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ABSTRACT The intestinal microbiome plays an essential role in regulating many as-
pects of host physiology, and its disruption through antibiotic exposure has been
implicated in the development of a range of serious pathologies. The complex meta-
bolic relationships that exist between members of the intestinal microbiota and the
potential redundancy in functional pathways mean that an integrative analysis of
changes in both structure and function are needed to understand the impact of an-
tibiotic exposure. We used a combination of next-generation sequencing and nu-
clear magnetic resonance (NMR) metabolomics to characterize the effects of two
clinically important antibiotic treatments, ciprofloxacin and vancomycin-imipenem,
on the intestinal microbiomes of female C57BL/6 mice. This assessment was per-
formed longitudinally and encompassed both antibiotic challenge and subsequent
microbiome reestablishment. Both antibiotic treatments significantly altered the mi-
crobiota and metabolite compositions of fecal pellets during challenge and recovery.
Spearman’s correlation analysis of microbiota and NMR data revealed that, while
some metabolites could be correlated with individual operational taxonomic units
(OTUs), frequently multiple OTUs were associated with a significant change in a
given metabolite. Furthermore, one metabolite, arginine, can be associated with in-
creases/decreases in different sets of OTUs under differing conditions. Taken to-
gether, these findings indicate that reliance on shifts in one data set alone will gen-
erate an incomplete picture of the functional effect of antibiotic intervention. A full
mechanistic understanding will require knowledge of the baseline microbiota com-
position, combined with both a comparison and an integration of microbiota,
metabolomics, and phenotypic data.

IMPORTANCE Despite the fundamental importance of antibiotic therapies to human
health, their functional impact on the intestinal microbiome and its subsequent abil-
ity to recover are poorly understood. Much research in this area has focused on
changes in microbiota composition, despite the interdependency and overlapping
functions of many members of the microbial community. These relationships make
prediction of the functional impact of microbiota-level changes difficult, while analy-
ses based on the metabolome alone provide relatively little insight into the taxon-
level changes that underpin changes in metabolite levels. Here, we used combined
microbiota and metabolome profiling to characterize changes associated with clini-
cally important antibiotic combinations with distinct effects on the gut. Correlation
analysis of changes in the metabolome and microbiota indicate that a combined ap-
proach will be essential for a mechanistic understanding of the functional impact of
distinct antibiotic classes.
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The intestinal microbiome plays an important role in regulating many aspects of host
physiology, including glucose and fat metabolism (1–3), systemic immunity (4, 5),

and central nervous system function (6, 7). Antibiotic-induced disruption of the intes-
tinal microbiota has been known for some time to be associated with infection, such as
by Clostridium difficile (8). For example, cefoperazone administration in mice results in
the development of an intestinal metabolome that favors C. difficile germination and
growth (9). In addition, antibiotic-induced perturbation of gut microbiota is being
increasingly associated with both the loss of beneficial functions and the gain of
microbiota functions that are proinflammatory (10).

The clear importance of the intestinal microbiota to host health has also led to
growing concerns about the wider impact of antibiotic interventions on chronic
conditions, particularly during human development (11–16). While establishing links
between antibiotic exposure and outcome is challenging, large-cohort studies have
concluded that the use of certain antibiotics, including vancomycin, cephalosporins,
penicillins, and particularly macrolides, can be associated with weight gain (15–18). For
example, weight gain in mice has been associated with an increase in Lactobacillus
reuteri and a decrease in Escherichia coli cells as a result of vancomycin administration
(19). Changes in short-chain fatty acids (SCFAs) resulting from exposure to vancomycin
suggest a functional consequence of antibiotic exposure. A change in a given metab-
olite therefore may prove to be a more direct link to a particular pathophysiological
change than loss or gain of individual taxa (20–22), especially in light of functional
redundancy (19, 20, 23). SCFAs are immunomodulatory (21, 22), can interact with nerve
cells to stimulate the sympathetic and autonomic nervous system (24, 25), regulate
colonic energy metabolism and autophagy (26), and have a range of other important
functions (1, 27, 28). Increasing the focus on the metabolome also reduces concern over
the impact of variety in baseline gastrointestinal microbiota, which as we have recently
shown, differs even in genetically identical mice within the same production facility
(29). Studying antibiotic-induced changes by combining the microbiota and metabo-
lome therefore provides a promising route for developing mechanistic insight into their
impacts on the microbial community and, in the longer term, on host outcome.

Here, we investigate the relationship between the antibiotic-induced disruption and
reestablishment of the intestinal microbiota and the corresponding changes in the fecal
metabolome in genetically identical mice. We used two distinct antibiotic treatments,
ciprofloxacin and a vancomycin-imipenem combination, that importantly have been
shown to differ markedly in their therapeutic impacts on murine microbiota (30), with
ciprofloxacin having minimal effects on the anaerobic gut microbiota and vancomycin-
imipenem reducing intestinal anaerobes with a broad-spectrum activity (31). Our first
aim therefore was to characterize how two substantially different antibiotic regimens
have an impact on the same mouse gut microbiota and metabolome. By so doing, we
also aimed to determine the additional value resulting from integrating these two
approaches in terms of understanding the impact of antibiotic challenge on the murine
gut microbial community.

RESULTS
Antibiotics alter microbial alpha diversity. The fecal microbiota and metabolome

were assessed immediately prior to antibiotic treatment (baseline, or time 1 [T1]), after
14 days of antibiotic treatment (during the course of antibiotic treatment, T2), and
9 days following the termination of antibiotics (recovery, T3). Fecal microbiota alpha
diversity was assessed across each time point for the control and antibiotic-treated
groups. The taxon richness (Taxa_S), evenness (Simpson index), and diversity (Shannon
index) of murine fecal microbiota are shown in Fig. 1A to C, respectively. Ciprofloxacin
treatment resulted in a significant reduction in taxon richness (P � 0.008, Wilcoxon test)
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but no change in microbiota diversity and evenness. Vancomycin-imipenem treatment
resulted in a significant decrease in taxon richness (P � 0.016), evenness (P � 0.016),
and diversity (P � 0.016) (Fig. 1).

Antibiotic treatment resulted in shifts in the fecal microbial composition and
structure. The fecal-microbiota compositions of the control and antibiotic groups were
visualized by nonmetric multidimensional scaling (NMDS) based on the Bray-Curtis
dissimilarity distances of square root-transformed relative abundances (Fig. 2A; see also
the compositional data shown in Fig. S1 in the supplemental material). Permutational
multivariate analysis of variance (PERMANOVA) indicated that the gut microbiota

FIG 1 Alpha diversity analysis of fecal microbiota of the control, ciprofloxacin, and vancomycin-
imipenem groups. The fecal microbial community of mice was analyzed immediately before treatment
(baseline, T1) and after 14 days of antibiotic treatment (T2), as well as at 9 days after antibiotic treatment
(T3), to analyze for recovery from antibiotics. Statistical significance between the T1, T2, and T3 time
points were analyzed using the Wilcoxon test at a significance level of 0.05.
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compositions between the groups did not differ significantly prior to the antibiotic
treatment period (Table S1). Analysis of the distance to a group’s centroid (permuta-
tional analysis of the homogeneity of group dispersions [PERMDISP]) also revealed no
significant difference in the levels of the homogeneity of dispersions of the microbial
community between the control group and the ciprofloxacin {t � 1.245, permutation
test P value [P(perm)] � 0.387} or vancomycin-imipenem [t � 1.451, P(perm) � 0.328]
group at baseline (Fig. 2B).

Within 14 days of antibiotic treatment, the fecal microbial compositions between
the control and antibiotic groups were significantly different [P(perm) � 0.0001, square
root estimated components of variation (ECV) � 41.73, 9,951 permutations] (Table S1).
Pairwise comparison indicated that ciprofloxacin significantly altered the microbiota
composition from that in the control group [t � 3.82, P(perm) � 0.0003, 5,069
permutations] (Table S1). Antibiotic-associated effects on the homogeneity of micro-
biota community dispersion were analyzed using PERMDISP (Fig. 2B), and linear
discriminant analysis effect size (LEfSe) analysis was performed to determine bacterial
taxa that significantly differed between the control and antibiotic groups (Fig. 3). The
distance to the group’s centroid was significantly reduced in the ciprofloxacin group
compared to that for controls [t � 3.466, P(perm) � 0.003] (Fig. 2B), suggesting that
microbiota changes resulted from antibiotic selective pressure. LEfSe comparisons
indicated that ciprofloxacin resulted in significant decreases in several taxa, including
Odoribacter, Alistipes, Streptococcus, Lactobacillus, Clostridium, Turicibacter, and RC9 as
well as the Prevotellaceae (uncultured) and RF9 families (Fig. 3A), which were com-
pletely depleted by ciprofloxacin administration compared to the taxon levels of the
control group (Fig. S2). Additionally, increased relative abundances of Bacteroides,
Marvinbryantia, and Coprococcus organisms were observed in the ciprofloxacin group.

Vancomycin-imipenem also resulted in a significant difference in the fecal microbi-
ota compositions [t � 10.43, P(perm) � 0.0003, 5,043 permutations] and significantly

FIG 2 Shifts in the microbial community compositions of the control and antibiotic groups. (A) NMDS
plot based on Bray-Curtis distances of the fecal microbiota. Each data point represents a mouse fecal
sample from the control, ciprofloxacin, or vancomycin-imipenem group at each time point, with the
corresponding labels indicated on the right. (B) The distance from the centroid within each group was
analyzed using PERMDISP to determine the homogeneity of dispersion. Statistical significance between
the control and antibiotic groups for each time point was analyzed based on the P value of the
permutation tests at a significance level of 0.05. C, control; CIP, ciprofloxacin; VI, vancomycin-imipenem.
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reduced the distance to the group’s centroid compared to that of the control group
[t � 8.896, P(perm) � 0.0004] (Table S1 and Fig. 2B, respectively). Comparison of the t
statistic values indicated that these changes were greater than those observed with
ciprofloxacin. LEfSe analysis comparing the control and vancomycin-imipenem groups
indicated significant depletion of large numbers of taxa, including in members of the
Bacteroidetes phylum (Odoribacter, Alistipes, Bacteroides, Parabacteroides, RC9, S24-7),
Firmicutes phylum (Roseburia, Candidatus arthromitus, Clostridium, and Turicibacter), and
Enterorhabdus, as well as members of the Lachnospiraceae, Ruminococcaceae, Prevotel-
laceae, and RF9 families (Fig. 3B). These changes were accompanied by increases in the
relative abundance of Proteobacteria, including Enterobacter, Escherichia-Shigella, Citro-
bacter, Achromobacter, and Salmonella, as well as the genera Streptococcus, Lactobacil-
lus, and Planomicrobium.

Agent-specific recovery of baseline fecal microbiota following antibiotic treat-
ment. The degree to which the fecal microbial community had recovered by 9 days
following the completion of antibiotic treatment was assessed. Following the recovery
period, levels of taxon richness in the ciprofloxacin group remained unchanged;
however, microbiota evenness and diversity were significantly reduced compared to
levels at antibiotic cessation (P � 0.016 in both cases, Wilcoxon test) and to baseline
levels (P � 0.016 and P � 0.031, respectively) (Fig. 1). In addition, a PERMANOVA
pairwise comparison indicated that the microbiota composition of the ciprofloxacin

FIG 3 LEfSe comparison analysis between the control and ciprofloxacin or vancomycin-imipenem groups at the end of antibiotic treatment (A or B,
respectively) or 9 days after cessation of antibiotic treatment (C or D, respectively). The red or green shading depicts bacterial taxa that were significantly higher
in either the control, ciprofloxacin, or vancomycin-imipenem group, as indicated. The yellow circles on the cladogram depict bacterial taxa that were not
significantly changed. Selection of discriminative taxa between the control and antibiotic groups were based on an LDA score cutoff of 3.0, and differences in
the relative abundances of taxa were statistically determined based on a Mann-Whitney test at a significance level of 0.05.
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group remained significantly different from that of the controls [t � 3.04, P(perm) �

0.0002, 5,100 permutations] (Table S1). This difference from the microbiota composition
at baseline was also significant [t � 4.29, P(perm) � 0.0003, 5,023 permutations]
(Table S2). LEfSe analysis indicated a significantly increased relative abundance of
Bacteroides organisms and a depletion of Alistipes spp., Odoribacter spp., and the RC9
gut group in the ciprofloxacin group (Fig. 3C), which failed to be reestablished in the
gut microbiota (Fig. S2).

In the vancomycin-imipenem group, the levels of microbial richness, evenness, and
diversity significantly increased 9 days after antibiotic cessation compared to the levels
at antibiotic cessation (P � 0.008 in all cases, Wilcoxon test) but did not reach baseline
levels (P � 0.031 in all cases) (Fig. 1). The fecal microbiota composition of the
vancomycin-imipenem group also remained significantly different from that of the
control group [t � 3.45, P(perm) � 0.0001, 5,047 permutations] or from the baseline
composition [t � 6.42, P(perm) � 0.0003, 5,045 permutations] (Table S1 and S2,
respectively). The extent of the differences between the microbiota compositions in the
vancomycin-imipenem group and the control (66.02% mean similarity) was greater
than that observed with ciprofloxacin (70.88% mean similarity) based on Bray-Curtis
distances, suggesting that recovery of the microbiota was slower with vancomycin-
imipenem administration.

In keeping with the posttreatment effects observed with ciprofloxacin, LEfSe anal-
ysis revealed that the taxa Alistipes, Odoribacter, and the RC9 gut group, which were
depleted during vancomycin-imipenem treatment, were not restored during the re-
covery period (Fig. 3D). The relative abundances of several additional taxa, including
Family XII and the Ruminococcaceae, Prevotellaceae, and RF9 families, were also signif-
icantly reduced after antibiotic treatment in the vancomycin-imipenem group. The relative
abundances of Escherichia-Shigella organisms remained elevated, while the relative abun-
dances of Bacteroides, Enterorhabdus, and Enterococcus organisms increased posttreatment.

Antibiotic-induced dysbiosis results in antibiotic-specific alteration of the fecal
metabolome. The influence of antibiotic-induced microbiota alterations on the fecal
metabolome composition was assessed by NMR spectroscopy. Supervised multivariate
analysis based on a cross-validated OPLS-DA (orthogonal projections to latent struc-
tures discriminant analysis) model (leave one out) demonstrated that the metabolic
profile of the ciprofloxacin group was altered from that of the control group (predictive
ability [Q2] � 0.476). A volcano plot comparing the ciprofloxacin group to the control
group indicated that the levels of amino acids, such as valine, leucine, isoleucine, and
phenylalanine, as well as �-aminobutyric acid, were significantly increased in the
ciprofloxacin-treated group, while levels of the sugar glycerol decreased (Fig. 4A).

The administration of vancomycin-imipenem resulted in a metabolome profile
distinct from that the control group (Q2 � 0.981), and these differences were larger
than those observed in the ciprofloxacin group (Fig. 4A). Several metabolites, including
the amino acids alanine, methionine, tyrosine, glutamine, arginine, and asparagine, as
well as the organic acids citrate, �-aminobutyric acid, and propionate, were found to be
lower in the vancomycin-imipenem group than in the controls. The nucleoside uridine
was also significantly lower in the treated group than in the controls. Increased levels
of sucrose, sarcosine, arabinitol, and gluconate were observed.

Agent-specific reestablishment of the fecal metabolome following antibiotic
dysbiosis. The OPLS-DA model for the recovery of the fecal metabolome indicated a
moderate shift in the metabolite profile of the ciprofloxacin group relative to that of the
controls (Q2 � 0.475), although the corresponding volcano plot analysis indicated that
no individual metabolites differed significantly between the two groups (Fig. 4B).

In contrast, the OPLS-DA model describing the metabolic patterns of the
vancomycin-imipenem group relative to those of the control group was very strong
(Q2 � 0.872), although only four metabolites were significantly altered when consid-
ered individually (Fig. 4B). The vancomycin-imipenem group was again found to have
lower levels of methionine but also higher levels of �-aminobutyric acid, arginine, and
lysine than the control group.
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FIG 4 Volcano plot analysis of fecal metabolites altered in the ciprofloxacin or vancomycin-imipenem groups at the end of
treatment (A) or 9 days after cessation of antibiotics (B). The x and y axes of the volcano plot represent the log2-fold changes
(against the control group) and the corresponding log FDR-adjusted P value of all metabolites, respectively. The vertical and
horizontal lines separate metabolites that had a 2-fold change and an FDR-adjusted P value at 0.05. AABA, �-aminobutyric acid;
GABA, �-aminobutyric acid.
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The relationship between altered microbiota composition and changes in the
fecal metabolome. The extensive changes in the fecal microbiota and metabolome
following exposure to vancomycin-imipenem suggested that these responses can be
used to assess microbiota-metabolome associations. The functional correlation be-
tween alterations in the microbiota and metabolites was assessed using Spearman’s
correlation, based on 11 bacterial taxa (up to a 70% contribution based on a similarity
percentage [SIMPER] analysis) and 14 NMR metabolites (fold change significance at a P
of �0.05) that contributed substantially to the differences between the control and
vancomycin-imipenem groups at the end of the treatment (Fig. 5B). The correlation
analysis indicated that all 14 metabolites could be correlated with changes in bacterial
taxa. The increase in metabolites such as arabinitol and sucrose were positively
correlated with increased relative abundances of Enterobacter, Escherichia-Shigella, and
Lactobacillus organisms but negatively correlated with Ruminococcaceae, Lachnospiraceae,
and Enterorhabdus. Increased levels of sarcosine also resulted in similar microbiota-
metabolite relationships, although no correlations were observed with the taxa Lactoba-

FIG 5 Spearman’s correlation analysis of microbiota and NMR spectra of the control and ciprofloxacin groups (A, C) or the vancomycin-
imipenem group (B, D) after 14 days of antibiotic treatment and 9 days after cessation of antibiotics, respectively. Bacterial taxa and
metabolites in the correlation matrix were sorted based on the Euclidean distance and Ward’s method of hierarchical clustering.
Significant microbiota-metabolite correlations were determined based on an r of less than �0.75 or more than 0.75 and an FDR adjusted
P value of less than 0.01.
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cillus, Enterobacter, and Roseburia. Tyrosine, methionine, citrate, asparagine, alanine, and
�-aminobutyric acid shared similar correlation patterns with each other (Fig. 5B). Fewer
correlations could be found for the ciprofloxacin-treated group, with only four out of six
metabolites correlated with OTU-level changes during treatment (Fig. 5A) and only
arginine correlating with OTU during the recovery from vancomycin-imipenem chal-
lenge (Fig. 5D).

The potential for changes in the intestinal microbiota to explain associated changes
in the metabolome were investigated using PICRUSt. This approach was used to predict
shifts in the prevalences of genes that encode metabolic traits, based on changes in the
relative abundances of detected taxa. Metabolic pathways predicted to alter significantly
as a result of changes in microbiota composition are shown for antibiotic treatment and
at recovery periods for ciprofloxacin and vancomycin-imipenem (Fig. S3A and B and
S4A and B, respectively). While such projections do not take into consideration cross-
metabolism between taxa or levels of gene transcription, these results were consistent
in many cases with observed microbe-metabolite correlations. For example, treatment
with vancomycin-imipenem resulted in a decrease in the abundance of metabolites
involved in the alanine, aspartate, and glutamate metabolic pathways. In keeping with
these observed changes, predicted shifts in the metagenome included a decrease in
the carriage of genes that encode related enzymes. Decreases in aspartate aminotrans-
ferase (an enzyme involved in the conversion of L-aspartate to oxaloacetate and
glutamine), aspartate 4-decarboxylase (which directly converts L-aspartate to L-alanine),
and alanine dehydrogenase (which is involved in converting pyruvate to L-alanine)
were predicted, while genes encoding alanine-synthesizing transaminase (involved in
the interconversion between pyruvate and L-alanine) increased in prevalence. For
enzymes that were involved in the conversion of succinate semialdehyde to either
glutamate or succinate, significant reductions in 4-aminobutyrate aminotransferase/(S)-
3-amino-2-methylpropionate transaminase (involved in the conversion to glutamate)
were observed, while an increase in succinate-semialdehyde dehydrogenase (NADP�)
(involved in the conversion to succinate) was observed. Decreases were seen in
1-pyrroline-5-carboxylate dehydrogenase (involved in the production of L-glutamate)
and in glutamate synthase and glutaminase (involved in the direct conversion of
glutamine to glutamate), and an increase in the prevalence of alanine-synthesizing
transaminase was also predicted.

PICRUSt-derived predictions of changes in gene prevalence also included those
involved in arginine biosynthesis and tyrosine metabolism, pathways which showed
significant changes in NMR-derived metabolome profiles. For example, there was a
decrease in the prevalence of acetylglutamate/acetylaminoadipate kinase, N-acetyl-
gamma-glutamyl-phosphate reductase, and acetylornithine aminotransferase, each of
which is involved in the conversion from N-acetylglutamate to N-acetylornithine (a sub-
strate for arginine synthesis). Finally, an increase in genes encoding 4-hydroxyphenyl-
pyruvate dioxygenase, an enzyme that converts 4-hydroxyphenylpyruvate (a substrate for
tyrosine metabolism) to homogentisate, were consistent with the observed decrease in
tyrosine levels. Furthermore, in keeping with the observed increase in the abundance of
arabinitol in the vancomycin-imipenem-treated mice, there was a significant decrease in
the predicted prevalence of genes encoding xylulokinases, which are involved in its
catabolism.

Changes in microbiota and metabolome composition were less marked in mice
treated with ciprofloxacin. However, a predicted decrease in the carriage of acyl
coenzyme A (acyl-CoA) dehydrogenase was consistent with the observed increase in
the abundance of valine, leucine, and isoleucine.

DISCUSSION

The gut microbiota is critical for human health (32–34), with a number of essential
metabolites derived exclusively through the activities of these intestinal microbes (30,
35, 36). The gut microbiota also produces of a wide range of compounds that modulate
host physiology (37), including immune regulation, metabolic control (32, 38), central
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nervous system function (39), and xenobiotic metabolism (40). Analysis of antibiotic-
induced disturbances in the gut microbiota and its corresponding metabolome can
therefore provide insight into both acute and chronic effects of antibiotics on the host
and may yield a functional understanding of the development of associated conditions
(41). A number of previous studies have used C57BL/6 mice to investigate links
between antibiotic-induced changes in intestinal microbiota composition and host
physiology (42–45), while assessment of metabolomic changes have been limited to
other genetic backgrounds (10, 46).

The present study highlights a number of functional effects on the mouse gut
microbiome and metabolome which warrant further investigation and are potential
starting points for a mechanistic understanding of the role of various antibiotic
regimens in, e.g., gut inflammation and/or obesity. More importantly, the present study
reveals substantial variation in dynamic relationships between individual taxa, groups
of taxa, and metabolites at different stages of antibiotic intervention. The following
examples indicate that while some interesting information may be determined by
examining either microbiota or the metabolome, the most informative mechanistic
investigations will involve a combined assessment of the relationships between micro-
biota and the metabolome for a given phenotypic trait.

In a first example, vancomycin-imipenem treatment resulted in substantial changes
in microbiota composition, including the depletion of members of the Ruminococ-
caceae and Lachnospiraceae families and increases in the relative abundances of
Enterobacteriaceae and Lactobacillus spp., with concomitant changes in the levels of a
large number of metabolites. The potential for microbiota-level changes to influence
disease risk by altering the composition of the metabolome are well illustrated by such
changes. For example, arabinitol is poorly absorbed in the intestine, and its removal is
based on its conversion to pentose sugars by taxa, including Lachnospiraceae and
Ruminococcaceae (47). Further, the prevalence of genes encoding arabinitol-catabolic
enzymes was predicted to be significantly reduced based on changes in relative taxon
abundances. We observed a negative correlation between the relative abundances of
Lachnospiraceae and Ruminococcaceae and fecal arabinitol levels. Increased levels of
arabinitol and sugars, such as sucrose, that were also increased during vancomycin-
imipenem treatment have been associated with susceptibility to C. difficile infection in
mice and might act as a growth substrate (9). Further, the increased relative abundance
of Enterobacteriaceae that accompanied decreases in the abundances of Lachno-
spiraceae and Ruminococcaceae are strongly associated with gut inflammation (48).
These changes correlated with decreased glutamine levels, which has anti-inflammatory
effects potentially through its role in the maintenance of tissue permeability and its
inhibitory action on NF-kB activation and p38 mitogen-activated protein kinase (MAPK)
pathways based on animal and human intestinal studies (49, 50).

In contrast, the functional relationships between bacterial taxa and, e.g., arginine are
more complex. The reestablishment of microbiota/metabolome composition 9 days
after cessation of vancomycin-imipenem treatment was characterized by significant
increases in arginine. These increases were correlated with increases in Enterobacter
spp. and decreases in Alistipes spp. Again, the prevalence of genes encoding enzymes
in the arginine biosynthesis pathway were predicted to be significantly increased,
based on taxon relative abundances. Arginine plays an important role as a precursor for
immune-modulatory compounds (51–53), and the functional significance of antibiotic-
induced metabolite changes in arginine may therefore be explored in future studies.
Changes in arginine were also observed, however, immediately at the end of the 14-day
treatment with vancomycin-imipenem. Here a modest but significant reduction in
arginine was instead correlated with depletion of Ruminococcaceae and Bacteroides
spp. and increases in Escherichia-Shigella spp., and there was no correlation with either
Enterobacter or Alistipes spp. Arginine levels in the gut may therefore respond to
changes in the prevalence of multiple OTUs, and there may be considerable functional
redundancy. As such, given that we have previously observed functional divergence in
gastrointestinal microbiotas even in genetically identical mice that originate in the
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same production facility (29), it may be inaccurate to identify individual OTUs as
responsible for a particular functional impact without considering the baseline micro-
biota composition or without supporting metabolomic data.

In a second example, the levels of severity of antibiotic impact can be substantially
different when assessed by next-generation sequencing and NMR metabolomics. In
keeping with studies of humans (54–56), the administration of ciprofloxacin also
substantially reduced microbial richness and evenness. Here, normal microbiota com-
position was not restored in the mice within the 9 days after antibiotic treatment, a
process that can take up to a month in humans (54, 55). Changes in microbiota
compositions were accompanied by changes in levels of fecal metabolites. However,
while levels of metabolites such as valine, leucine, isoleucine, and phenylalanine
significantly increased, they returned to the levels observed for the control group in the
9 days following antibiotics. Notably, supplementation of these amino acids has been
shown to promote insulin resistance in humans (57) and rats (58) and to increase the
risk of type 2 diabetes (59).

We observed many instances of significant correlation between changes in bacterial
taxa and metabolites. However, disparities in the dynamics of microbiota and metabo-
lome disruption in response to antibiotics, and subsequent restoration of baseline
levels, highlight the importance of assessing both systems. For example, several
bacterial taxa, particularly members of the Bacteroidetes phylum, were substantially
depleted by ciprofloxacin treatment and did not recover during the 9 days after
cessation of the antibiotics. However, ciprofloxacin-driven disruption of the metabo-
lome was less substantial, with its composition following the recovery period broadly
in keeping with the baseline. Such discrepancies between the microbiota and
metabolome-level antibiotic effects are a further indication of functional redundancy in
the intestinal microbiome, the need to examine both composition and function in order
to fully characterize the impacts of antibiotic therapy, and the potential influence of
antibiotics on host physiology.

Our study had a number of limitations that must be taken into consideration. We
examined the impact of antibiotic exposure on the fecal microbiota and correlated this
with changes in the compositions of the fecal metabolome. However, establishing
direct links between bacterial taxon relative abundances and levels of specific metab-
olites is extremely challenging. Cross-metabolism between species means that many
different taxa can contribute to particular pathways, with functional redundancy be-
tween phylogenetically distant populations potentially offsetting reductions in other
populations. Furthermore, antibiotics may influence aspects of host physiology, such as
appetite, or the production of mucins and immunoglobulins, providing a host-
mediated path to metabolome alterations.

Identifying links between antibiotic exposure, microbiota compositional change, an
altered fecal metabolome, and disrupted host physiology is extremely challenging.
However, the combined use of the sequencing-based bacterial community analysis and
metabolomic profiling described here represents an important strategy in elucidating
such relationships.

MATERIALS AND METHODS
Murine fecal samples. Feces were collected from female C57BL/6 mice at Charles River, Inc., United

Kingdom Ltd. (Margate, United Kingdom) under a commercial license, and all mice were maintained and
used in accordance with the Animal Scientific Procedures Act (60) and amendment regulations of 2012
(61). All mice were initially housed in one barrier room within the facility and then transferred to an
isolator cage on commencement of antibiotic treatment, where they were divided into three groups of
8 mice each (4 mice per cage). The three groups represented a control group (no treatment) and two
antibiotic treatment groups (either vancomycin-imipenem or ciprofloxacin). Six-week-old mice were
placed on the same diet (a VRF1 diet, SDS), and antibiotics were dosed at 50 mg/kg of body weight/day
delivered in drinking water. Fresh medicated solutions were prepared weekly and stored at 4°C. Water
was changed twice weekly, and mice were observed closely for any changes in hydration or for adverse
effects; mice were weighed once a week throughout the study. No significant differences in mass were
observed between groups during the study, with mice in the control, ciprofloxacin, and vancomycin-
imipenem groups attaining masses of 19.26 � 1.38 g, 19.45 � 1.11 g, and 19.03 � 0.81 g, respectively
(weights for individual animals are shown in Table S3 in the supplemental material). One fecal pellet was
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taken from each mouse at three time points: T1, prior to commencement of antibiotic treatment, T2, at
termination of treatment after 14 days on antibiotics, and T3, 9 days after antibiotic treatment ceased.
After collection, pellets were placed into separate, sterile collection tubes and frozen at �80°C prior to
analysis.

Sample processing. Known masses of mouse feces were immersed in 1 ml of cold (4°C) 1� sterile
phosphate-buffered saline (PBS; pH 7.4) (Thermo Fisher Scientific, United Kingdom) and centrifuged at
13,000 � g for 10 min to form a pellet for DNA extraction. The supernatant was transferred to a fresh
microcentrifuge tube for metabolomics study. DNA extraction was performed using a Mo Bio PowerLyzer
PowerSoil DNA isolation kit (Mo Bio Laboratories, Carlsbad, CA, USA), as previously described (62).

16S rRNA gene amplicon sequencing. Amplicons of the v4 hypervariable region of the bacterial
16S rRNA gene were generated from DNA extracts, as described previously (62). Briefly, amplicons were
generated from 25 PCR cycles, and indexes were attached to the amplicon with 8 PCR cycles. Sequencing
was performed on an Illumina MiSeq platform at the David R. Gunn Genomics Facility, South Australian
Health and Medical Research Institute. Full details are provided in the supplemental material. Paired-end
16S rRNA gene sequence reads were analyzed with the Quantitative Insights into Microbial Ecology
(QIIME) software (v1.8.0) (63) using a bioinformatics pipeline described previously (64). Bar-coded forward
and reverse sequencing reads were quality filtered and merged using Paired-End reAd mergeR (PEAR,
v0.9.6) (65). Chimeras were detected and filtered from the paired-end reads using USEARCH (v6.1) (66)
in a comparison with representative sequences from the Greengenes database (v13.8) that clustered with
97% similarity (67). Operational taxonomic units (OTUs) were assigned to the reads using an open-
reference approach with the UCLUST algorithm (v1.2.22q) in a comparison with sequences in SILVA
database release 111 (July 2012) (68) that clustered at 97% identity. During the OTU assignment,
sequences preclustered at 80% similarity to the reference sequence prior to de novo clustering. All
samples were subsampled to 6,250 reads based on the lowest read depth.

1H NMR metabolomics. As described in the paragraphs above, supernatants were obtained from the
mouse feces resuspended in cold PBS. Supernatants were frozen by immersion in liquid nitrogen,
lyophilized at �58°C overnight, and resuspended in 500 �l D2O. 1H NMR spectra were acquired under
automation at 298 K and 700 MHz on a Bruker Avance II 700 NMR spectrometer (Bruker BioSpin,
Coventry, United Kingdom) equipped with a 5-mm helium-cooled quadruple resonance cryoprobe and
a cooled SampleJet sample changer. The temperature was allowed to stabilize for 3 min after insertion
into the magnet. Tuning, matching, and shimming was performed for each sample, and the 1H pulse
length was calibrated on each sample and was typically around 12 �s. One-dimensional (1D) Carr-Purcell-
Meiboom-Gill presaturation (CPMG-presat) (cpmgpr1d) experiments were acquired with 128 transients,
a spectral width of 20.5 ppm, 64,000 data points, a mixing time of 10 ms, a relaxation delay of 4 s, and
a total echo delay of 78.7 ms. 1D nuclear Overhauser effect spectroscopy (NOESY)-presat (noesygppr1d)
data were also acquired but with 32 transients. Free-induction decays were multiplied with an expo-
nential function (line broadening of 0.3 Hz), Fourier transformed, and calibrated to a 2,2,3,3,-D4-3-
(trimethylsilyl) propionic acid (TSP) reference signal at 0.0 ppm. Phase correction was performed
manually, and automatic baseline correction was applied. To help in the assignment of metabolite
resonances, 2D J-resolved (jresgpprqf) and correlation spectroscopy (COSY) (cosygpprqf) spectra were
acquired for a subset of samples. In 2D J-resolved spectra, 64 transients of 8,000 data points were
acquired for each of 40 increments, with a relaxation delay of 2 s, during which the solvent signal was
suppressed by presaturation. Spectral widths of 16 ppm and 78 Hz were used. In 2D COSY spectra, 8
transients of 4,000 data points were acquired for each of 400 increments, with a relaxation delay of 2 s,
during which the solvent signal was suppressed by presaturation. A spectral width of 16 ppm was used
in each dimension.

Preprocessing and OPLS-DA (orthogonal projections to latent structures discriminant analysis) were
carried out with both MVAPACK (69) and software that was developed in our laboratory for a previous
study (70) using the Python programing language with NumPy and SciPy for calculations and matplotlib
for visualization. The nonlinear iterative partial least-squares (NIPALS) algorithm (71) was used for
OPLS-DA. For integrated microbiome and metabolomic analysis, consensus OPLS were created using the
K-OPLS R package (72).

Regions above 8.5 ppm and below 0.5 ppm were excluded because of noise content. The water peak
and TSP reference signal were also excluded. Spectra further aligned with the icoshift (73) algorithm and
bucketed with the optimized bucketing algorithm (74), using a 0.005-ppm minimum bin size, leaving
1,652 data points per spectrum. These spectra were subjected to probabilistic quotient normalization
(PQN) and Pareto scaled (75).

Data analysis and statistics. Microbial data were analyzed for alpha diversity measures (taxon
richness, S; Shannon-Wiener index, H; Simpson diversity index, 1 to D) of the microbial community using
PAST (v3.04) (76). Operational taxonomic unit (OTU) relative abundance was imported into the Primer-E
software (v.6; Primer-E Ltd., Plymouth, United Kingdom) for beta diversity analysis. Bray-Curtis similarities
were calculated based on the square root-transformed OTU relative abundances and were used in the
nonmetric multidimensional scaling (NMDS) ordination plot. The permutational analysis of variance
(PERMANOVA) model was used for testing the null hypothesis of no difference between the compared
groups (54), based on the parameters’ permutation of residuals under a reduced model and a type III sum
of squares. PERMDISP was used to assess the dispersion of the microbial community within the groups
(54). Microbial differences between groups at the taxonomic level were tested for statistical significance
based on the Kruskal-Wallis and Mann-Whitney tests using GraphPad Prism 6 (GraphPad Software, Inc.,
La Jolla, USA). The LEfSe algorithm was performed using the Galaxy application tool (http://huttenhower
.sph.harvard.edu/galaxy/) with a linear discriminant analysis cutoff score of 3.0 and a P of �0.05 for
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statistical significance (55). Functional predictions of microbial community were performed using
PICRUSt on closed-reference OTUs with 97% identity based on the Greengenes database (v13.5) (56). The
OTUs were normalized on PICRUSt and used for the prediction of KEGG orthologs (KOs). The predicted
metagenome was statistically analyzed on STAMP using Welch’s t test with the Benjamini-Hochberg
correction for the false-discovery rate (FDR) and filtered to retain features with an effect size (ratio of
proportions) of greater than two (77). A heatmap was generated using the ggplots2 package (v2.0.0), and
a dendrogram of bacterial taxa was generated based on the Bray-Curtis distances and hierarchical
clustering performed using Ward’s method (78, 79). Two and three mice, respectively, were excluded
from the microbiota and metabolome analysis, as samples from them failed quality control thresholds.

For analysis of the metabolome data, cross-validation was performed in the same manner for
OPLS-DA and consensus OPLS-DA. Seventy-five percent of the samples were used as a training set, and
the remaining 25% were used as a test set, ensuring that the number of samples in the test set was
proportional to the total number of samples from each class and that at least one sample from each class
was present in the test set. To choose the number of components for the model, a leave-one-out
cross-validation step was carried out on the samples in the training set, and the F1 was used to choose
the number of components, with the additional constraint that a maximum of 8 components was used.
A double cross-validation was repeated 2,000 times for each group with randomly chosen samples in the
training and test sets to prevent bias due to the choice of training or test set.

This procedure was repeated with randomly generated class assignments to provide a reference
value for Q2. The chosen number of components minus one was then used as an OPLS filter, and a
PLS-DA with two components was carried out on the filtered data to yield one predictive and one
orthogonal component. In the back-scaled loadings analysis, peaks that allow the models to distinguish
between classes were assigned by comparing chemical-shift values and multiplicities from J-resolved
NMR spectra to values from the BMRB (80), HMDB (81), and Chenomx software. Volcano plots were
generated in R. Five samples were excluded from the metabolome analysis, as these samples failed
quality control thresholds. Microbiota and metabolome associations based on Spearman’s correlation
were performed in R using the corrplot package. Bacterial taxa and metabolites were sorted according
to hierarchical clustering based on Euclidean distances, and Ward’s method was used to perform cluster
analysis.

Accession number(s). Microbial sequencing data have been deposited in the Sequence Read
Archive (SRA) database under GenBank accession number SRP096906. Metabolite data have been
deposited in the MetaboLights database under accession number MTBLS422.
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