition of viral production and in

the establishment of HIV latency, thereby generating and

maintaining a long-lived cellular reservoir for the virus.

Details of the mechanisms by which the immunological syn-

apse and virological synapse contribute to HIV persistence

are still largely unknown. Our current understanding of these

mechanisms and their downstream signaling pathways

are detailed in this review. Identifying the cell types and

receptors at play in these interactions will pave the way for

the rational design of novel therapeutic approaches aimed at

abrogating HIV persistence during ART.

The HIV reservoir

Current antiretroviral regimens dramatically suppress HIV

replication resulting in a major reduction in HIV-related

mortality and morbidity; however, these treatments do not

eradicate HIV. Interruption of ART almost invariably leads to

the reemergence of detectable viral replication even after

years of continuous optimal suppressive therapy, thereby

demonstrating the presence of a long-lived viral reservoir

constituted of a pool of cells capable of producing replica-

tion-competent HIV (15). Two non-mutually exclusive

mechanisms underlie HIV persistence during ART: (i)

incomplete suppression of viral replication could allow the

continuous replenishment of a small pool of infected cells,

particularly in sites with suboptimal drug penetration

or sites in which control by the host immune system is

inefficient and (ii) persistence of a small pool of resting

memory CD4+ T cells in which HIV is maintained as a trans-

criptionally silent provirus through epigenetic mechanisms.

HIV persists in a latent form through immunologically

driven mechanisms

Fifteen years ago, several groups described a subset of rest-

ing memory CD4+ T cells with integrated HIV genomes

that released infectious particles only upon cellular activa-

tion (7, 16). This latently infected reservoir was later

shown to include mostly CD4+ T cells of central and transi-

tional memory phenotype (17) and persisted in patients on

ART who have no clinically detectable viremia (7, 18, 19).

The kinetics of decay of the latently infected CD4+ T-cell

subset has been shown to be approximately 60 years, as the

mean half-life of CD4+ T cells was suggested to be

43.9 months (20–22). The establishment of a latent reser-

voir in these subsets is a rare event that occurs during acute

infection and is not fully prevented by the introduction of

ART (23, 24). Two major forms of viral latency coexist in

vivo (25). First, preintegration latency refers to unintegrated

HIV DNA that is unstable and will either degrade or inte-

grate into the host cell genome, usually upon cellular acti-

vation (26–28). This form of latency is established after

partial or complete block of the viral life cycle at steps prior

to the integration of viral DNA. Second, postintegration

latency refers to the presence of integrated HIV DNA in

cells that are not actively producing viral particles. This

latent state is extremely stable and is limited only by the
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lifespan of the infected cell and its progeny. Because the

provirus is integrated in the host genome, its replication

activity is significantly affected by the activation state of the

host cell. Thus, CD4+ T cells may induce a latent state of

the viral genome when transitioning from an activated

effector phenotype to a quiescent memory cell.

Most mechanisms that lead to induction and maintenance

of HIV latency operate at the transcriptional and epigenetic

level. The first key factor is the site of provirus integration.

Integrated HIV proviruses are typically found within actively

transcribed genes in resting CD4+ T cells (29, 30). How-

ever, modifications such as histone acetylation, methylation,

and adenosine triphosphate–dependent remodeling interfere

with the transcription of viral genes by rendering the HIV

LTR promoter region inaccessible to transcription factors

(31–34). In addition, the quiescent state of latently infected

CD4+ T cells favors nuclear exclusion of the transcription fac-

tors nuclear-factor jB (NFjB) and nuclear factor of activated

T cells (NFAT) that promote HIV expression (35, 36). In

quiescent CD4+ T cells, elongation factors such as pTEFB can

also be sequestered and thus negatively impact the

generation of viral transcripts (37, 38). Many of these mech-

anisms have been elucidated using cell lines and the relative

importance of each mechanism in vivo remains unclear. How-

ever, the block in HIV production in quiescent memory

CD4+ T cells extends beyond transcription, as low levels of

cell-associated viral RNA have been found in resting CD4+ T

cells from virally suppressed subjects (39). A defect in
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Fig. 1. Model of virological and immunological synapse formation in the contribution to HIV persistence. Virological synapse formation
(left panel) is mediated through interactions of gp41/gp120 (shown in red) on an HIV-infected CD4+ T cell with CD4 (brown) on the cell
surface of an uninfected target CD4+ T cell. Interactions are stabilized by ICAM-1 (green) and LFA-1 (blue) and take place even in presence of
ART. Immunological synapse formation (right panel) initiated through interactions of MHC class II (green) on an antigen-presenting cell
(APC) and the TCR (red) of an infected T cell may induce latency via inhibitory signals within the immunological synapse to reduce T-cell
activation. These inhibitory signals include CTLA-4 (pink) on HIV-infected CD4+ T cells interacting with CD80/CD86 (purple/lavender) on
APCs, or PD-1 (brown) with its ligand PD-L1 or PD-L2 (tan/orange). These interactions are localized to the pSMAC and are stabilized by LFA-
1 and ICAM-1.
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nuclear export of RNA transcripts has been suggested to

block HIV production in latently infected cells (40).

A critical unanswered question pertains to the nature of

signals an HIV-infected cell receives to establish and

ultimately maintain a latently infected reservoir. The immu-

nological mechanisms involved in the generation and

maintenance of memory CD4+ T cells have been suggested

to regulate the induction of latency and the persistence of

the HIV reservoir (41). Several lines of evidence suggest that

the generation of memory T cells from effector T cells

during HIV infection contributes to the establishment of a

reservoir of long-lived latently infected cells. Latently

infected memory T cells harboring replication-competent

HIV can be isolated from viremic donors (16), indicating

that the latent HIV reservoir is generated and maintained

during the viremic phase of the disease. Negative signals,

notably mediated by negative regulators of T-cell receptor

(TCR) signaling (42), may initiate the transition from acti-

vated to quiescent phenotype by reducing the availability of

cellular transcription factors essential for active viral gene

expression, thereby establishing viral latency in long-lived

memory CD4+ T cells harboring HIV-integrated DNA. Mem-

ory CD4+ T cells persist in response to prosurvival signals

downstream of common c chain (cc) cytokines [such as

interleukin-7 (IL-7) and IL-15] and TCR stimulation (43–

45). We have demonstrated that these cytokines contribute

to the persistence of HIV in this long-lived cellular compart-

ment (17) by controlling homeostatic proliferation during

ART (46, 47). Sequencing of HIV genomes in latently

infected cells has revealed significant sequence homogeneity,

which would support a model of homeostatic proliferation

of a small number of latently infected cells (17). In contrast,

a reservoir generated by ongoing viral replication and infec-

tion of new cells would be evidenced by an accumulation

of mutations in the integrated HIV genomes (46, 47). Sev-

eral immunological mechanisms could be responsible for

proliferation-induced HIV persistence: (i) homeostatic pro-

liferation driven by IL-7 and IL-15 (48); (ii) inflammation-

induced proliferation driven by proinflammatory cytokines

such as IL-1, IL-6, and interferon-c (IFN-c) (49, discussed

in this issue); (iii) antigen-induced proliferation; and (iv)

self-renewal of stem cell memory T cells by Wnt/Notch sig-

naling (50, 51). IL-7 or proinflammatory cytokines (52–54)

as well as TCR engagement (55) have been shown to induce

HIV production in primary CD4+ T cells in vitro. These

results suggest that memory CD4+ T cells harboring replica-

tion-competent HIV may be continuously exposed to reacti-

vation signals. The maintenance of viral latency may be an

active process whereby the positive signals conferred by

TCR stimulation and/or cytokines could be counterbalanced

by negative signals that would impede viral reactivation and

subsequent elimination of these cells through cytopathic

effect or cytotoxic killing. Negative signals could also lead

to asymmetric division and the establishment of long-lived

stem cell memory T cells.

Secondary lymphoid organs in HIV infection: exploring

the battlefield

In addition to the persistence of HIV in a latent state within

a small pool of long-lived CD4+ T cells, the incomplete sup-

pression of viral replication by ART could allow the contin-

uous replenishment of a small pool of infected cells (56),

particularly in anatomical compartments in which drug pen-

etration may not be optimal (10). Moreover, inflammatory

cytokines such as IL-2, TNF (tumor necrosis factor), IL-6,

and IL-18, and chemokines CC-chemokine ligand 19

(CCL19) and CCL21 are elevated during treated HIV disease;

this provides the inflammatory environment that render

CD4+ T cells more susceptible to infection in tissues of

infected subjects (54, 57–59) (Fig. 1). Viral replication dur-

ing ART is well documented by studies showing residual

viremia in the majority of ART-treated subjects (60, 61), or

the presence of cell-associated viral RNA in tissues such as

the GALT (12). However, as discussed above the absence of

viral evolution (62, 63) and the lack of impact of treatment

intensification on residual viremia (64–66) argue against

the role of viral production in HIV persistence. However, it

cannot be excluded that specific microenvironments such as

the immunological synapse could favor the continuous

replenishment of a pool of HIV-infected cells. Indeed, evi-

dence of cell-to-cell transmission of HIV in the presence of

antiretroviral drugs has been recently described and indi-

cates an important mechanism of HIV persistence (13)

(Fig. 1).

SLOs provide an environment that enables lymphocytes to

interact with antigen-presenting cells (APCs), resulting in

the initiation of antigen-specific immune responses. SLOs

are usually considered as sites of production of antigen-

specific effector cells that have the ability to migrate to

infected tissues and anatomical compartments in which

infection by a pathogen takes place. This classical definition

has to be revisited in the context of HIV infection, as the

virus preferentially replicates in CD4+ T cells localized in

SLOs. As a consequence, an effector response actively pre-

vents viral dissemination in these SLOs when HIV-specific
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CTLs kill infected cells present locally (67). In the context of

suboptimal adaptive immune responses characteristic of HIV

infection, this duality is clearly beneficial to the virus by the

continuous generation of new target cells through the inter-

actions of APCs and CD4+ T cells via the immunological

synapse. Of note, the innate immune response that includes

natural killer (NK) cells, cd T cells, NK T cells, and innate-

like CD8+ T cells may also play an important role in limit-

ing systemic pathogen spread in LNs (68), but whether

these mechanisms may specifically impact HIV replication

remains largely unknown.

Immunological synapse formation stimulates the differen-

tiation of naive CD4+ T cells into effector helper cells

through the recognition by the TCR of its cognate peptide–

major histocompatibility complex class II (MHCII) complex

on the surface of APCs (69). Two-photon imaging has

revealed that naive T cells are in constant motion, scanning

the lymph node in search of antigen by contacting 5000 DCs

per hour (70, 71). The priming of naive T cells by a DC

occurs in three distinct phases (72). During the first 8 h after

entering the LN, T cells undergo multiple short encounters

with DCs, decrease their motility, and upregulate activation

markers such as the extended form of leukocyte function-

associated antigen-1 (LFA-1) and cytotoxic T-lymphocyte

antigen-4 (CTLA-4) (stop signal). To establish an immuno-

logical synapse, a stop signal results in the arrest of CD4+

T-cell migration to a particular DC (73, 74). During the sub-

sequent 12 h, T cells form long-lasting conjugates with DCs

and begin to secrete IL-2 and IFN-c. On the second day,

coinciding with the onset of proliferation, T cells resume

their rapid migration and short DC contacts. The priming of

antigen-specific T cells is highly sensitive, as the formation of

an immunological synapse requires only about 10 agonist

peptides presented at the surface of the APC (75).

Effector CD4+ T cells secrete cytokines that modulate

adaptive immune responses, with IFN-c and IL-2 promoting

Th1 responses, whereas secretion of IL-4 and IL-5 promotes

Th2 responses. Some of these cytokines are endowed with

antiviral activity such as IFN-c. APCs can also induce the

generation of regulatory T cells (Treg), which can down-

modulate antigen-specific immune responses (76). Interest-

ingly, Treg cells can exhibit their regulatory function at the

immunological synapse by preventing the recruitment of

signaling molecules on naive T cells such as PKCh when

both T cells have identical antigen specificity and are in con-

tact with the same APC (77). It has become more and more

evident that the interactions occurring at the T-cell–APC

interface determine the nature of the T-cell response against

a particular antigen. We now examine our current under-

standing of the structure and signaling pathways of the

immunological synapse.

Spatial organization of the immunological synapse

The immunological synapse was originally characterized at

the surface of T cells as concentric rings of membrane recep-

tors (78). These three-dimensional contact domains, which

are visible by confocal microscopy, are named supramolecular

activation clusters (SMACs) and include the central SMAC

(cSMAC), the peripheral SMAC (pSMAC), and the distal SMAC

(dSMAC). During T-cell activation, TCRs accumulate into the

cSMAC, surrounded in a bulls-eye manner by the pSMAC,

which consists of a ring enriched in the adhesion molecule

LFA-1 and its ligands, which are members of the intercellular

adhesion molecule (ICAM) family and talin. Talin has been

demonstrated to link the adhesion rings to the actin cytoskele-

ton (79). LFA-1 and ICAM-1 interactions act as a tether

between the two cells, facilitating contact between the TCR

and MHC and impeding T-cell mobility. Importantly, the sta-

bility provided by the pSMAC accounts for a 100-fold increase

in the T-cell sensitivity to antigen (80). This organization

(pSMAC and cSMAC) constitutes the mature immunological

synapse. Finally, the most external ring or dSMAC is where

proteins with large ectodomains such as CD43 and CD45 are

located, far from the cSMAC (81). Importantly, the immuno-

logical synapse is dynamic: TCR signaling is sustained by TCR

microclusters, made up of the TCR and peptide MHC complex

that are continually forming in the dSMAC and moving into

the cSMAC (82, 83). These newly formed microclusters are

associated with signaling molecules such as ZAP-70 (f chain-

associated protein kinase of 70 kDa), Lck (lymphocyte-spe-

cific protein tyrosine kinase), LAT (linker of activated T cells),

and SLP-76 (SH2 domain–containing leukocyte protein of

76 kDa), but these associations are lost as the microclusters

migrate toward the cSMAC. Therefore, TCR signaling is initi-

ated and sustained in peripheral microclusters, and despite

the large numbers of TCRs present in the cSMAC, signaling

does not occur in the central part of the immunological syn-

apse. Although the cSMAC may play several roles during the

formation and termination of the immunological synapse, it

may primarily serve to downregulate the TCR by endocytosis

(84). The dSMAC also has CD45 and dynamic filamentous

actin (85–87) and has been implicated in T-cell sensitivity to

antigen recognition (73, 88–90). Significant for HIV infec-

tion, CD4 is initially recruited to the TCR–peptide–MHC mi-

crocluster in the cSMAC as well as the coreceptors CXCR4 and

CCR5 (91, 92).
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The immunological synapse: fine tuning of the immune

response

The highly stable and long-lived immunological synapse has

been demonstrated to be required to completely activate T

cells following TCR engagement and its triggering of a sig-

naling cascade (93, 94). In addition to the TCR, a large

number of proteins play essential roles in the formation of

immunological synapse. They include coreceptors, adhesion

molecules, and costimulatory and negative regulatory mole-

cules. CD4, through its extracellular domain, acts as a core-

ceptor to the TCR and interacts directly with MHCII

molecules on the surface of APCs. Although CD4+ T cells

can respond with transient calcium signaling to a single ago-

nist peptide–MHC ligand, a complete immunological syn-

apse and productive calcium response require about 10

peptide–MHC complexes (75). This sensitivity is highly

dependent on CD4, as anti-CD4 antibodies render T cells

unable to detect less than about 30 ligands. Using its intra-

cellular domain, CD4 amplifies the signal generated by the

TCR by recruiting Lck (95). Lck phosphorylates the intracel-

lular chains of the CD3 and f-chains of the TCR complex,

allowing the recruitment of ZAP-70. Lck also phosphorylates

and activates ZAP-70, which in turn phosphorylates LAT, a

transmembrane protein that recruits a number of proteins

essential for proper T-cell activation, including GRB2

(growth factor receptor-bound protein 2) and PLC-c1

(phospholipase C c1).

Adhesion receptors can be defined as receptors that pro-

mote adhesion beyond antigen recognition (96). The arrest

of rolling leukocytes on the endothelium is nearly exclu-

sively mediated by members of the integrin superfamily,

such as the myeloid-specific integrin LFA-1, Mac-1, as well

as the two a4 integrins, a4b1 (VLA-4) and a4b7 (97). Sol-

uble factors such as chemokines also have been implicated

in T-cell arrest. For example, CCL19 and CCL21 are

expressed by the vasculature during inflammation and signal

through CCR7 on leukocytes, which results in the unfolding

of LFA-1 into an extended conformation, enabling it to bind

to ICAM-1 with intermediate affinity (98, 99). In addition,

T cells polarize in response to CCL19 and become highly

motile (100). As a result, the efficiency of naive T cells in

scanning the surface of APCs is improved, increasing the

probability of encountering a cognate peptide–MHC com-

plex (69). Chemokines such as CCL19 and CCL21 were

recently shown ex vivo to increase susceptibility of resting

memory T cells to infection and establishment of latency

(58, 101).

Regulatory molecules of the immunological synapse

Costimulatory and negative regulatory molecules can be

defined as having a positive or a negative role in the regula-

tion of TCR-mediated signals. Although some of these mole-

cules may also have limited function outside the context of

antigen recognition, costimulatory molecules play a critical

role in the initiation of T-cell activation following the forma-

tion of the immunological synapse. For example, association

of the TCR of a naive T cell with a peptide–MHC complex

without interaction of the costimulatory receptor CD28 with

its primary ligand CD80 (B7.1) results in an anergic T cell that

produces very low amounts of IL-2 (102). CD28 is highly

enriched in TCR microclusters when engaged by CD80, and

these CD28–CD80 complexes are transported to the center of

the immunological synapse where they form a stable ring

around the cSMAC (103). CD28 has a highly conserved short

cytoplasmic tail that has no intrinsic enzymatic activity. How-

ever, phosphorylation of the tyrosine residues provides dock-

ing sites for SH2 domain–containing proteins, whereas the

proline-rich motifs can bind SH3 domain–containing pro-

teins. The role of CD28 costimulation on IL-2 production

appears to have two stages: an initial phosphoinositol 3-kinase

(PI3K)-dependent initial phase that acts on IL-2 transcription

and a second phase which results in enhancement of IL-2

mRNA stability (104).

CD2 is also required for T-cell activation and cooperates

with CD28 upon ligation to LFA-3/CD58 to induce the

immunological synapse formation (105). CD2 binding with

CD58 expressed on the surface of APCs augments and sustains

antigen-induced Ca2+ increase in T cells (106). CD2 contrib-

utes to the generation of TCR triggered microdomains in the

membrane that recruit signaling molecules like Lck and LAT

(107) and play a direct role in T-cell signaling via multiple

polyproline motifs that activate kinases such as Fyn. Like CD2,

CD45 has been shown to be crucial for supporting signal

transduction from the TCR. Through its intracellular region,

CD45 associates with several intracellular protein tyrosine kin-

ases essential for T-cell activation, including Lck, Fyn, and

ZAP-70 (108, 109). CD45 dephosphorylates Y505 on p56lck

activating Lck kinase, followed by p56lck phosphorylation of

TCR-f, and consequently recruitment of ZAP-70 (108, 110).

Interestingly, CD45 has been shown to negatively regulate the

transcription factor NFAT, thereby reducing HIV LTR activa-

tion (111). Other costimulatory receptor–ligand pairs, includ-

ing inducible costimulator (ICOS)–ICOS ligand (ICOS-L)

(112), CD40–CD40L (113), CD6–CD166 (114), and CD26–

adenosine deaminase–adenosine receptor (115), were also

© 2013 The Authors. Immunological Reviews published by John Wiley & Sons Ltd
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reported to accumulate and function at the immunological

synapse.

The formation of the immunological synapse and the sub-

sequent T-cell activation can be inhibited by engagement of

inhibitory receptors. The classic example is given by CTLA-4

(CD152), a negative regulator of T-cell activation that

potently inhibits signaling through the TCR and reduces T-

cell activation. HIV-specific CD4+ T cells upregulate CTLA-4

expression upon recognition of cognate peptide–MHC

ligands leading to inhibition of effector function; blockade

of this interaction augments HIV-specific CD4+ T-cell func-

tions (116). Interestingly, CTLA-4 blockade augments viral

replication in SIV-infected macaques (117), suggesting that

this negative regulator may inhibit viral production in vivo,

particularly in mucosal tissues where it is expressed at high

levels (Fig. 1). This is consistent with data from our group

that HIV Nef downregulates expression of CTLA-4, thereby

maintaining CD4+ T-cell activation and viral replication

(118). While T cells constitutively express CD28, CTLA-4

expression is induced by TCR stimulation (119). CTLA-4

has a much higher affinity for CD80 and CD86 than CD28.

As a consequence, even low levels of CTLA-4 on the cell

surface can compete for ligand binding with CD28. CTLA-4

forms microclusters, which directly accumulate in the

cSMAC, exactly in the same region as CD28 (120). Thus,

CTLA-4 pushes CD28 away from the cSMAC, which results

in the blockade of CD28-mediated costimulation (121). This

is thought to be the main mechanism of CTLA-4–mediated

inhibition of T-cell activation. CTLA-4 reverses the TCR-

mediated stop signal needed for T-cell/APC interactions,

thereby reducing the contact time between T cell and APC.

This greatly reduces the contact area at the immunological

synapse that leads to a major reduction in Ca2+ mobilization

and IL-2 production (122, 123) and could also lead to sig-

nificant inhibition of HIV replication. This signaling cascade

results in cytoskeletal changes and microtubule-organizing

center polarization toward the APC at the immunological

synapse (124–126), resulting in the redistribution of the

secretory and recycling machineries of the target T cell and

a polarized transport of cytokines and signaling molecules

toward the immunological synapse in the absence of cell

fusion (80, 127).

PD-1 (programmed death-1) is a relatively new member

of the extended B7-CD28 family of T-cell regulatory mole-

cules. PD-1 is not detectable on naive T cells, but its expres-

sion is induced in T cells, B cells, and myeloid cells after

activation (128). PD-1 expression is also upregulated in T

cells upon exposure to cc cytokines IL-2, IL-7, IL-15, and

IL-21 (129). The expression of PD-1 is particularly high on

the surface of functionally exhausted T cells in multiple per-

sistent viral infections in humans (130, 131), particularly

during chronic HIV infection (132–134), and is associated

with various measures of viral persistence (ultrasensitive

plasma HIV RNA levels, cell-associated HIV RNA levels, and

proviral HIV DNA levels) (135). In addition, PD-1+ CD4+ T

cells constitute a preferential reservoir for HIV (17). The

interaction between PD-1 and its ligand PDL-1 has been

shown to suppress HIV production in primary CD4+ T cells

from viremic and virally suppressed subjects (136).

Signaling pathways initiated upon the interaction of PD-1

with its ligands (PDL-1/PDL-2) negatively regulate signals

downstream of the TCR (137) and dampen cytokine produc-

tion and proliferation (138). The level of PD-1 expression

positively correlates with the degree of functional exhaus-

tion, but this phenotype is actively maintained by signaling.

PD-1 inhibits T-cell activation by pathways distinct from

CTLA-4 (139). PD-1 engagement leads to the inhibition of

Akt phosphorylation by preventing CD28-mediated activation

of PI3K. Using single-cell imaging, a recent study elucidated

a molecular mechanism of PD-1–mediated suppression

(140). Upon binding to PDL-1, PD-1 becomes clustered with

TCRs and is transiently associated with the phosphatase SHP2

(Src homology 2 domain–containing tyrosine phosphatase

2). These negative costimulatory microclusters induce the

dephosphorylation of the proximal TCR signaling molecules,

resulting in the suppression of T-cell activation. PD-1 ligation

is more effective than CTLA-4 in suppressing CD3/CD28-

induced changes in the T-cell transcriptional profile, suggest-

ing that differential regulation of PI3K activation by PD-1

and CTLA-4 ligation results in distinct downstream cellular

outcomes (139). Other negative regulators such as LAG-3

(lymphocyte-activation gene 3) (141) and BTLA (B- and T-

lymphocyte attenuator) (142), which have been shown to

localize at the immunological synapse, may exert a similar

role. The engagement of negative regulators of T-cell activa-

tion such as PD-1, CTLA-4, and others induces epigenetic

changes (143) and may regulate histone deacetylase (HDAC)

activity induced by CD3/CD28 T-cell activation. These obser-

vations suggest a key role for multiple negative regulator

molecules in the establishment and maintenance of the latent

HIV reservoir (Fig. 1).

Molecular interactions that govern virological synapse

formation

Along with co-opting the immunological synapse, another

mechanism HIV employs to enhance viral spread is the
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direct transfer of virus between infected and uninfected

CD4+ T cells (Fig. 1). Virological synapse formation is initi-

ated via the interaction between surface HIV gp120 on the

infected donor T cell and CD4 molecules on the surface of

the uninfected target cell, in the absence of TCR–peptide–

MHC interaction. Compared with the immunological syn-

apse, the virological synapse is short lived, with a mean

duration of 60 min (144) and completion of virus transfer

within 3 h (145, 146). Gp120 and CD4 molecules are at

the center of the microcluster and have been proposed to

form a cSMAC-like structure similar to that observed for the

TCR:MHC microclusters in immunological synapse forma-

tion (147–149). Like the immunological synapse, LFA-1

and ICAM-1 have been shown to assemble into an adhesive

ring in a pSMAC-like structure in the virological synapse

(83, 150). Unlike the immunological synapse, however,

other molecules are required for virological synapse forma-

tion; their localization and their role in HIV cell-to-cell

transmission are not as clearly defined and are still the sub-

ject of investigation. The first descriptions of the virological

synapse by the Sattentau group (146) indicated the involve-

ment of HIV Env and Gag from the HIV-infected donor cell,

and CD4, LFA-1, and CXCR4 enrichment in the target cell at

the point of contact. Studies using inhibitors of CD4 and

Env have confirmed the requirement for these molecules in

cell-to-cell HIV transmission, but HIV coreceptor antagonists

have failed to inhibit the process (145, 151). Additional

data using antibodies which block gp120–CD4 binding sug-

gest the complex between gp120 and CD4 initiates virologi-

cal synapse formation without requiring either CXCR4 or

CCR5 coreceptor molecules (145, 149); however, HIV core-

ceptors may be required for later steps, after synapse forma-

tion, in the target cell (152). Recent studies as to the role of

Gag in virological synapse formation have determined that

the matrix (MA) domain is required for cell-to-cell HIV

transmission and that Gag is specifically and directionally

recruited into a disk-shaped structure called a synaptic but-

ton (145, 153, 154). Accumulation of Gag in button struc-

tures is indicative of new particle assembly. However, Gag

has also been reported to aggregate into ring-like structures

(155). The significance of the different structures Gag can

form during virological synapse formation is not yet com-

pletely understood.

Other cellular factors implicated in HIV virological

synapse include the LFA-1 ligands ICAM-2 and ICAM-3, tet-

raspanins, lipid raft marker GM-1, and integrin a4b7 (156–

159). For cell-free routes of HIV infection, LFA-1 binding

to ICAM-1 has been demonstrated to enhance viral particle

infectivity and decrease the effects of neutralizing antibodies

by involvement in virus fusion (160). The role of the inter-

action of LFA-1 and its ICAM ligands during virological syn-

apse formation remains unclear. It has been hypothesized

that this complex may play a role in virological synapse

formation similar to that observed in the immunological

synapse that of pausing CD4+ T-cell migration to allow for

the interaction of the target and donor cells (152). A study

by Vasiliver-Shamis et al. (148) demonstrated that CD4+ T-

cell interaction with gp120 and ICAM-1 in a virological syn-

apse results in a TCR signaling cascade similar to that

observed in an immunological synapse, such as the phos-

phorylation of Lck, CD3f, ZAP70, LAT, SLP-76 Itk, and

PLCc. In contrast, they did not observe recruitment of PKCh

or intracellular calcium mobilization, which may indicate

that activation of the target CD4+ T cell through the virolog-

ical synapse is incomplete (148). This is significant for HIV

infection, as CD4+ T cells that are quiescent (G0) are highly

resistant to infection; however, incomplete activation that

results in progression to the G1b phase results in increased

susceptibility to HIV infection (28, 161). Consequently,

suboptimal stimulation of the target CD4+ T cell through

the virological synapse may be all that is required for pro-

ductive infection of an otherwise resistant T cell. This would

be conducive to HIV infection of long-lived memory CD4+

T cells and may be one mechanism leading to the establish-

ment of the HIV reservoir in HIV-infected subjects.

Another requirement for HIV cell-to-cell transmission is

the presence of lipid raft domains and cholesterol in the

virological synapse found by Jolly and Sattentau (157).

During viral assembly in infected cells, HIV is focused in

GM-1-rich lipid rafts at the plasma membrane (162–169).

In the virological synapse, lipid rafts in the infected donor

cell are polarized to the site of the cell–cell contact

(157). The role of lipid rafts in virological synapse

formation in the recruitment of downstream signaling

molecules or the stabilization of cell–cell contact remains

to be determined.

Actin remodeling has also been shown to be required for

virological synapse formation. Actin has been observed to

accumulate at the synapse site in the infected donor CD4+ T

cells (146, 170). Actin polymerization is induced by gp120

binding with CD4 and is required for CD4 and coreceptor

recruitment to the virological synapse (171–173). In the tar-

get CD4+ T cell, an opening in the actin structure has been

observed (148). This opening has been hypothesized to be

critical for successful cell-to-cell transmission, as polymer-

ized actin can act as a physical barrier that reduces viral
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infectivity post entry (174, 175). The precise roles for the

actin cytoskeleton in both donor and target cell in the viro-

logical synapse and the recruitment of necessary factors are

still under investigation.

The virological synapse: a vehicle for HIV persistence

The potential significance of cell-to-cell HIV transmission is

clear, as studies have demonstrated that cell-associated HIV

can have 100–1000 times the infection efficiency of cell-free

virus (144, 145, 176–178). Given this efficiency, it may be

hypothesized that a cell-to-cell infection route may result in

the transfer of more than one virion per synapse. Indeed,

several studies have indicated the generation of a high local

MOI (179, 180), which could be visualized in time-lapse

microscopy (154, 181, 182). This would arise from the

presence of multiple virions potentially present at the site of

transfer that may enter the target cell before mechanisms to

suppress multiple infection, such as downregulation of CD4,

can take place. Support for this mechanism in vivo comes

from the observed higher HIV DNA copy number per

infected cell derived from tissues, whereas peripheral

blood CD4 may only have a single provirus per infected cell

(183).

A new study performed in humanized BLT (bone mar-

row/liver/thymus) mice has offered additional insights into

the significance of cell-to-cell transmission in vivo and pro-

vides an intriguing model in which to study this phenome-

non. One of the advantages offered by humanized BLT mice

is the fact that the system also allows both naive and mem-

ory CD4+ T-cell homing to SLOs, as indicated earlier are

localized sites of high numbers of CD4+ T cells as potential

target cells for viral replication and transmission. Indeed, the

study by Murooka et al. (184) did find evidence for tether-

ing interactions that indicated virological synapse formation.

However, their study also reported approximately 10–20%

of infected cells in the lymph node to be multinucleated

syncytia (184). For most CD4+ T-cell models of virological

synapse formation, syncytia are not normally observed

(185). The short duration of the virological synapse com-

pared with the immunological synapse may be a mechanism

to reduce cell fusion events during cell-to-cell transmission

of HIV. Another mechanism is the recruitment of cellular

factors to the virological synapse that actively inhibits cell–

cell fusion such as regulatory tetraspanins. Tetraspanins are a

class of surface molecules that have a variety of functions in

the regulation of cell signaling and adhesion. Tetraspanins

such as CD9, CD63, and CD81 have been shown to inhibit

cell–cell fusion (186). Several studies have demonstrated a

requirement for CD63 and CD81 in the virological synapse

specifically in cell-to-cell transmission (186–188). High

expression levels of tetraspanins were also demonstrated to

reduce syncytium formation in a gag-dependent manner

(187).

Whether syncytia as a common outcome of cell-to-cell

HIV transmission in vivo are accurately recapitulated in the

BLT mouse model or are a product of the experimental

model background remains to be determined. Moreover,

Murooka et al. (184) report a difference between the results

of HIV infection in the BLT model system and another in vivo

model system for studying HIV infection, SIV infection of

Rhesus macaques. In the macaque model system, most SIV-

infected CD4+ T cells are resting memory phenotype (189),

whereas in the BLT mouse model the majority of the

infected CD4+ T cells in the lymph node were resting,

CD45RO+ cells of central or effector memory phenotype

(184). In determining the role of cell-to-cell HIV transmis-

sion between CD4+ T cells in vivo, the phenotype of both the

donor and target CD4+ T cell may provide important clues

as to how HIV infection is initiated and ultimately how a

latently infected reservoir is established. For example, it is

well known that CD4+ immune cells at different activation

states have varying rates of permissiveness for HIV infection,

with the more activated CD4+ effector memory T-cell subset

being the most permissive (27). If HIV infection was main-

tained solely in activated effector T cells, then the immune

system may be more able to eradicate the virus due to a

greater likelihood of ongoing viral replication in these cell

types and recognition by effector T cells. However, it has

been demonstrated previously that HIV is present in both

central and effector memory CD4 subsets (17), and the

mechanism of infection of these different subsets and estab-

lishment of the latent HIV reservoir in each is still poorly

understood. The virological synapse may play a more signif-

icant role in establishment of the latent reservoir than previ-

ously thought, if it can be demonstrated in vivo that the

interactions between CD4+ T cells themselves or between

CD4+ T cells and APCs in the lymph nodes enhanced infec-

tion rates resting CD4+ T cells that have been shown to be

more resistant to infection (26, 28, 190). If these CD4+ tar-

get cells that are more naturally resistant due to a lower acti-

vation state or quiescence become transiently, suboptimally

activated during formation of the virological synapse, the

target cell then may rapidly return to a quiescent state and

be maintained as a long-lived memory cell carrying proviral

DNA. What is more, the mechanism of cell-to-cell transmis-

sion may also allow HIV to spread without triggering
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immune system detection, as several studies have suggested

that virological synapse transmission of virus limits the

epitope exposure of HIV gp120 to broadly neutralizing anti-

bodies (191, 192). Altogether, these data suggest a new

paradigm for establishment of HIV infection that encom-

passes virological synapse formation and cell-to-cell HIV

transmission as a key mediator of HIV persistence and

defines new challenges on the road to eradication.

The role of the immune synapse in HIV latent

reservoir maintenance

The immunological synapse represents a crucial point of

communication between T cells and APCs through which

the APC can direct the T cell to a number of different cell

fates. Significantly, this interaction may contribute to the

maintenance of the latent HIV reservoir through various

mechanisms. For example, the context of the immune syn-

apse can influence the effector function of HIV-specific T

cells resulting in diminished anti-HIV responses. Likewise,

the immune synapse may be able to alter the biology of

HIV-infected cells rendering the HIV silent for long periods

of time. This section seeks to identify ways in which this

critical component of the immune response may be contrib-

uting to the maintenance of the latent HIV reservoir.

Immune synapse and induction of stemness as a

mechanism of latency

As detailed above, one mechanism of HIV persistence during

prolonged ART is the long-term survival of latently infected

quiescent memory CD4+ T cells, which may serve as a reser-

voir that contributes to viral load rebound after cessation of

ART. This mechanism can potentially be explained with the

stem cell–like nature of memory T cells, which has become a

point of recent interest (193). Memory CD4+ T cells share

several characteristics with stem cells, most notably, they are

long-lived, capable of self-renewal, and able to differentiate

upon stimulation; latently HIV-infected memory CD4+ T

cells share these traits. Indeed, a population of memory T

cells was recently identified with stem cell–like properties

(194). Using a mouse model, stem cell memory T cells

(Tscm) were found to display a gene signature intermediate

of naive T cells and central memory T cells (Tcm). Tscm are

CD45RA+CD95+IL-2Rb+ and demonstrated the robust recon-

stitution potential of memory T cells. In non-human primate

models, this same population was observed during the acute

phase of viral infection and was maintained long term, com-

pared with other memory subsets, after the removal of anti-

gen (195). Although HIV infection in this population has

not been demonstrated, it stands to reason that a ‘reservoir

of T-cell memory’ could also be a reservoir of HIV latency.

While little is yet known about how the mechanisms that

lead to differentiation into stem cells T cells can be induced

to become T-cell stem cells, observations of embryonic stem

cells and inducible pluripotent stems can give some predic-

tion as to what signals could be promoted by the immuno-

logical synapse. Negative regulators of T-cell signaling may

be connected to signals that are known to provide critical

stem cell functions. Indeed, several transcriptional coactiva-

tors have been described that change the outcome of TCR

stimulation when present in the context of an immune syn-

apse. One such example is the Yes-associated protein (Yap),

a protein required for self-renewal of embryonic stem (ES)

cells, which is responsible for a transcriptional profile of

pluripotency genes that include Oct4, Nanog, and Sox2

(196). Yap expression has recently been implicated in self-

renewal and memory precursor maintenance in CD8+ T cells

and is inhibited by activation of Akt and the Hippo pathway

(197). Activation of PD-1 on T cells inhibits the activation

of Akt, which may allow for sustained Yap expression and

direct a more stem-like quality in the T cell (139). This

observation suggests a mechanism by which the composi-

tion of molecules at the immune synapse may be able to

shift an infected T cell toward a long-lived, stem-like mem-

ory cell. Yap expression in the context of Wnt signaling is

another mechanism associated with stem cell self-renewal

and regulation of differentiation. In colorectal cancers, the

canonical Wnt signaling complex, b-catenin/TCF4 (T-cell

factor 4), drives Yap expression (198). More recently, it

was proposed that after Yap is phosphorylated by LATS1/2

(large tumor suppressor 1/2) kinases, it is retained in the

cytoplasm where it interacts indirectly with disheveled (Dvl)

and inhibits nuclear translocation of Dvl, blocking TCF tran-

scription of Wnt target genes (199).

Another potential promoter of stemness in HIV-infected

CD4+ T cells comes from cytokines secreted at the site of

the immune synapse. One example is signal transducer

and activator of transcription-3 (STAT-3), a transcription

factor that links cytokine signals to pluripotent stem cell

potential. Activation of STAT-3 is required for self-renewal

of ES cells (200, 201), and its critical role in T cells is

supported by the identification of patients with a mutation

in STAT-3 that have dysfunction in the maintenance of T-

cell memory (202). Furthermore, recent observations in

CD4+ T cells point to STAT-3 activation downstream of

IL-21 as a mechanism for maintaining stem cell–like quali-

ties in Th17 cells (202). In addition to the importance of
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STAT-3 signaling in stem cell potential, these experiments

also point to a role for b-catenin Wnt signaling and Notch

signaling.

Wnt signaling pathways and gene regulation

Wnt signaling is a fundamental component in embryonic

stem cell proliferation, differentiation, and cell fate decisions

(203–206), homeostasis in adult stem cells and tissues, and

self-renewal in cancer stem cells (reviewed in 207). The

diversity of receptors, ligands, and regulators (208) that

comprise the Wnt signaling pathway provide the foundation

to influence cell development and homeostasis in a variety

of organs/tissues.

Wnt signaling is triggered through either a b-catenin–

dependent (canonical) or -independent (non-canonical)

pathway by interactions between one of 19 Wnt ligands

with one of 10 seven-transmembrane receptors termed Friz-

zled (Fzd). Non-canonical signaling does not rely on gene

expression associated with b-catenin. Signaling occurs when

Wnt ligands specific to non-canonical signaling binding to

Fzd receptors and coreceptors other than Lrp4 [Ldl (low

density lipoprotein) receptor-related protein 4], Lrp5, Lrp6,

or no coreceptor (209). The most well-characterized non-

canonical pathways are the planar cell polarity pathway and

the Ca2+-dependent pathway (reviewed in 210, 211).

b-catenin is the key component to canonical Wnt signaling

and mediates both structural and signaling functions. In the

absence of Wnt signaling, a destruction complex comprised

of glycogen synthase kinase 3b (GSK3b), casein kinase 1

(CK1), axin and adenomatous polyposis coli (APC) phosphor-

ylate b-catenin, and target the phosphorylated form for unbi-

quitin-dependent degradation by the E3 ligase b-transducin

repeat-containing protein (b-TrCP) (Fig. 2). In the presence of

Wnt ligands, Wnt binds to its receptor, Fzd, and coreceptor,

Lrp, to induce Lrp phosphorylation mediated by GSK3b and

CK1. Through an unclear disheveled (Dvl)-dependent mecha-

nism, unphosphorylated b-catenin accumulates and translo-

cates into the nucleus where b-catenin replaces Groucho and

corepressors from DNA-bound T-cell factor (TCF)/lymphoid

enhancer factor (LEF) and recruits transcriptional coactivators

and histone modifiers to drive expression of genes that pro-

mote cell cycle and survival (cyclinD1, c-Jun, fra-1, c-myc).

CTLA-4, a negative regulator of T-cell activation and correlate

of HIV latency, is upregulated by Wnt3a in human melanoma

A B

Fig. 2. Canonical Wnt signaling and its potential role in T-cell differentiation, self-renewal, and HIV latency. (A) In the absence of Wnt,
the destruction complex composed of APC, Axin, Ck1, and GSK3-b binds to and phosphorylates cytoplasmic b-catenin. Phosphorylated b-catenin
is ubiquitinated by b-TrCP followed by proteasomal degradation. In the current model of canonical Wnt signaling, b-TrCP ubiquitination and
proteasome degradation occurs as a separate complex from the destruction complex, whereas b-TrCP and the proteasome are part of the
destruction complex in a new model proposed by Li et al. (214). Within the nucleus, TCF/LEF and the help of transcriptional corepressors
(Groucho) and HDACs repress target genes. ‘Wnt-off’ favors CD4 memory T-cell differentiation and may influence HIV replication. (B) In the
presence of Wnt ligands, Wnt binds to Fzd receptor and Lrp5/6 coreceptor to initiate signaling. CK1c and GSK3b phosphorylate Lrp5/6 at the
plasma membrane and the interaction between CK1c, GSK3b, Axin, and Dvl inactivates/blocks ubiquitination of phosphorylated b-catenin [new
model (214)] or causes a dissociation of the destruction complex (current model). Free, unphosphorylated b-catenin enters the nucleus and
displaces corepressors from TCF/LEF and recruits transcriptional coactivators and histone modifiers such as CBP/p300, Pygo, and Bcl9 to drive
target gene expression. ‘Wnt-on’ favors Tcm self-renewal and induction of HIV latency.
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tumors (212) and differentially expressed along with the nega-

tive regulator PD-1 in activated CD4+ T cells (J.H. Brehm and

R.-P. Sekaly, unpublished data). A comprehensive list of Wnt

target genes can be found at http://www.stanford.edu/

group/nusselab/cgi-bin/wnt/target_genes (213, 214).

The structural function of b-catenin is defined by interac-

tion with cadherins at the plasma membrane, mediating an

indirect role in cell-to-cell adhesion and reduced prolifera-

tion. Increased expression of cadherins in human SW480

human colon carcinoma cells recruits b-catenin to adherin

junctions at the cell surface, decreasing nuclear pools of

b-catenin, and thereby antagonizing b-catenin–LEF/TCF tran-

scription of genes associated with proliferation (215, 216).

Wnt signaling transcription factors TCF1 and TCF3 have

activator and repressor functions, respectively, in embryonic

stem cell self-renewal and determination of stem cell fate.

In the absence of the mitogen-activated protein kinase

(MAPK) extracellular signal-regulated kinase (ERK) and

GSK3b inhibition, TCF3 bound to DNA represses genes spe-

cific to self-renewal (Oct4, Sox2, Nanog, and Klf2/4) and

drives stem cell differentiation. Conversely, in the presence

of MAPK (ERK) kinase and GSK3b (Wnt signaling) inhibi-

tion, genes that maintain stem cell self-renewal are

expressed after b-catenin removal of TCF3 repression fol-

lowed by transcriptional activation of TCF1 and stimulation

of biosynthetic and metabolic processes (204, 205). Genes

regulating Wnt signaling activity are often differentially reg-

ulated in T-cell populations, as seen from microarray data

analyzed at VGTI-FL. It will be interesting to interpret these

data and what their expression means related to Wnt signal-

ing activity specific to self-renewal and survival of memory

T cells.

Role of Wnt/b-catenin signaling in stem cell memory T

cells and HIV latency

Components of both the canonical and non-canonical Wnt

signaling pathways are active in T lymphocytes. For

instance, CD8+ naive T cells (Tn) and Tscm highly express

Wnt signaling transducers, TCF7 and LEF1, that are lost dur-

ing differentiation from Tn to Tscm to Tcm to effector

memory T cells (Tem) (194). In fact, Wnt3a ligand and

inhibitors of GSK3b inhibit the differentiation of Tn to

short-lived effector T cells (Teff) while enhancing self-

renewal of CD4+ and CD8+ Tcm cells (50, 51) and CD8+

Tscm (50) (Fig. 2). Furthermore, gain-of-function and loss-

of-function studies of b-catenin and TCF1 in CD8+ T cells

from mice confirm that canonical Wnt signaling is sufficient

for the establishment of long-term Tcm cells (217–219).

Consistent with these findings, preliminary observations

in our laboratory indicate that memory CD4+ T cells express

Wnt receptors (FZD1-10 and LRP6). After stimulation of

memory CD4+ cells with anti-CD3/CD28 in the presence of

Dickkopf-related protein 1 (Dkk1), an inhibitor for canoni-

cal Wnt/b-catenin signaling, the number of proliferating

cells increased and phosphorylation of b-catenin (ser33/37/

Thr41) decreased (C. Benne and R.-P. Sekaly, unpublished

data), implying that Wnt/b-catenin signaling may maintain

self-renewal and survival of memory CD4+ T cells. In fact,

diminished ki67 and CD38 expression on memory CD4+ T

cells and preservation of the Tcm subset were observed after

a 7-day culture in the presence of Wnt3a and anti-CD3/

CD28 (J.H. Brehm and R.-P. Sekaly, unpublished data).

These findings in CD4+ T cells in combination with pub-

lished results strongly suggest the canonical Wnt/b-catenin

pathway as a critical component in self-renewal of CD4+

Tscm and Tcm populations and may be a mechanism for

maintaining cells containing the HIV latent reservoir.

Notch signaling and gene regulation

Similar to Wnt, Notch signaling is a key factor in mediating

stem cell proliferation, self-renewal, differentiation, and qui-

escence in various tissues associated with embryonic develop-

ment and adult tissue homeostasis. Notch signaling is context

dependent; thus, the microenvironment of cells in which

Notch is signaling will strongly influence their fate. Notch

signaling in stem cells and other tissues has been elegantly

reviewed by Koch et al. (220). In context of the immunologi-

cal synapse, combined Notch signaling and TLR stimulation

of DCs can modulate TLR-induced cytokine expression com-

pared with TLR or Notch signaling alone, including increased

IL-2 and IL-10 expression and decreased IL-12 expression.

This mechanism is dependent on PI3K activity after signaling

through an alternate Notch pathway than the canonical Notch

pathway described below (221). DC–T-cell interactions and

the resulting immune response may be affected in an envi-

ronment influenced by Notch/TLR ligand signaling.

Canonical Notch signaling occurs after a cell presenting

ligand [Jagged1, Jagged2, Delta-like 1 (Dll1), Dll3, and

Dll4] binds to a Notch receptor (Notch 1, 2, 3, and 4) on

an adjacent cell (Fig. 3). The triggered Notch receptor

undergoes two sequential proteolytic cleavages to form a

free Notch intracellular domain (NICD). The NICD translo-

cates into the nucleus followed by interaction with a tran-

scriptional repressor complex comprised of CSL [C-

promoter–binding factor-1 (CDF-1) suppressor of Hairless/

Lag-1, also called recombining binding protein suppressor
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of hairless (RBP-J)] and other corepressors. The NICD–CSL

interaction dissociates the repressor complex and recruits

MAML (mastermind-like proteins) and coactivators such as

p300 to release gene silencing and upregulate Notch target

genes (222, 223).

Notch signaling in T-cell differentiation and quiescence

Preservation of long-lived quiescent T cells is dependent on

inhibition of apoptosis and maintenance of cells in a non-

dividing (G0) state. Notch signaling regulates both cell cycle

and apoptosis. For example, target gene Hes1 (hairy and

enhancer of split-1) downregulates Notch ligands and

expression of G1 cyclins in mouse neural progenitors

(224), and Mathieu et al. (225) identify that Pdcd1 transcrip-

tion of a negative regulator for T-cell activation, PD-1, is

controlled through Notch signaling in activated CD8+ T

cells. Several studies report that high levels of Notch signal-

ing induce quiescence, whereas low levels promote prolifer-

ation and differentiation (226–228). Furthermore, a recent

study reported that Notch protects expanded CD4+ T-cell

clones from apoptosis and stimulates genes found in the

metabolic pathway (i.e. carbohydrate, lipid, glucose

metabolism, glucose transport, biosynthesis, and energy

generation) (229).

Fig. 3. Role of the canonical Notch signaling pathway in asymmetric cell division and HIV latency. Notch ligand on a signal-sending cell
binds [Jagged1, Jagged2, Delta-like 1 (Dll1), Dll3, and Dll4] to a Notch receptor (Notch 1, 2, 3, and 4) on an adjacent signal-receiving cell. The
triggered Notch receptor undergoes two sequential proteolytic cleavages to form a free Notch intracellular domain (NICD), the first cleavage in
the extracellular region by ADAM10/17 (a disintegrin and metalloproteinase), and the second by c-secretase activity of PS (preselin) within the
transmembrane domain. The NICD translocates into the nucleus followed by interaction with a transcriptional repressor complex composed of
CSL [C-promoter–binding factor (CDF-1) suppressor of Hairless/Lag-1; aka Recombining binding protein suppressor of hairless (RBP-J)] and
other corepressors. The NICD–CSL interaction dissociates the repressor complex and recruits MAML (mastermind-like proteins) and coactivators
such as p300 to release gene silencing and upregulate Notch target genes. Numb is an inhibitor of Notch signaling. In our proposed model for
asymmetric cell division for latency, Notch signaling will be restricted in cells distal to the APC that contain Numb, maintaining Tcm and Tscm
phenotype and HIV latency. Cells proximal to the APC will have decreased expression of Numb; thereby maintaining the capacity for Notch
signaling, T-cell proliferation, NFjB activity, IFN-c, and IL-2 production offering a favorable environment for HIV replication.
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Although Wnt and Notch are separate pathways, numer-

ous reports suggest that these two pathways are interlinked

in cell self-renewal, quiescence, and cell fate (220, 222).

For instance, Wnt signaling upregulates Notch ligands Jag1

(230), Dll4 (231), and expression of the Notch2 receptor

(232). In contrast, Wnt pathway component Dvl binds

NICD to block Notch signaling (233). Additional interac-

tions between NICD and Wnt proteins have also been

shown to disrupt Notch activity. These include axin-NICD

(234), axin and adenomatous polyposis coli-NICD (235),

and GSK3b phosphorylation of NICD (236, 237). Preselin1

(PS1) is another protein with Wnt and Notch activity. PS1 is

the c-secretase involved in the intramembranous proteolysis

of Notch within the signal-receiving cell to form the NICD;

however, PS1 is also a negative regulator of b-catenin degra-

dation in the canonical Wnt signaling pathway (238, 239).

The role of Notch in memory T-cell differentiation (Tn,

Tcm, Tem, and Teff) has not yet been investigated. How-

ever, the following characteristics support the notion that

Notch signaling may be linked to memory T-cell homeosta-

sis: (i) Notch increases cell survival in T cells; (ii) high lev-

els of Notch signaling induce cell quiescence; (iii) Wnt and

Notch pathways regulate one another (220, 222); and (iv)

regulation of Notch signaling is associated with asymmetric

division, as discussed below (240–242). Combining these

factors with studies in stem cells suggest that a versatile

pathway such as Notch may also facilitate memory T-cell

homeostasis and differentiation.

Notch–Wnt signaling and inhibition of HIV replication

Not only are Notch and Wnt important in CD4+ T-memory

cell development, proliferation, and survival, recent studies

have shown that Notch and canonical Wnt signaling modu-

late HIV replication in various target cells. For instance,

Tyagi and Karn (243) demonstrate that CBF-1 (C-promoter–

binding factor-1, the mammalian representative of the CSL

family) of the Notch signaling pathway reduces RNA poly-

merase II on the HIV promoter and recruits HDACs to the

LTR in Jurkat cells, inhibiting HIV transcription. In other

studies, b-catenin and TCF4 of the Wnt/b-catenin pathway

are strong inhibitors of HIV replication in astrocytes and

peripheral blood mononuclear cells (244–247). Of interest,

IFN-c, a type II interferon with antiviral activity that pro-

motes proapoptotic response in infected cells, is found to be

elevated in plasma, lymph nodes, and cerebrospinal fluid of

HIV-infected individuals. IFN-c upregulates expression of

the Wnt/b-catenin pathway inhibitor Dkk1 through STAT3

signaling and enhances HIV replication (248). These data

suggest that components of both the Notch and Wnt signal-

ing pathways inhibit HIV replication, contributing to induc-

tion of HIV latency in CD4+ memory T cells, whereas

components of immune response to infection (IFN-c) antag-

onize Wnt signaling to increase HIV replication. It will be

important to explore the mechanisms associated with Wnt/

Notch signaling in HIV infection of CD4+ memory T cells

and their relationship in HIV-infected populations (i.e.

acute, chronic, elite controllers, and antiretroviral-treated

immune responders or immune non-responders).

Asymmetric cell division as an inducer of latency

Dividing stem cells must have capacity to produce progeny

with differentiation potential and progeny that retain the

parental, stem cell qualities. One mechanism through which

this is possible is called asymmetric cell division. This is typ-

ically observed in stem cells that are capable of polarization

such that the composition of one daughter cell is distinct

from the other. In certain types of stem cells, this mecha-

nism will generate one daughter cell that retains the original

stem cell phenotype and another that has distinct effector

cell function (249, 250).

Asymmetric division of this kind is perhaps most apparent

in T cells because prolonged engagement of the TCR in an

immune synapse creates a highly polarized cell for division.

This polarization results in unequal distribution of proteins

between the two daughter cells and generates one cell with

effector function and one with memory function (240).

Many molecules important to effector function and differen-

tiation such as IFN-cR, PKC-f, T-bet, and CD25 segregate

preferentially toward the immunological synapse and segre-

gation of the proteasome is responsible, at least partially, for

this effect (251, 252). The process of polarization of divid-

ing cells persists even after the dissemination of the immu-

nological synapse and is retained by the networks of the

partitioning-defective protein 3 (Par3) and Scribble com-

plexes (241).

Although the segregation of HIV-specific proteins toward

the immunological synapse has not been characterized, it

seems plausible given the polarization of viral particles

toward the virological synapse. The possibility that HIV par-

ticles and proteins could accumulate at the interface with an

APC suggests a very appealing mechanism by which a cell

division would result a daughter cell with active HIV and

one with latent HIV. Mathematical predictions have sug-

gested that this concept of asymmetric division within

HIV-infected cells may account for the kinetics of detectible

virus in patients undergoing ART (253).
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The basic model of asymmetric cell division in the main-

tenance of HIV latency is as follows. An HIV-infected CD4+

T cell engages its cognate antigen on an APC forming a

stable immunological synapse. Along with cellular compo-

nents that polarize toward the APC, HIV proteins and parti-

cles would also move toward the active TCR interface. After

division, the daughter cell engaged with the APC would

have the effector cell phenotype and would contain the

active HIV. The daughter cell that is distal to the immuno-

logical synapse would maintain a memory phenotype, or

possibly a stem cell memory phenotype, and would contain

only the integrated HIV proviral DNA. In this case, the

memory cell would lack the essential transcription machin-

ery, such as Tat protein, to drive HIV virus production. If

this model were accurate, it would predict that the latent

HIV reservoir would be smaller in the effector cell popula-

tion than in memory population, as the effector cells would

contain mostly active virus and would be purged during

ART. In fact, when the latent reservoir is quantified in anti-

gen-experienced CD4+ T-cell subsets, the latent reservoir

mostly persists in the less differentiated Tcm subset and is

significantly decreased in Tem cells (17).

Notch–Wnt signaling and asymmetric division in HIV

latency

Unequal distribution of Numb, an inhibitor of notch signal-

ing, is a classical indicator for asymmetric division in antigen-

stimulated cells and essential in determining cell fate (240,

241). Numb is polarized to the distal side of a cell undergoing

division, along with Par3 and atypical protein kinase C

(aPKC), whereas Scribble and disks large family (DlgF) polar-

ize to the proximal cell (241). In the proposed model for

asymmetric cell division for HIV latency, Numb would be

allocated to the cell distal to the APC, restricting Notch signal-

ing in cells that maintain a memory or Tscm phenotype, and

replicating HIV would be polarized to effector cells harboring

ongoing Notch signaling (Fig. 3). Initial studies indicate that

Notch signaling is required for CD4+ and CD8+ T-cell prolif-

eration, NFjB activity and IFN-c production (254), and will

increase IL-2 receptor expression followed by production of

IL-2 on CD4+ T cells (255). Inhibition of Notch signaling by

Numb during asymmetric division would prevent activation

and differentiation of distal daughter cells, contributing to the

Tcm and Tscm phenotype.

Habib et al. (256) recently designed a single-cell embry-

onic stem cell in vitro model for Wnt-induced asymmetric

division. Localized Wnt signal stimulates Wnt signaling

‘Wnt-on’ in the dividing cell proximal to Wnt3a ligand and

maintains embryonic stem cell pluripotency, whereas the

dividing cell distal to the Wnt3a ligand is in a ‘Wnt-off’

state and differentiates toward an epiblast stem cell (EpiSC)

fate (256). To our knowledge, the role of Wnt3a in asym-

metric cell division and its association with Numb and

Notch signaling in vivo has not yet been investigated.

Although these observations indicate a role for Notch and

Wnt signaling to promote asymmetric division of memory

CD4+ T cells and HIV latency, directed studies will help elu-

cidate these novel hypotheses.

Conclusion

The immunological synapse provides strong potential mecha-

nisms for the establishment and maintenance of a latent HIV

reservoir. The immunological synapse can dictate functional-

ity of T cells through expression of a multitude of cytokines

and cofactors. In the context of an HIV-infected T cell, this

means that components of the immune synapse may be

able to facilitate latency as well as active infection. In

addition, the observation of asymmetric cell division in

response to T-cell stimulation by the immune synapse

provides a potential mechanism by which HIV infection

can be maintained in a latent state, while at the same

time producing progeny that actively express HIV virus.

As the precise mechanisms of HIV latency establishment

and maintenance become clearer, interventions that disrupt

specific components of the immunological synapse may

represent the final step in the process of HIV eradication.
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