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Abstract
Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast

intercellular communications at synaptic level and include either cation selective (e.g.,

nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels.

Among others, 5-HT3 is one of the most studied members, since its first cloning back in

1991, and a large number of studies have successfully pinpointed protein residues critical

for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmaco-

logical treatments due to the demonstrated benefits of its modulation in clinical trials. None-

theless, a detailed molecular analysis of important protein features, such as the origin of its

ion selectivity and the rather low conductance as compared to other channel homologues,

has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we

present extended molecular dynamics simulations and free energy calculations of the

whole 5-HT3A protein with the aim of better understanding its ion transport properties, such

as the pathways for ion permeation into the receptor body and the complex nature of the

selectivity filter. Our investigation unravels previously unpredicted structural features of

the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion

translocation at the interface between the extracellular and the transmembrane domains, in

addition to the one along the channel main axis. Moreover, our study offers a molecular

interpretation of the role played by an arginine triplet located in the intracellular domain on

determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in pre-

vious experiments. In view of these results, possible implications on other members of the

superfamily are suggested.

Introduction
In recent years, X-ray crystallographic structures of the pentameric ligand-gated ion channels
(pLGICs) have boosted the research in computational biology, owing to their importance in
vital neuronal activities and their suitability as targets for pharmacological treatments. pLGICs
form the so-called Cys-Loop receptor superfamily and are involved in a number of different
physiological and pathological roles[1]: in signal transduction processes at synaptic level,[2]
pLGICs can change membrane potential by allowing ions to transiently translocate through
them via a complex (not fully uncovered) gating mechanism triggered by neurotransmitter
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binding. Members of this family are integral oligomeric membrane proteins made up by three
domains [3,4]: 1) an extracellular domain (ECD), which contains the binding pocket of the
neurotransmitter (at the interface of two subunits), 2) a transmembrane domain (TMD) char-
acterized by a bundle of α-helices spanning across the membrane and forming the channel
core region and 3) an intracellular domain (ICD), which has a role in the localization and regu-
lation of the receptor and whose size could vary among the members of the family (Fig 1A).
Since the discovery of the first member of the family, the nicotinic acetylcholine receptor
(nAChR), these receptor channels have been intensively studied through a considerable num-
ber of experimental [5–8] and, recently, also computational [9–15] approaches. To date the res-
idues forming the binding pocket have been identified,[16,17] as well as those responsible for
the channel gating upon agonist binding.[5,7–11,13–15,18–29] Also residues affecting biophys-
ical properties, like ion selectivity and conductance, and pharmacological properties have been
discovered.[6,12,30–35] Despite the progress towards the full comprehension of pLGICs, many
issues are still unsolved primarily because of scarce information on the conductive channel
structures. Besides, it is still unclear the relation between the observed holo-open (conductive)
and holo-desensitized (non-conductive) states. As a consequence, most experiments and
computational studies rely on the resolved closed-state structures for the interpretation of
many pLGICs properties.

Among others, the 5-Hydroxytryptamine receptor channel type 3 (5-HT3R), which is widely
expressed throughout the brain and in peripheral organs (e.g., the gastrointestinal tract), has
been extensively studied from a structural and functional point of view.[36] The 5-HT3R is
involved in many neurophysiological functions,[37,38] like nervous transmission regulation,
pain processing, peristalsis and in some pathological states[38] like chemotherapy-induced
nausea and vomiting and various psychiatric disorders. Five different subunits of this receptor
have been identified in the genome: among these, only receptors formed by subunits A and B
have been extensively investigated and characterized in mammals, while the biological rele-
vance of other forms made up by subunits C, D, and E has not been fully elucidated. From a
biophysical point of view, the homo-pentameric 5-HT3A receptor is by far the most studied
form, due to the capability of subunit A to assemble into functional homomeric channels. Suc-
cessful experimental efforts on the 5-HT3A receptor led to the identification of the residues
shaping the binding site,[39–47] the inner surface of the M2 helices[48], which circumscribe
the transmembrane portion of the channel, and the membrane associated (MA) helices in the
ICD.[49] Moreover, an extensive work has been carried out in order to unravel the nature of
the amino acids coupling the agonist binding to the channel gating,[5,8,22,25] as well as those
responsible for the cation-selectivity[50,51]. Also, residues responsible for the very low single-
channel conductance, which differentiate the 5-HT3A receptor from other members of the
family, have been identified.[52] However, despite all these efforts, many structural and mecha-
nistic details of 5-HT3A still remain poorly understood. In the present work, taking advantage
of the recently resolved mouse 5-HT3A crystal structure in a putative closed state,[53] we have
carried out the first computational study of such a receptor channel to investigate protein
dynamics as well as ion-receptor interactions. In particular, through the use of atomistic molec-
ular dynamics simulations and free energy calculations, we have studied three aspects of the
receptor: 1) the structural and dynamical features of the whole channel, including ECD, TMD
and part of the ICD (MA helices); 2) the potential of mean force of the single-ion translocation
through TMD and ICD (the latter formed by post-M3 loops and MA helices) in order to iden-
tify and evaluate the energetic barriers experienced by the ions crossing regions pivotal for
ionic conductance and selectivity; 3) the molecular determinants of the low single-channel con-
ductance. In the latter case, we have simulated three systems, i.e. a wild-type protein and two
high-conductive mutants (namely, the R420D single mutant and the R416Q/R420D/R424A
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triple mutant, according to the crystal structure numbering adopted in this work). Our overall
~1 μs simulation data provided evidences for the existence of intersubunit lateral pathways at

Fig 1. Topology of the murine serotonin 5-HT3A receptor (PDB entry: 4PIR). (A) Side view of the homo-
pentameric receptor along the channel axis, showing the three main domains (ECD, TMD and ICD). The two
front subunits are shown as yellow cartoons. The remaining three subunits are shown as surfaces colored in
blue. (B) Top view of the TMD helices shown as ribbons. (C) Side view of the M2 helices and residues that
line the channel interior, with side chains displayed as sticks. The two front helices have been removed for
clarity. (D) Enlarged view of the residues shaping the ICD portals, shown as sticks.

doi:10.1371/journal.pone.0140258.g001
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the ECD-TMD interface used by ions to access the channel interior and suggested the possible
influence of residues, not investigated so far, on single-channel conductance and cation-selec-
tivity. Moreover, peculiarities, similarities and differences in structural and biophysical proper-
ties, as compared to other well-known homologue channels, are thoroughly presented and
discussed.

Results

Structural Features of the 5-HT3A Receptor
In Fig 1A, the structure of the 5-HT3A receptor is depicted, where the three domains forming
the integral homopentameric membrane protein are evidenced: 1) the ECD is mostly made up
by ten β-sheet strands along with the corresponding loops interconnecting them; 2) the TMD
is formed by an α-helix bundle of four α-helices per monomer, namely M1, M2, M3 and M4,
spanning the lipid bilayer, where the assembly of the internal M2 helices frames the channel
core (Fig 1B). The pore walls are characterized, in the central region, by a stretch of hydropho-
bic residues, while polar and charged residues are located at both ends of the TMD channel
(Fig 1C). In particular, it is believed that the gating mechanism, which is triggered by agonist
binding, does involve a rather complex series of movements leading to the pore expansion/
compression at the TMD level (see, for example, ref.[18] for a recent account of the gating
mechanism in pLGICs); 3) the ICD is formed by an α-helix (MA-helix) and a long, partially
unresolved, loop connected to the M3 helix in the TMD. The entire 5-HT3A receptor was sim-
ulated for about 100 ns, without applying an external electric field, after being embedded into a
lipid membrane and solvated by adding water and 0.15 M NaCl (details are provided in the
Methods section).

First, we evaluated the root mean square deviations (RMSD) of the system with respect to
the starting molecular configuration in order to test the system stability throughout the simu-
lated time interval. The RMSD for all the three domains of the receptor, as analyzed separately,
was stable (below 1.5 Å) during the entire simulation (S1 Fig), hence the system maintained a
stable pentameric assembly over time. Afterwards, we analyzed the main protein structural
fluctuations through the evaluation of the root mean square fluctuations (RMSF). The RMSF
analysis revealed that the protein most flexible regions are the loops C and F in the ECD and
the M2-M3 loop, as shown in S2 Fig, while the rest of the protein appeared, overall, quite rigid.

We also analyzed the channel dimension along the receptor longitudinal axis (i.e., z-axis), in
terms of the pore radius as provided by the HOLE program, and found a funnel-like profile
with a minimum constriction point located in the TMD (Fig 2A), already pinpointed as the
location of the channel gate[9,48]. Note that a first constriction point was observed at position
K108 (at z = ~ -30 Å) in the ECD. Here, the obtained pore radius is around 3.8 Å, which makes
this site almost as constricted as the upper part of the hydrophobic segment in the TMD (at z =
~ 5 Å). In the crystal, a sulphate ion from the crystallization liquor was found to interact with
the ring of charged K108 residues, hence the K108 side chains adopted an extended conforma-
tion towards the center of the channel, considerably shrinking the pore size at this site. In our
simulation, the K108 side chains were folded back to interact with the D105 side chain of adja-
cent subunits (S3 Fig). In the channel hydrophobic region the pore radius at residue V264 and
L260 reached its minimum (3.0 Å at V264 and 2.5 Å at L260), making L260 the narrowest
point along the TMD. Note that the time evolution of the pore dimension has shown only little
deviations from the average structure (Fig 2B) and the initial crystal structure (i.e., pore radius
~3.3 Å at V264 and ~2.3 Å at L260) during the dynamics, supporting an apparent closed state
of the 5-HT3A channel (i.e., not compatible with the passage of aqua ion clusters). Albeit in the
crystal structure the maximum constriction point was reported further down (z = ~ 30 Å) at
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position E250 (i.e., pore radius ~2 Å), the side chains of these residues were not well resolved
and were modeled as most plausible rotamers. Therefore, the reported pore size estimate has to
be considered rather uncertain. From our MD simulation, we have obtained, on average, a pore
radius of about 3.3 Å at residue E250, which is perhaps a more appropriate estimate consider-
ing the effect of side chain repulsion.

Ion Permeation into the Receptor Body
The ion permeation through the 5-HT3A receptor was evaluated by considering an initial con-
figuration with no ions within the entire protein body and then by monitoring the ion entrance
through the accessible pathways. A cylindrical region of 25 Å radius aligned along the channel
axis, including the whole ECD, TMD and part of the ICD, was considered in order to follow
the permeation events. Note that ion permeation was observed only from the extracellular side
of the receptor. Fig 3 depicts the distribution of ion (Na+ and Cl-) positions sampled during the
MD simulation. It is apparent that the presence of Cl- inside the ECD vestibule of the channel
is essentially smaller than that of Na+, though not negligible. Interestingly, we have observed
that the top side of the channel is not the only way through which ions may access the channel
ECD vestibule. Indeed, cations can also enter into the ECD passing through five lateral chan-
nels located at the interface between the ECD and TMD of any pair of adjacent subunits (as
shown in the S1 Video). Such channels are shaped by residues belonging to Cys-Loop, β1-β2
loop, M2-M3 loop, β10-M1 loop and the C-terminal part of the F-loop: to be specific, the lat-
eral channels are formed by residue D52, E53, K54 and N55 from the β1-β2 loop, by residue

Fig 2. Pore dimension analysis. (A) Average pore radius as a function of channel axis position (mirror symmetry applied for clarity). The shaded bands
highlight different regions of the TMD, namely negatively charged (green), hydrophobic (orange) and polar (cyan) residues. (B) Time series of the pore radius
as a function of channel axis position. The dotted line identifies the interface between ECD and TMD. In both graphs the zero is taken as the centroid of D271
Cα atoms. Negative values represent the extracellular side of the pore, while positive values represent the intracellular side.

doi:10.1371/journal.pone.0140258.g002

Ion Translocation through the 5-HT3A Receptor

PLOS ONE | DOI:10.1371/journal.pone.0140258 October 14, 2015 5 / 23



Q184, G185, E186 and, to a minor extent, E188 from the F-loop C-terminal part, by residue
R219, P220, L221, F222 and, to a minor extent, R217 and R218 from the β10-M1 loop, by resi-
due C135, S136, L137, D138 from the Cys-Loop and a stretch of residues (i.e., P274-T280)
from the M2-M3 loop (S4 Fig). From our MD simulation, such lateral pathways appeared to be
the main entering route to the ECD vestibule: we counted at least 5 different permeating Na+

ions passing through the lateral channels against one Na+ ion entering from the channel top
side (note that we have observed Na+ ions passing through at least three of the five available lat-
eral channels, which are all equivalent due to symmetry). The presence of only one top entry-
way versus five equivalent lateral ones, though featuring a smaller diameter, may suggest a
detectable contribution of the latter to the overall single channel conductance. In order to bet-
ter characterize the size of such lateral cavities, we submitted an average receptor configuration
issuing from the MD simulation to the MolAxis webserver. Fig 4 displays the lateral channels
and their corresponding diameter size, as provided by the MolAxis analysis tool. Since the
maximum constriction point lies below the diameter of Na+ first solvation shell (about 6 Å),
we concluded that these channels are not constitutively open, but may transiently get expanded
to allow ion passage (see inset of Fig 4). Motivated by the present results, we wondered if such
structural features could be common to other 5-HT3A receptor analogues. Similarly, we ana-
lyzed the known structure of nAchR (PDB entry: 2BG9)[54], GluCl (PDB entry: 4TNV)[55],
ELIC (PDB entry: 3RQU)[56], GLIC (PDB entry: 3P50)[57] and finally 5-HT3A crystal struc-
ture (PDB entry: 4PIR) as a reference, after modeling the missing part of the M2-M3 loop. Sur-
prisingly, MolAxis predicted the existence of such channels not only for the 5-HT3A crystal
structure but also for nAchR and GluCl, whereas they have not been found in GLIC and ELIC
(S5 Fig).

Then, we analyzed the ion distribution along the 5-HT3A channel axis in terms of the aver-
age occurrence number (S6 Fig). Results have shown an extended region roughly spanning 35
Å along the pore axis, where neither chloride nor sodium ions were found; this region corre-
sponds to the TMD central region, comprising both a purely hydrophobic (from I268 to L260
of M2 helix) and a polar (from T257 to E250 of M2 helix) stretch, and the first part of the ICD.
At the beginning of the TMD (around z = 0 Å), it has been observed a spike in the average
number of Na+, while the presence of Cl- was basically null. Here, just before the hydrophobic
region characterizing the TMD pore, a ring of aspartates (D271) wards a funnel-shaped zone
which seems well suited to act as a pool for concentrating cations before their subsequent t-
ranslocation along the channel, as already proposed in previous studies on cation selective

Fig 3. Ion distribution inside the 5-HT3A channel.Na+ (blue) and Cl- (red) ion positions, as issuing from the MD the simulation, sampled inside and outside
the receptor (a cylinder of 25 Å radius has been defined, taking the centroid of D271 Cα atoms as the center). Note, at the bottom of left panel, the distribution
of Na+ ions permeated into the receptor through the ECD lateral pathways. The average structure of the protein is shown as yellow ribbons.

doi:10.1371/journal.pone.0140258.g003
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channels.[12,58,59] In light of these results, we decided to investigate in more detail the role
played by the TMD in hindering the ion passage in the closed state and in selectively filtering
cations versus anions.

Free Energy Analysis of Ion Translocation through the TMD
In order to investigate the role of TMD residues on ion transport properties, we evaluated the
single-ion potential of mean force of both Na+ and Cl- inside the TMD pore. The present analy-
sis is limited by the availability of only the closed state 5-HT3A structure. However, as shown

Fig 4. Intersubunit lateral ion pathways. (A) Top view of the 5-HT3A receptor principal and lateral channels
predicted by MolAxis, shown as a series of blue spheres with diameter proportional to the accessible space,
and (B) the corresponding lateral pore dimensions (the inset displays the maximum channel diameter
deviations from the average (grey band) as issuing from the analysis of several protein structures). The
protein average structure is depicted in yellow cartoons.

doi:10.1371/journal.pone.0140258.g004
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in several previous studies on pLGICs closed-state channels,[9,12,58] a general qualitative pic-
ture of the pore can be satisfactorily obtained, including some important features such as a
molecular description of the selectivity filter. Furthermore, we complemented such an energy
analysis with a detailed picture of the variable ion coordination number along the pore, evalu-
ating the average number of water molecules and side-chain atoms in the first solvation shell
(S7 Fig). To this end, a subsystem of the whole receptor protein made up by only the TMD and
ICD was obtained from the mouse 5-HT3A crystal structure and embedded into lipid mem-
brane and water. Apart from a few ions ensuring the system electric neutrality, only one ion
(either Na+ or Cl-) was inserted in the TMD for carrying out the free energy analysis and the
resulting system simulated for an overall time of about 240 ns (see Methods for details). Fig 5
shows the obtained PMF profiles for both considered ions. At the extracellular end of the
TMD, both Na+ and Cl- experience a set of negatively charged residues, namely D271 at posi-
tion z ~ -10 Å along the channel axis. The Na+ PMF shows a pronounced minimum in this
region (~ -9 kcal), which is also characterized by a relatively wide pore diameter (~9.5 Å). This
result supports the hypothesis that this zone may serve as a funnel for cations,[12] increasing
their local concentration before permeating into the narrowest portion of the channel. Con-
versely, the marked increase of the Cl- PMF (~ 9 kcal) in the same region indicates that the
negative residues effectively do repel anions from the pore and thus disfavor their further

Fig 5. Free energy barriers to ion translocation. (A) Potential of mean force profiles for Na+ and Cl- along the channel axis. Channel axis origin is set to the
centroid of V264 Cα atoms, at the center of TMD. Negative values refer to the extracellular side, while positive values refer to the intracellular side. The
numbers (1–4) in the plot indicate: (1) negative, (2) hydrophobic, (3) polar and (4) negative regions of the pore, as described in the text. (B) Representative
snapshots of Na+ (blue) and Cl- (red) along the TMD pore.

doi:10.1371/journal.pone.0140258.g005
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translocation through the channel. Below residue D271, the M2 helices expose hydrophobic
side chains (I268, V264, L260) towards the interior of the pore. The PMF in this region (from
z = -5 to +10 Å along the channel axis) reaches a local maximum for both ions in correspon-
dence of V264 (~ 5 kcal and ~14 kcal for Na+ and Cl-, respectively, around position z = ~ 0 Å
along the channel axis). At this channel location, both Na+ and Cl- lose, on average, around
one water molecule from their first solvation shell without compensating this loss with side
chains interactions. These results corroborate the hypothesis regarding the hydrophobic nature
of the gate, previously proposed on the basis of experimental and computational studies on
homologue receptors,[9,60] and are in qualitative agreement with previous PMF calculations
performed on the α7 acetylcholine receptor.[12] In the polar region of the TMD, lined between
residue T257 and S253, (from z = +10 to +20 Å along the channel axis) the PMF profile is little
affected in the case of Na+, while it keeps increasing for Cl-. A careful inspection at the ion
coordination profile (S7 Fig) shows that in the case of Na+ the average number of coordinating
species remained about 5 (i.e., the loss of water molecules is compensated by the close interac-
tion with T257 and S253 side chains), thus supporting the rather flat PMF observed in this
region. Conversely, Cl- has lost more water molecules than acquired polar side chains in its
first coordination shell and, in turn, this led to a PMF increase while going towards the ICD.
Note that the free energy of ion translocation in the present narrow pore segment could be also
related to the difference in first solvation shell size between Na+ and Cl-. To proceed further,
after residue S253, the pore presents two rings of negatively charged residues, namely E250 and
D247, located at the end of the M2 helix and on the M1-M2 loop, respectively (from z = +20 to
+35 Å along the channel axis). In previous studies on the Torpedo nAchR and other homologue
protein models built up from this structure,[9,12] the interpretation of the computed single-
ion PMF at the intracellular end of the TMD turned out to be problematic, owing to the poor
structural resolution of the nAchR channel at this site and to the lack of the M3-M4 loop,
which does interact with the M1-M2 loop affecting the conformation of the latter. On the other
hand, the 5-HT3A crystal structure presents both a higher atomic resolution and more com-
plete portion of the M3-M4 loop. In turn, this allowed us to obtain a more accurate estimate of
the PMF, as compared to previous studies. In this region of the pore, Na+ and Cl- PMF profiles
reflected opposite electrostatic interactions with E250 and D247. On one hand, these interac-
tions further destabilize the passage of Cl- ions inside the pore, and on the other hand they sta-
bilize significantly Na+ ions. Accordingly, at this site the two PMFs show the maximal
deviation: not surprisingly, residue E250 has been identified as the main selectivity filter of the
5-HT3A channel based on conductive state experiments. Our findings also suggest an impor-
tant role for D247, especially for providing the exit driving force for Na+ ions from the TMD,
and further considerations are provided in the Discussion.

Mutation Effects on the ICD Portals
In a seminal study on the human 5-HT3A receptor,[52,61] whose results have been later con-
firmed on the mouse 5-HT3A receptor,[62,63] it has been shown that the replacement of an
arginine triplet (R416, R420, R424) located in the MA helix with corresponding residues from
the 5-HT3B subunit markedly affected the single-channel conductance. This evidence sug-
gested that such mutations could facilitate the ion passage through lateral portals formed by
adjacent MA helices,[61] otherwise hindered in the wild-type protein. These lateral openings
are molded by a small stretch of residues belonging to the MA helices, i.e. 415–424, as identi-
fied by previous functional studies.[49] In particular, the portals are lined by residue K415,
R416, M419 and V422 from one subunit, and residue D417, E421, R420 and R424 from the
adjacent one (Fig 1D). The “ceiling” of the portals is formed by the starting portion of the
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M3-M4 segment (henceforth referred to as the “post-M3” loop, following the nomenclature
reported in ref.[53]), especially by residue K310 and D312. Hydrogen-bond and salt-bridge
networks among such residues apparently make the ICD cavities closed in the native receptor.
In this study, we investigated in some detail the ICD structure of the mouse 5-HT3A channel,
which is characterized by an unusual large fraction of well-resolved atomic coordinates, in
order to better describe the proposed hampering effect towards ion permeation modulated by
the present arginine triplet. Inspired by the findings of the mutagenesis experiment mentioned
above (and in the absence of known structures of the mutants probed in that study), three
model 5-HT3A receptor systems made up solely by TMD and ICD were created, namely one
wild-type (WT), one single mutant (R420D) and one triple mutant (R416Q/R420D/R424A,
hereafter referred to as QDA). All systems were simulated for about 100 ns under physico-
chemical conditions mimicking the natural environment (see Methods for details). Although
part of the M3-M4 loop is truncated in the 5-HT3A crystal structure, the present ICD structure
represents the most complete model for studying ion diffusion through intracellular portals.
Fig 6 shows the distributions of Na+ ion positions, sampled during the simulations, inside and
outside the ICD for the three considered systems. In WT, no ions have been observed to pass
from the aqueous solution to the intracellular vestibule; in the R420D mutant, one ion was able
to translocate through the portals in the considered time interval and, in QDA, ions freely dif-
fused from the solution into the ICD. To test if such differences in ion diffusivity were the result
of structural changes or differences in the domain dynamics upon mutation, we calculated the
RMSD and the per-residue RMSF on backbone atoms, especially focusing on those residues
lining the portals walls, as described above. The RMSD for the three systems was essentially
indistinguishable, with differences of less than 0.4 Å and overall similar broadness (S8 Fig).
Similarly, the RMSF has not evidenced significant differences in structural fluctuations (S9 Fig).
Taken together, these results rule against the hypothesis that arginine replacement may impinge
on the MA helix dynamics, suggesting, on the contrary, that more localized effects do account for
the observed ion permeation. Consequently, we have examined if changes in local electrostatics
and/or side-chain structural rearrangements could be the determinants for portal opening. Fig 7
shows how the sequential mutation of arginines with smaller residues, either negatively charged
or neutral, has induced an increasing portal expansion along with a distinct change in the electro-
static potential of the cavities frommostly positive to mostly negative. InWT, residue D312 from
the post-M3 loop may strongly interact with two arginines of the MA helix (S10 Fig), thus
anchoring the positively charged side chains of the latter and effectively occluding the lateral por-
tals due to steric hindrance (Fig 7A). On the other hand, in R420Dmutant, the observed partial
expansion (Fig 7B) is sufficient to allow ion permeation, though close interactions of residue
D312 and D420 with the two remaining arginines (i.e., R416 and R424) are apparent. In QDA,
no more stable electrostatic interactions involving residue D312 are possible and, as a conse-
quence, the mutated residues do not concur to obstruct the ICD portals (Fig 7C). In particular,
going fromWT to R420D and QDA, we have observed a gradual increase in the D312 side-chain
flexibility (S10 Fig), which, in turn, reflects the opening of the portals for the reasons sketched
above.

Discussion
Atomistic MD simulations of the 5-HT3A receptor have provided several insights into its struc-
tural features and interaction with permeating ions, suggesting interesting connections to
channel properties. Although the investigation of a closed-state structure prevents the full com-
prehension of the role played by some key residues in the conductive conformation, our study,
similarly to many other studies on pLGICs, contributed to gain further valuable information
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on the properties of this channel. Besides, as discussed in the following, results are generally in
good agreement with recent experimental findings on the same 5-HT3A channel and with pre-
vious computational studies on homologue proteins.

Our investigation identified a few relatively flexible regions of the protein. In particular, the
observed high mobility of loop C is considered crucial for receptor function. It is believed that
the outward and inward movement of loop C is pivotal to accommodate the neurotransmitter
and to activate the receptor,[64] thus characterizing the protein functional state. Indeed, our
simulation showed that in one subunit loop C adopted, for most of the time, an open-lid con-
formation, whereas several partial opening and closing events occurred in loop C of other sub-
units, in agreement with previous studies.[11,13,59,64–68] Loop F was also found to be flexible
as compared to the rest of the protein, especially in the region spanning residues S176 to E186.
This loop has been proposed to act as a flexible structure, adopting different conformations
suitable for the interactions with ligands of different size.[46] In many crystallization studies of
AchBP, this loop was only poorly resolved owing to its disordered structure. Another observed
flexible part of the receptor is the M2-M3 loop, which in fact is poorly resolved in the 5-HT3A
crystal structure. It is worth noting that a number of studies indicated that this loop, along with
the interacting region between ECD and TMD, is involved in the complex cascade of move-
ments leading to channel gating.[5,7,19,22,26]

Remarkably, we found that the ECD-TMD interface shapes five inter-subunit lateral cavi-
ties, as formed by Cys-Loop, β1- β2 loop, loop F C-terminal part, β10-M1 loop and M2-M3
loop, through which ions can reach the interior of the channel from the extracellular medium.
This observation prompted us to re-examine other 5-HT3A receptor homologue structures.
Surprisingly, we detected similar fenestrations also in other members of the superfamily: in
particular, these structural features are shared by all tested eukaryotic receptors. Since loop F
shows the lowest degree of conservation amongst the six binding site loops, it is tempting to
speculate that it could play a role in regulating the cavity size in different receptors, depending
on its specific residue sequence. In GluCl, the C-terminal part of this loop is folded to form an
α-helix turn, splitting the lateral channel into two channels, both narrower than that of nAchR
and 5-HT3A. However, a molecular comprehension on the differences among different recep-
tors and the possible effect of mutations on such lateral pathways demands further
investigations.

Overall, the pore dimension along the channel longitudinal axis, as issuing from our MD
simulation, was in good agreement with the one estimated from the 5-HT3A crystal structure:
[53] the only two significant differences (K108, E250) have been ascribed to biased side chain
conformations of the latter structure. In our simulation, we observed a pore diameter of ~7.5 Å
at the most constricted point of the ECD, corresponding to residue K108 (S3 Fig). Note that
this evidence is consistent with the observed smaller permeability of the ECD top side with
respect to the lateral channels at the ECD-TMD interface, though the absence of electric field,
the relatively limited sampling and the use of a closed structure do not allow to draw a clear dis-
tinction between such entrance pathways. Besides, it is known that negatively charged MTS
reagents can pass through this region and reach the TMD.[48,69] In any case, our results sug-
gest that residue K108, if mutated, might have a detectable influence on ion translocation, per-
haps more than D105, which was previously shown to affect the channel conductance.[70] As
expected, the maximum constriction point of the channel was found in the TMD hydrophobic

Fig 6. Ion distribution at the ICD level.Distribution of Na+ ion positions (blue dots) extracted from the (A)
WT, (B) R420D and (C) QDA simulations inside and outside the ICD vestibule (within a cylinder of 20 Å
radius, taking the centroid of V264 Cα atoms as the center). The protein average structures are depicted as
yellow ribbons.

doi:10.1371/journal.pone.0140258.g006
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Fig 7. ICD portals. Electrostatic and steric properties of the ICD portals as issuing from (A) WT, (B) R420D
and (C) QDA systems. The ICD portals are depicted as molecular surfaces, colored according to their
electrostatic potential from blue (positive) to red (negative). The average structures of M3 helix, post-M3 loop,
MX and MA helix, from one subunit, and MA helix from an adjacent subunit are shown in yellow cartoons.

doi:10.1371/journal.pone.0140258.g007

Ion Translocation through the 5-HT3A Receptor

PLOS ONE | DOI:10.1371/journal.pone.0140258 October 14, 2015 13 / 23



region. Here, the channel size was not shown to change significantly during the simulation,
thus forming a pore unsuitable to the passage of solvated ions, in line with the hydrophobic
gating hypothesis proposed in homologue proteins.[67]

Moreover, we investigated the complex nature of the cation-selectivity in this receptor. Sev-
eral studies suggested that the selectivity filter is not located in the ECD, though mutations in
this domain were proved to affect single-channel conductance.[6,70] On the other hand, there
is a general consensus about the notion that the filter is located at TMD level.[51,71] Our free
energy calculations on ion translocation suggested that the filter could be “delocalized” between
the extracellular (D271) and the intracellular (E250, D247) side of the TMD. However, in α7
nAchR, only homologue residues to E250 and D247 were shown to be important for ion selec-
tivity[30,31] and, in 5-HT3A, the contribution of E250 was shown to be dominant.[51,72] Such
an apparent discrepancy between theory and experiments can be reconciled by noting that the
PMF analysis was performed on a closed-state channel. Moreover, the most agreed hypothesis
on the gating mechanism predicts a peculiar rearrangement of the α-helices shaping the chan-
nel. On this regard, according to the known GLIC and GluCl open-state channel structures
[57,73] and to the gating model recently proposed in ref.[10], the gating mechanism does
involve the tilting of the M2 helices with respect to the channel axis. In particular, channel
opening is characterized by an outward polar tilting of the M2 helix upper segment (above resi-
due 264), with the lower segment mostly unaffected. These conformational changes lead to an
increase of D271 inter-residue distances, while those among E250 residues remain substantially
unaltered. In this scenario, the funnel located at the extracellular side of the TMD gets broad-
ened, thus weakening the possible electrostatic interactions between D271 and the translocat-
ing ions. Moreover, the funnel widening allows, in principle, more Na+ ions to be
accommodated, with the result of a more effective screening of D271 residues negative charges.
Altogether these two effects may account for a minor contribution of D271 to ion selectivity.
On the contrary, the lower portion of the M2 helix (below residue 264) does form a narrow
pore, which is essentially similar in both closed and open states. Hence, in the open state resi-
due E250 becomes the paramount determinant for ion selectivity, as overall suggested by
experiments on this protein and homologue receptors. It should be noted, however, that the
role of this residue on the ion selectivity of all Cys-Loop receptors is still a matter of debate due
to contrasting mutagenesis experiments on GABAA and GlyR.[32,33]

The PMF analysis suggests another interesting feature of this channel. Our PMF profile sup-
ported a considerable contribution of residue D247 to ion translocation, along with the nearby
residue E250. Therefore, it would be interesting to test if D247 could affect single-channel con-
ductance as well as residue E250, or even ion selectivity, especially in the case of the 5-HT3AB
heteromeric receptor, which is characterized by fewer negative residues at position 250 than
the corresponding homomeric receptor. Note that the corresponding residue in nAchR was
shown to be important for single-channel conductance[6] (however, since in human 5-HT3A
D247 is replaced by an asparagine, these contributions may not be shared by all organisms).
Moreover, the Na+ ion attraction by residue D247, while passing through the narrow hydro-
phobic channel towards the intracellular vestibule, provided an additional driving force to exit
the hydrophobic region and the E250 ring. In turn, this may suggest that a multi-ion transport
mechanism is not required for ion translocation through the 5-HT3 channel, as observed in
other channels.[74] Nonetheless, a rather contrasting scenario is expected with divalent cat-
ions, considering that position 250 was shown to be a divalent ion binding site with a resulting
decrease of ionic conductance in both nAchR and 5-HT3.[72,75] Concerning the obtained
trend of the single-ion PMF within the TMD pore, we observe that our results are qualitatively
in good agreement with previous calculations on homologue channels[12] (taking into consid-
erations possible differences in the simulation protocols), and possibly more accurate in
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describing the ending region of the pore owing to a better description of the initial ICD region,
as pointed out in the Results section.

Finally, we studied the effect of replacing the MA helix arginine triplet, which is typical of
the 5-HT3A subunit, on cation permeation. Our simulations showed that an increased ionic
passage through the ICD portals is achieved by progressively replacing the arginine residues
with corresponding residues from the 5-HT3B subunit. Such a trend nicely correlates, at least
qualitatively, with the enhanced single-channel conductance observed while going from the
wild-type to the R420D and QDAmutants and further supports the special role of the arginine
triplet in determining the characteristic low-conductivity in 5-HT3A channels, as compared to
other homologues.[52] Moreover, our study set out to demonstrate that the hampering effect
on ion translocation by the MA helix arginines is due to a combination of electrostatic and ste-
ric effects, via the formation of stable side-chain interactions, a result well consistent with an
hypothesis based upon cystein substitution and subsequent modification by MTS reagents.[76]
Supported by our findings, we propose that D312 in the post-M3 loop, so far never investi-
gated, plays an important role in stabilizing the arginine triplet in a conformation preventing
the cavity opening. However, the present observation is at variance with a recent hypothesis,
based on constrained geometric simulations and mutations of MA negatively charged residues,
that considers the increase in MA helix flexibility, not observed in our study, as the main cause
of the increase of ion conductance.[77] Please note that the increase in conductance reported
in the study mentioned above does not necessarily rule out the importance of the electrostatics
of the portals. Indeed, two of the three mutated residues, i.e. E434 and D441, being located on
different position on the MA helix, actually point towards the exterior of the protein and are
solvent exposed. Thereby, their contribution to the conductance could be somehow indirect.

Interestingly, no ion passed through the ICD portals in the WT system within the simulated
time interval, though the trypsin-treated 5-HT3A receptor generated to obtain the crystal struc-
ture displayed a higher conductance than the unproteolized receptor. This intriguingly suggests
also the possible transmission of (a certain degree of) structural changes from the TMD to the
ICD upon gating, as previously conjectured.[78] While a quantitative relationship between the
experimental conductance of the trypsin-treated receptor and the extent of portal opening
observed in our simulations could not be established, we can reasonably assume that the ICD
portal structure, especially the α-helices, undergoes only a slight rearrangement upon gating, as
previous experimental studies seem to suggest.[49,61,76,77] If this is the case, the structural dif-
ferences among mutants observed in this study could be considered relevant also in the channel
conductive state.

Methods

5-HT3A Receptor Models
Model of the whole 5-HT3A receptor. The 5-HT3A receptor (PDB entry: 4PIR) was first

oriented and then inserted into a POPC (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphatidyl-
choline) lipid bilayer using the OPM[79] and CHAMM-GUI[80] servers, respectively. The
protein-lipid assembly was then solvated with TIP3P water molecules and Na+ and Cl− ions to
neutralize the overall charge and obtain a final ion concentration of about 0.15 M, using the
VMD[81] software. Ions were introduced at least 8 Å away from the protein. Since a long part
of the M3-M4 loop was absent from the structure, the C-terminus of the post-M3 segment and
the N-terminus of the MA helix were capped with a methylamine and an acetyl groups, respec-
tively, so as to mimic a more realistic situation where these segment termini are neutral. The
M2-M3 loop segment that was unresolved in the crystal structure has been reconstructed using
the Modeller program (v9.12).[82] All histidines were set in neutral form, since none of them
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was found in a context such to justify a protonated state. The resulting simulation box size was
154 Å × 154 Å × 214 Å and the total system size about 400,000 atoms.

Equilibration. The complete 5-HT3A receptor model, once solvated and embedded into
the lipid membrane, was minimized in two steps: first, a 20000 step minimization run was car-
ried out with restraints on all protein atoms (5 kcal/mol/Å2); then, a further 15000 step mini-
mization was carried out with 1 kcal/mol/Å2 restraints on Cα atoms only. Afterwards, the
system was slowly heated up from 1 to 310 K over a 4 ns MD simulation, applying gradually
decreasing restraints on the protein Cα atoms, from 5 to 1 kcal/mol/Å2. After such a thermali-
zation, the system was equilibrated for further 2 ns, gradually reducing to zero the atomic
restraints on the protein flexible parts (ECD, loops, ICD).

Wild-type and mutants of the 5-HT3A channel (TMD+ICD). The procedure to prepare
the smaller systems made up by TMD and ICD was slightly different. We first created the
mutants starting from the full 5-HT3A crystal structure (PDB entry: 4PIR). The three systems
(WT, R420D and QDA) were then embedded into the lipid membrane, solvated, thermalized
and equilibrated as described above. After equilibration, we created a reduced system (starting
at P213, in the β10-M1 loop), removing the ECD from protein structure, capped P213 N-termi-
nus and adjusted the box volume in order to ensure, at least, a 20 Å thick water layer. Ionic con-
centration was set again to 0.15 M. Special attention was paid to avoid ion inclusions inside the
ICD vestibule. The resulting simulation cell was 156 Å x 154 Å x 148 Å, with about 260,000
atoms. Moreover, the three systems were further equilibrated for 2 ns prior to production runs.

Molecular Dynamics Simulations
Simulation details. All MD simulations were performed using the NAMD v2.9 program.

[83] Protein, water and ions were modeled with the CHARMM27 force field[84] with CMAP
corrections for backbone atoms and NBFIX correction for Na+ ions,[85,86] while the
CHARMM36 force field[87] was used for lipids. On the Cα atoms of only TMD helices, soft
symmetry restraints available in NAMD, with a force constant of 0.75 kcal/mol/Å2, were
applied. ECD, ICD and other more flexible parts of the protein (e.g. loops) were kept unre-
strained. It is worth noting that these restraints do not cancel out global movements of the
TMD, but rather ensure, on average, a symmetrical homopentameric assembly, as expected in
the present system. Simulations were performed under constant pressure (1 atm) and tempera-
ture (310 K), where the NPT ensemble was enforced by the Langevin piston pressure control
and the Langevin damping dynamics using periodic boundary conditions. All covalent bonds
with hydrogen atoms were kept rigid using the SHAKE algorithm. The bonded interactions
and the short-range non-bonded interactions were calculated at each time-step (2 fs), whereas
the particle mesh Ewald method was used to update the long-range electrostatic interactions
every two time-steps. PMEGridSpacing was set 1.0 Å. The cutoff distance for non-bonded
interactions was 10 Å. A smoothing function was employed for the van der Waals interactions
at a distance of 8 Å. The pair list of non-bonded interactions was evaluated using a pair dis-
tance of 14 Å. The whole receptor was simulated for a total time of 100 ns. WT, R420D and
QDA systems were simulated for 100 ns each, applying symmetry restraints.

Free energy calculations. From the crystal structure of the whole 5-HT3A receptor, a
smaller subsystem comprising only TMD and ICD was created. Only the ions needed to ensure
the system electroneutrality were introduced. After 2 ns equilibration, we performed a steered
MD simulation, slowly dragging one Na+ ion (or one Cl-) through the pore in order to generate
multiple starting configurations suitable for the ABF windows. Each ion was dragged along the
TMD pore in about 30 ns. Subsequently, we equilibrated each window for 2 ns prior to free
energy calculations. The Adaptive Biasing Force (ABF) method as implemented in NAMD

Ion Translocation through the 5-HT3A Receptor

PLOS ONE | DOI:10.1371/journal.pone.0140258 October 14, 2015 16 / 23



[88–90], was used to calculate the single-ion PMF for Na+ and Cl− along a reaction coordinate
spanning ~65 Å, sufficient to cover the entire length of the TMD and the upper part of the
ICD. The method couples ideas from thermodynamic integration and average force formalisms
with unconstrained molecular dynamics and the introduction of an adaptive biasing potential.
The average force experienced by the simulated system at any point along a coordinate ξ is esti-
mated from the instantaneous forces experienced by the system at that position. The average
forces are accumulated in bins along ξ and are continuously updated as the simulation pro-
gresses. The estimated free energy derivative, computed for small intervals of ξ, is canceled by
the introduction of an adaptive biasing potential. The application of the adaptive bias allows
the system to overcome existing barriers along ξ in the free energy landscape. The simulations
were carried out in 1 window of 3 Å length and 11 windows of 5 Å length along the channel
axis. The same simulation conditions described above were applied for this calculation. Within
each window the average force acting on the selected ion was accumulated in 0.1 Å sized bins,
and the biasing force was applied after 800 samples. Positional restraints (with force constant
of 3 kcal/mol/Å2) were applied to counter-ions so to keep them away from the ion inside the
channel and rule out any interference in PMF calculation. A 20 ns MD trajectory was generated
for each window, resulting in a total simulation time of 240 ns per ion. Convergence was tested
by plotting the PMF profile at different time intervals (S11 Fig).

Trajectory analysis. The HOLE[91] program and the MolAxis[92] webserver were used
to analyze pore dimension and fenestrations. RMSF and B-factors were calculated using the
ptraj[93] software tool. RMSD, ion density and coordination analyses were performed using
in-house scripts exploiting the MDAnalysis[94] library. Electrostatic potentials were evaluated
through the APBS[95] server. Figures and plots were generated using the UCSF-CHIMERA
[96] and MATPLOTLIB[97] software.

Supporting Information
S1 Fig. Root Mean Square Deviation with respect to the starting frame.
(TIFF)

S2 Fig. Backbone RMSF. The protein average structure, depicted as ribbons, is colored accord-
ing to backbone RMSF values, from lowest (blue) to highest (red). The thickness of the ribbons
is also proportional to RMSF values.
(TIFF)

S3 Fig. K108 Side chains conformation. Bottom view of K108 side chain conformations in
the (A) 5-HT3A crystal structure and (B) a representative snapshot from the simulation. The
protein is depicted as yellow ribbons, while the side chains of K108 and D105 are depicted as
sticks.
(TIFF)

S4 Fig. Enlarged view of a lateral portal at the ECD-TMD interface. The protein structure is
depicted as cartoons, with residue side chains molding the portal walls as sticks. Cys-Loop, β1-
β2 loop, C-terminal part of the F-loop, M2-M3 loop and β10-M1 loop are highlighted in blue,
magenta, green, yellow and orange, respectively. In background, one channel predicted by
MolAxis is depicted as a series of transparent yellow spheres, whose radius is proportional to
the accessible space.
(TIFF)

S5 Fig. Lateral channels in other members of the Cys-Loop superfamily. Lateral intersubunit
pathways from the interior to the exterior of the protein in: (A) 5-HT3A, (B) nAchR, (C)
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GluCl, (D) ELIC, (E) GLIC.
(TIFF)

S6 Fig. Average number of ions along the channel axis. Bar histogram of the average number
of Na+ (blue) and Cl- (red) ions along the channel axis (inside a cylinder of 25 Å radius). Nega-
tive values represent the extracellular side of the pore, while positive values represent the intra-
cellular side. Origin is set to the centroid of D271 Cα atoms.
(TIFF)

S7 Fig. Average ion coordination number along the channel axis. The blue and red curves
represent the average number of water and protein side chains atoms, respectively. The values
are obtained from the last 5 ns of the ABF simulations.
(TIFF)

S8 Fig. RMSD of ICD Portals. Root mean square deviation, with respect to the starting config-
uration, of the stretch of residues that line the ICD portals (302–308, 409–418) in WT, R420D
and QDA systems. In the right subplot is shown the corresponding RMSD distribution.
(TIFF)

S9 Fig. Backbone flexibility of ICD portals. Backbone RMSF of the ICD portals in (A) WT,
(B) R420D and (C) QDA systems. The protein structure is depicted as cartoons and colored
according to the RMSF values.
(TIFF)

S10 Fig. Side chain flexibility at ICD portals. View of ICD portals in (A) WT, (B) R420D and
(C) QDA systems. Protein is shown as yellow cartoon, and the stretch of residues shaping the
portal walls are shown as sticks and colored according to their side chains B-factors. A shift
toward red can be appreciated for residue side chains in the post-M3 loop, especially D312.
(TIFF)

S11 Fig. Convergence of the potential of mean force. PMFs for Na+ and Cl- permeation cal-
culated from sequentially increasing time intervals from the ABF simulations. Changes in the
PMF in the last 5ns are below 2 kcal/mol.
(TIFF)

S1 Video. Lateral Translocation.
(MP4)
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