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THE BIGGER PICTURE Sample mislabeling is a well-recognized problem in scientific research, particularly
prevalent in large-scale,multi-omic studies, due to thecomplexity ofmulti-omicworkflows.Here,wedescribe
a crowdsourced precisionFDA NCI-CPTAC Multi-omics Enabled Sample Mislabeling Correction Challenge,
which provides a framework for systematic benchmarking and evaluation of mislabel identification and
correction methods for integrative proteogenomic studies. Individual solutions submitted by the challenge
participants, even those from the same team, show a wide range of accuracy, underscoring the importance
of the benchmarking effort. Post-challenge collaboration between the top-performing teams and the chal-
lenge organizers has created an open-source software, COSMO, with demonstrated high accuracy and
robustness in mislabeling identification and correction in simulated and real multi-omic datasets.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Samplemislabelingormisannotationhasbeena long-standingproblem inscientific research, particularlyprev-
alent in large-scale, multi-omic studies due to the complexity of multi-omic workflows. There exists an urgent
need for implementing quality controls to automatically screen for and correct samplemislabels ormisannota-
tions inmulti-omic studies. Here, wedescribe a crowdsourcedprecisionFDANCI-CPTACMulti-omics Enabled
SampleMislabelingCorrectionChallenge,which provides a framework for systematic benchmarking andeval-
uation of mislabel identification and correction methods for integrative proteogenomic studies. The challenge
received a large number of submissions from domestic and international data scientists, with highly variable
performanceobservedacross the submittedmethods.Post-challengecollaborationbetween the top-perform-
ing teamsand thechallengeorganizershascreatedanopen-sourcesoftware,COSMO,withdemonstratedhigh
accuracy and robustness inmislabeling identification andcorrection in simulated and realmulti-omicdatasets.
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INTRODUCTION
 studies containing a total of 181 colorectal tumor samples.4,8
Recent advances in high-throughput omics technologies have

enabled system-wide characterization of biological samples at

different molecular levels.1–3 For example, the National Cancer

Institute (NCI)’s The Cancer Genome Atlas (TCGA) and the Clin-

ical Proteomic Tumor Analysis Consortium (CPTAC) havemolec-

ularly profiled large sets of tumors spanning the major human

cancer types using genomic, epigenomic, transcriptomic, and

proteomic platforms.4–6 The resulting multi-omic data, together

with associated clinical data, have greatly expanded our under-

standing of cancer biology and have led to new therapeutic in-

sights into different cancer types.7–9 As the volume and

complexity of data continue to increase, unfortunately sample

or data-labeling errors often occur during the process of data

generation and management due to human errors. Although

such errors have been a long-standing problem that contributes

to irreproducible results and invalid conclusions,10–12 they

become particularly prevalent in large-scale omic studies.

Indeed, sample-mislabeling problems have been observed in

several CPTAC projects during data quality control steps, and

considerable efforts have been made to correct these issues

before public data release.

Several methods have been developed to screen for misla-

beled samples through matching their genetic and genomic pro-

files.13–18 Customized for genetic and genomic data, these

methods have not been applied to or tested in proteomic pro-

files, which pose rather different data properties. For example,

while mRNA levels of sex-chromosome genes such as XIST or

RPS4Y1 are unambiguous in inferring gender of samples,13,19

predicting gender using proteomic data is more challenging

mostly due to low coverage of sex-chromosome genes and

higher noise of proteomic data. No previous studies provide a

robust solution for gender inference based on proteomic data.

As another example, correlation between copy number and

mRNA expression has been used to detect sample mislabel-

ing,13,14 but it is unclear whether the same approach works

when mapping mRNA and protein profiles due to the moderate

correlation between mRNA and protein levels.4 In addition,

most of the existing methods focus only on error detection.

The few offering correction of labeling errors require manual in-

spection, and thus cannot be easily scaled up or adopted by

other research teams. To bridge these gaps, the precisionFDA

and NCI-CPTAC called upon the scientific community at large

to develop computational methods that detect and correct po-

tential mislabeled samples in proteogenomic datasets through

the ‘‘Multi-omics Enabled Sample Mislabeling Correction Chal-

lenge.’’20 The top-performing algorithms resulting from the chal-

lenge have been systematically evaluated and collaboratively

improved, leading to an integrated and automated open-source

tool that can be broadly adopted to tackle the mislabeling prob-

lem in proteogenomic studies.

RESULTS

Description of the challenge
The challenge dataset was generated using RNA sequencing

(RNA-seq), mass spectrometry-based proteomic data, and

associated clinical information from two colorectal cancer
2 Patterns 2, 100245, May 14, 2021
From the merged dataset, we first created 50 pairs of training

and testing datasets with 80 samples each from random sam-

pling of 160 samples (experimental procedures). In each

training or testing dataset, four samples were randomly

selected and assigned misannotated clinical information

including gender and microsatellite instability (MSI) status;

and RNA-seq or proteomic profiles of another eight samples

were randomly selected and shuffled or mislabeled (experi-

mental procedures). One pair of training/test datasets with the

median difficulty level according to performances of our base-

line method on these datasets was selected and used in the

challenge (Figure S1). Participants were asked to explore the

training dataset to learn about the features of the errors in order

to detect and correct labeling errors from the testing dataset.

The remaining training/test datasets were used later for post-

challenging investigations.

The challenge consisted of two sub-challenges structured

sequentially (Figure 1). In the first sub-challenge, participants

were presented with clinical and proteomic data of the same

set of samples and asked to detect samples with unmatched

clinical and proteomic data. In the second sub-challenge, par-

ticipants were further provided with RNA-seq data for the

same set of samples as in the first sub-challenge. Assuming

errors occurred in only one data type, participants were

further requested not only to detect the problematic samples

(level 1) but also to identify the mislabeled data types (level

2) and correct the errors (level 3). F1 scores, i.e., harmonic

means of the precision and recall of the models, were used

for performance evaluation in both sub-challenges. Especially

in the second sub-challenge, F1 scores from the three levels

were averaged for performance evaluation (experimental

procedures).

Challenge results
A total of 52 teams from 15 countries participated in the chal-

lenge (Figure 2A), with 149 solutions submitted for sub-challenge

1 and 87 solutions for sub-challenge 2. The large number of sub-

missions for both sub-challenges suggests the practical signifi-

cance of and, thus, great interest in solving the problems in the

scientific community. A striking observation from the challenge

performances is that individual solutions showed a wide range

of accuracy in both sub-challenges (Figures 2B and 2C for

sub-challenge 1 and 2, respectively; Table S1). In some cases,

even multiple solutions submitted by the same team had a

wide range of accuracy (Figures 2B and 2C for sub-challenge 1

and 2, respectively). These results highlight the importance of

systematic benchmarking efforts and the need for a standard-

ized, accurate, and open-source method for mislabeling check.

A unique challenge in working with proteomic data is the pres-

ence of a significant amount of missing values. Most participants

performed an imputation step to deal with this issue (Figure 2D).

One frequently used approach among submitted solutions was

to discard features containing missing values or extremely low

values, and the teams using this approach tended to have a rela-

tively poorer performance in sub-challenge 1 compared with the

other teams (average percentile rank [APR] = 0.423; APR has a

range from 0 to 1—larger is better, 0.5 is neutral). Another

frequently used strategy was to replace missing values with 0.



Figure 1. Overview of pFDA-NCI-CPTAC

Challenge design and post-challenge devel-

opment

The challenge consisted of two sub-challenges

structured sequentially. In the first sub-challenge,

participants were presented with clinical and pro-

teomic data for the same set of samples and asked

to detect samples with unmatched clinical and

proteomic data. In the second sub-challenge, par-

ticipants were further provided with RNA-seq data

for the same samples as in the first sub-challenge

and were requested to detect the mislabeled sam-

ples, identify the problematic data types, and cor-

rect the errors. F1 scores were used for performance

evaluation. In the end, the top-performing teams

worked together to develop and implement an

automated sample-labeling check algorithm named

COSMO (COrrection of Sample Mislabeling

by Omics).
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The teams using this approach tended to have better perfor-

mance compared with the other teams (APR = 0.658), and this

approach was used by one of the top-performing teams to

achieve a team average F1 score of 0.83 (Figure 2D). Several

teams replaced missing values with gene-wise mean or median,

which assumes that the expression levels of a gene/protein in

different experiments are constant. This approach tended to

underperform (APR = 0.231). Model-based imputation methods,

such as k-nearest neighbors (KNN), random forest (RF), and non-

negative matrix factorization (NMF), have also been used with

varied levels of success. One of the top-performing teams

used NMF and achieved an F1 score of 0.75, but generalizability

of this approach is uncertain because it was used by only

one team.

For sub-challenge 1 the F1 scores ranged from 0 to 0.8, sug-

gesting difficulty in predicting gender or MSI status based only

on proteomic data (Figure 2B). Matching clinical annotations

(gender andMSI) with omic data often involves constructing pre-

diction models for clinical variables based on omic data. A sum-

mary of prediction models employed by all teams is presented in

Table S2. Modeling methods used by the top-performing teams

included logistic regression (LR), RF, and KNN. One important
aspect of prediction model construction

based on high-dimensional data is feature

selection. The participating teams used a

variety of feature-selection techniques

(Figure 2E). The simplest approach was

to remove features with variance below

some threshold. The second approach

picks features based on results of univari-

ate statistical tests, such as the traditional

ANOVA test or differential test developed

for gene expression data analysis. Model-

based feature selection, such as regular-

ized LR (with L1 penalty), RF, and nearest

shrunken centroids, were popular choices.

Interestingly, the same feature-selection

approachmay lead to very different perfor-

mances, which might be explained by their
combination with different modeling methods. Many teams

leveraged domain knowledge to guide the selection of important

features, such as using genes from sex chromosomes to predict

gender information, and the results were mixed (APR = 0.534).

For sub-challenge 2, the average F1 scores also ranged widely

from 0.1 to 0.99 (Figure 2C). For matching protein and RNA-seq

data, either Pearson- or Spearman-based correlation analysis

was utilized by most teams, including all three top-performing

teams. A few teams preceded the correlation analysis with

regression analysis that used one data modality to predict the

other, which did not yield superior performance. For the final la-

bel correction, teams typically searched for patterns consistent

with mismatching scenarios in different data modalities through

heatmap visualization. It is worth noting that the top-performing

solutions in sub-challenge 2 were able to identify mislabeled

samples with much higher accuracies than those in sub-chal-

lenge 1. This clearly demonstrates the benefit of using multi-

omic data for identifying sample-labeling errors.

Post-challenge collaboration and COSMO
The three top-performing teams from sub-challenge 2 were

invited to participate in post-challenge collaborative
Patterns 2, 100245, May 14, 2021 3



Figure 2. Summary of challenge results

(A) Global participants for the challenge suggesting

high interest in the challenge problems.

(B) Performance evaluation of 149 submissions

(columns) from 52 unique submitters (rows) for sub-

challenge 1. The F1 score with 95% confidence in-

terval was evaluated for each submission and

averaged for unique submitters.

(C) Evaluation of sub-challenge 2. In total 57 sub-

missions (columns) from 31 unique submitters

(rows) were evaluated in terms of average F1 score.

Wide distribution of performance of submission for

both sub-challenges was observed. Even within the

same team, performance varied in a wide range,

suggesting significance of standardized methods.

(D and E) Association between team performances

in sub-challenge 1 and missing data imputation

methods (C) and feature-selection methods (D).

Metric used: average percentile rank.

(F) Evaluation of the robustness of the top three

methods from sub-challenge 2 using 50 colon

cancer simulated datasets with fixed types and

number of errors. P values were calculated using

two-sided paired Student’s t test.

ll
OPEN ACCESS Article
development. First, we further evaluated the robustness of the

three winning methods (supplemental experimental procedures)

by applying them to the original 50 training/testing datasets from

which the challenge dataset was selected (experimental proced-

ures). Methods from both Teams 2 and 3 showed high accuracy

with average F1 scores around 0.9, and the method from Team 3

showed the best performance at all levels of evaluation (two-

sided paired Student’s t test, p < 0.01, Figure 2F). In contrast,

the average F1 score of our baseline method was only 0.68

(experimental procedures), about 30% lower than the scores

of winning methods from Teams 2 and 3. The performance of

the method from Team 1, however, was relatively low in general,

having an average F1 score of 0.66. This is mainly due to the

difficulty for Team 1 to implement their manual inspection pro-

cedures, which was used during the challenging phase, in an

automatic pipeline (Figure 2F). These results underscore the po-

wer of crowdsourcing in achieving optimal performance in mis-

labeling correction and suggest pipeline automation as a key

factor for robust performance.

In both the challenge and the above robustness evaluation ex-

ercise, training datasets have the same patterns and frequencies

of errors as the test datasets. However, in a real-world scenario,

training data are not available and there is no prior information on

the patterns and frequencies of mislabeling errors. To better

mimic real-world applications, we generated 50 new datasets
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with varying mislabeling error rates and

patterns based on the colon data, and

the new datasets did not include matched

training data (experimental procedures

and Figure 3A). The pipeline from Team 2

was successfully adapted to fully address

this new challenge and achieved a high

median average F1 score of 0.92 (Fig-

ure 3B). However, the pipelines from the

other two teams could not be effectively
adapted to detect mislabeling errors when error rates and error

patterns were unknown. We further tested whether integrating

intermediate clinical attribute prediction results from multiple

teams, i.e., ‘‘wisdom of the crowds,’’ could lead to better perfor-

mance than the best single approach. By integrating results from

Team 3 with the ones from Team 2, we observed small but sig-

nificant improvement of the average F1 scores for detecting

problematic samples (p = 0.03), identifying mislabeled data

types (p = 0.03), and the overall performance (p = 0.01) (Fig-

ure 3B). There was also a trend of increasing performance for er-

ror correction, albeit not significant (p = 0.07). Further integrating

the results from Team 1 did not lead to additional improvement.

Based on these results, we developed an automated sample-

mislabeling check pipeline named COSMO (COrrection of Sam-

ple Mislabeling by Omics) following Team 2’s overall approach,

but also integrated the clinical attribute prediction algorithm

from Team 3 (Figure 3C and experimental procedures). For inde-

pendent validation, we applied COSMO to 50 simulated datasets

from a kidney cancer study (experimental procedures and Fig-

ure 3D) with varying error rates and patterns, and obtained ame-

dian average F1 score of 0.99 (Figure 3E), demonstrating high ac-

curacy and robustness of the COSMO pipeline. We also

associated the error rate with the performance of COSMO in

both colon and kidney datasets (Figure S2). As expected,

COSMO showed better performance with lower error rates while



Figure 3. COSMO and its performance on in-

dependent test datasets

(A) Mimicking real cases of the sample mislabeling

by generation of simulated dataset with different

types and number of sample-labeling errors from

the colon cancer dataset.

(B) Performance with different sources of clinical

attribute predictions. P values were calculated us-

ing two-sided paired Student’s t test.

(C) Overall schematic of COSMO to detect and

correct mislabeling samples in clinical or omic data.

(D) Mimicking real cases of sample mislabeling by

generation of simulated dataset with different types

and number of sample-labeling errors using CPTAC

kidney cancer datasets.

(E) Performance of COSMO in the 50 simulated

datasets from (D).

ll
OPEN ACCESSArticle
high accuracies (F1 score > 0.9) were still achieved with relatively

high error rates (>20%). In the kidney cancer dataset, COSMO’s

performance was almost perfect for the cases with error rate

below 20%.

Application of COSMO to real-case datasets
To test COSMO’s performance in real multi-omic studies, we

applied it to six independent multi-omic datasets (experimental

procedures and Table S3). First, we applied COSMO to three hu-

man tumor datasets in whichmislabeled samples were observed

previously either before or after publication: the pre-quality con-

trol (preQC)CPTAC lungcancer dataset (preQCCPTACLUAD),21

the preQC CPTAC kidney cancer dataset (preQC CPTAC

CCRCC),7 and the TCGA breast cancer dataset (TCGA BRCA)6

(experimental procedures). Applying COSMO to the preQC

CPTAC LUAD dataset identified four pairs of swapping samples

in the proteomic data by integrating results fromRNA-seq-Prote-

omics, RNA-seq-CNV (copy-number variation), and Proteomics-

CNV alignments (Figure 4A). In the preQC CPTAC CCRCC

dataset, the heatmaps generated by COSMO clearly revealed

reciprocal mislabeling among three samples in the proteomic

data (Figure 4B). In both cases, these errorswerepreviously iden-

tifiedby theCPTACdata analysis centersduringdata quality con-

trol, confirmed by data generation centers, and consequently

corrected before the final data release and publication. In the

TCGA BRCA dataset, a previous study reported eight sample

swaps in the microarray data.13 COSMO recapitulated the exact

same eight pairs swapped in microarray data by integrating mi-

croarray, RNA-seq, and CNV data (Figure 4C).
Next, we applied COSMO to three other

published multi-omic studies for which

sample mislabeling has not been reported

previously. First, we investigated Cancer

Cell Line Encyclopedia (CCLE)24 data of

371 cell lines for which RNA-seq, proteo-

mic, and CNV data are available. COSMO

showed that all samples were perfectly

aligned across RNA-seq, proteomic, and

CNV profiles in this dataset. Next, using

RNA-seq, proteomic, and Riboseq profiles

of 62 human lymphoblastoid cell lines
generated in a study characterizing the impact of genomic vari-

ation on RNA and protein,22 COSMO identified a swap of two

samples in RNA-seq and a potential duplicated sample in prote-

omic data (Figure 4D). In another study investigating how genetic

variation affects transcript and protein abundance in livers from

192 Diversity outbred mice,23 nine swapping pairs were de-

tected by COSMO (Figure 4E). In addition, by comparing pre-

dicted sexes from RNA-seq and proteomic data with corre-

sponding clinical annotations, COSMO attributed the labeling

errors to proteomic data for four swapping sample pairs with

different sexes (Figure 4E and Table S4). Further investigation

of the proteomic experimental design of the study23 revealed

that the sample-labeling swapping occurred between two multi-

plexed tandem mass tag experiments. Following these findings

reported by COSMO, the authors of the publication confirmed

the sample-labeling errors in the proteomic dataset, and a

request for correction has been submitted to the journal (S.

Munger, personal communication). Detailed results from the

six independent datasets are summarized in supplemental

experimental procedures.

In summary, these results demonstrate general applicability of

COSMO to sample-labeling correction in multi-omic studies

involving different types of omic platforms, different organisms,

and both cancer and non-cancer studies (Table S3).

Biological impact of mislabeling correction
Sample mislabeling may associate omic profiles with incorrect

clinical phenotype annotations and impair differential expression

analysis. Among the four swapping pairs identified in the preQC
Patterns 2, 100245, May 14, 2021 5



Figure 4. Application of COSMO in real datasets

(A) CPTAC LUAD: four pairs of proteomic samples reciprocally matched each other between RNA-seq-Proteomics and Proteomics-CNV, but no labeling

swapping was observed in RNA-seq-CNV.

(B) CPTAC CCRCC: three samples in proteomics were shifted in RNA-seq-Proteomics and Proteomics-CNV matching while samples between RNA-seq and

CNV were matched well.

(C) TCGA BRCA: eight pairs of microarray samples were swapped in RNA-seq-Microarray and Microarray-CNV matching.

(D) Battle et al.:22 two RNA-seq samples were swapped based on alignment among RNA-seq, proteomic, and Riboseq data. Potential duplicated protein sample

was observed.

(E) Chick et al.:23 nine pairs of samples were swapped between RNA-seq and protein data. Merging with clinical annotation of gender of the sample suggested

swapping in proteomic data.
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proteomic data of the CPTAC LUAD study (Figure 4A), two

swaps involved samples with different genders (Table S5). In

the comparison between male and female samples to identify

differentially expressed proteins (DEPs), based on the

COSMO-corrected data, 584 DEPs were identified (Student’s t

test, false discovery rate [FDR] < 5%), whereas only 160 DEPS

were obtained based on the preQC data (Figure 5A). The drastic

difference was driven by small but meaningful changes in which

mislabeling correction pushed hundreds of genes below the sig-

nificance threshold (Figure 5B). TheCOSMO-corrected data also

showed higher power in detecting gender-associated pathways,

and several cell-cycle-related pathways including G2M_CHE

CKPINT, E2F_TARGETs, MYC_TARGETS_V1, and MYC_TAR-

GETS_V2 could not be identified at the same significance

threshold with the preQC data (Figure 5C).

Another swap in the preQC CPTAC LUAD proteomic data

involved one immune-hot tumor and one immune-cold tumor.
6 Patterns 2, 100245, May 14, 2021
The correction of this swap is critical for the two affected

patients, because it may avoid incorrect immunotherapy deci-

sions for these patients.21 In addition, correction of this single

swapping pair had significant impact on identifying DEPs be-

tween immune-hot and immune-cold tumors. Among the 8,528

proteins in the dataset, 1,277 DEPs were identified based on

the COSMO-corrected data (Student’s t test, FDR < 5%), which

is 20% more than the DEPs identified in the preQC data (Fig-

ure 5D). Of the 1,277 DEPs, 959 were identified in both datasets

whereas 318 were identified only after mislabeling correction

(Figure 5E). The COSMO-corrected data also showed higher po-

wer in detecting differential pathways (Figure 5F). Specifically,

APOPTOSIS and INFLAMMATORY_RESPONSE were signifi-

cantly associated with immune-hot tumors only based on

COSMO-corrected data, and stronger associations were

observed for other immune response-related pathways such

as INTERFERON_GAMMA_RESPONSE and



Figure 5. Biological impact of error correc-

tions using COSMO in CPTAC LUAD dataset

(A) Number of DEPs between male and female tu-

mors before and after error correction.

(B) Comparison of t test FDRs (�log10) of 8,528

proteins between male and female tumors.

(C) HALLMARK pathways (FET FDR < 0.05) signifi-

cantly associated with gender DEPs before and af-

ter COSMO. Unique DEPs after COSMO were also

used for functional enrichment test.

(D) Number of DEPs in immune-hot and immune-

cold tumors.

(E) Comparison of t test FDRs of 8,528 proteins

between immune-hot and immune-cold tumors.

(F) HALLMARK pathways significantly associated

with upregulated proteins in immune-hot sub-type

tumors.

(G) Correlation strengths of 8,366 gene-protein pairs

before and after correction. Pearson correlation p

values were adjusted as Benjamini-Hochberg

adjusted p values (FDR) and then log10 transformed.

(H) Difference in correlation strengths of 269 gene-

protein pairs significant only after error correction.
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ALLOGRAFT_REACTION.21 These results suggest that even a

small number of sample-labeling errors could have a significant

impact on differential analyses at both gene and pathway levels.

Another important application of multi-omics is to investigate

the relationships between different omic modalities, such as

mRNA-protein correlation, expression quantitative trait loci

(eQTL) analysis, and protein quantitative trait loci (pQTL) anal-

ysis. To examine the impact of sample mislabeling on assessing

mRNA-protein correlation, we compared the gene-wise mRNA-

protein correlations in the CPTAC LUAD study, both before and

after mislabeling correction. After fixing errors in 7.5% (8/107) of

the samples, COSMO-corrected data led to improved mRNA-

protein correlations for about 85% of genes (Figure 5G), and

267more geneswere found to show significant RNA-protein cor-

relation (FDR < 1%) specifically in COSMO-corrected data (Fig-

ure 5H). Several of these genes were known cancer genes, such

as TBC1D15, the one with the largest change of correlation co-

efficient, was reported as an oncoprotein to promote self-

renewal and pluripotency.25 In addition, mRNA expression of

RAP1B was associated with poor prognosis and promotion of

an aggressive phenotype in gastric cancer.26

In the preQC CPTAC CCRCC dataset, the detected error rate

wasmuch lower, 3.5% (3/77). Nevertheless, we observed similar

patterns of increasing mRNA-protein correlations for 62% of the

genes (Figure S3A), and 54 genes only showed significant
mRNA-protein correlation based on

COSMO-corrected data (Figure S3B).

Because discordant mRNA and protein

expression is typically considered as a

result of translational and protein degrada-

tion regulations, sample mislabeling may

lead to overestimation of these regulations

both at a global level and for individ-

ual genes.

Similarly, sample mislabeling may lead to

underestimation of eQTL and pQTL effects.
For the aforementioned study investigating how genetic variation

affects transcript and protein abundance in livers from 192 Diver-

sity outbredmice,23 theauthors repeated thepQTLanalysisbased

onCOSMO-corrected data and found a stronger overall impact of

genetic variants on the proteome. The new analysis identified 497

more local pQTLs than in the published dataset at the same signif-

icance thresholds, and among the 1,681 local pQTLs identified in

both datasets, 1,456 (87%) mapped with higher log odds ratio

(LOD) scores in the updated dataset. For example, the LOD score

of OMA1 local pQTL, one of the main findings in the paper,23

increased from 24 to 31 after correction of the errors (Figure 6, S.

Munger, personal communication).

Taken together, sample-labeling errors could have a signifi-

cant impact on biological conclusions in omic studies, and

COSMO provides an automated solution to catch and fix these

errors proactively.

DISCUSSION

While integrationofmultiple layersofomicdata iscritical toprovide

a comprehensive understanding ofmolecularmechanisms under-

lying complex biological systems, samplemislabeling is especially

prevalent in multi-omic studies and contributes to irreproducible

results and invalid conclusions. Notably, although genome-wide

proteomic profiling has emerged as a powerful technology in
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Figure 6. pQTL analysis impacted by error correction

The log odds ratio (LOD) score of OMA1 local pQTL increased from 24 (left) to 31 (right) after correction of the errors.
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multi-omic studies, it remains challenging to achieve the level of

sensitivity andaccuracyas inRNAprofiling,making itmoredifficult

to investigatesamplemislabeling inproteomicdata.Thisstudyhas

threemajor contributions. First, the crowdsourcing challenge pro-

vided a framework for systematic benchmarking and evaluation of

mislabel identification and correction methods from the partici-

pants. Individual solutions submitted by the challenge partici-

pants,even those fromthesameteam,showedawide rangeofac-

curacy, underscoring the importance of the benchmarking effort.

Second, post-challengecollaborative efforts in validating, refining,

and integrating the top-performing methods have led to an open-

source product, which showed high accuracy and robustness in

mislabeling identification and correction in simulated and real da-

tasets. Third, we applied COSMO to three real datasets without

prior sample-mislabeling reports and identifiederrors fromtwoda-

tasets. We further showed that error correction had a significant

impact on the conclusions of the studies, thus demonstrating the

potential biological impact of the tool.

There are a few limitations of our challenge design. First, due to

limiteddataavailability, onedatasetwas split intoa trainingset and

a test set. Because the training set and the test set are not

completely independent, generalizability of the winning solutions

cannot be guaranteed. Second, due to concerns on information

leaking, it was unrealistic to perform repeated hold-out validation

during the courseof the challenge. Thus, only a single hold-out da-

taset was used for performance evaluation, limiting the stability of

the evaluation results. These limitations were partially addressed

by performing bootstrapping resampling to determine top per-

formers and by confirming the robustness and generalizability of

both the winning algorithms and the final crowdsourced product

COSMO during the post-challenge development phase through

repeated hold-out validation using two independent simulated da-

tasets and application to six real multi-omic datasets. Neverthe-

less, when possible, future challenge designs should use multiple

datasets for trainingand completely independent datasets for final

performance evaluation. Third, to broaden challenge participation

and considering the fact that some models may not be able to

generate prediction probabilities (e.g., rule-based models), the

crowdsourcing challenge committee had decided to require that

participantssubmitonly thefinalpredictions.Consequently, taking

into account the imbalanced class distribution, F1 score was used

for performance evaluation. Future challenge designs could

require the submission of prediction scores or probabilities, which

will support a more holistic evaluation using the area under the

receiver-operating characteristics (AUROC) metric.
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Algorithms used in COSMO were selected on the basis of the

competition results. Although these algorithms outperformed

others in the competition, they may not be the best solutions for

solving this challenge. Moreover, because COSMO was devel-

oped primarily for proteogenomic studies involving proteomic

and RNA-seq data, there are some assumptions in the current im-

plementation that need to be considered for appropriate applica-

tion toother typesofmulti-omicstudies. There are twomajor steps

in COSMO: one is omic data-based phenotype prediction and the

other is sample matching between omic data. For the first step,

COSMO is applicable to any omic data as long as the signal is suf-

ficient for accurate phenotype prediction without labeling errors.

Somatic mutations are typically reported as binary data and are

typically not sufficient for phenotype prediction. However, some

frequently mutated genes (e.g., TP53) might be used similarly to

clinicalphenotypedata if theycanbeaccuratelypredictedbyother

omic data types (e.g., RNA-seq and proteomics). For the second

step, samplematching is based on correlation between omic pro-

files, so it is only feasible for omic data with continuous measure-

ments and can be summarized to gene level to allow correlation

analysis. For example, metabolomic data cannot be directly

used in the current implementation. Moreover, the two omic pro-

files from the same sample must have sufficiently strong correla-

tion without labeling errors to allow accurate sample matching.

For example, the correlation betweenmethylation and proteomics

might not be sufficient for such analysis. With an unprecedented

level of resolution, single-cell omics is revolutionizing biomedical

research. Compared with bulk cell studies, single-cell data have

unique noise properties and data sparseness. New computational

algorithms are needed for identifying and correcting mislabeled

samples in single-cell multi-omic studies.

Regardless of the limitations described above, COSMO

showed its robust and general applicability to proteogenomic

datasets with or without previous knowledge of mislabeled sam-

ples. Further analysis of these datasets showed a clear impact of

sample errors in both statistical and biological aspects. There-

fore, our study suggested that a sample-labeling check is an

essential quality control prior to data analysis and that COSMO

is a valuable tool for this task. The final product COSMO and

its source code are openly available at the GitHub, thus allowing

broad usage and continuous development by the global scienti-

fic community. In addition to providing a practically useful tool,

we also hope that this study stimulates more research into

computational methods for identifying and correctingmislabeled

samples in different types of multi-omic studies.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Bing Zhang (bing.zhang@bcm.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Challenge data can be accessed at https://precision.fda.gov/challenges/5.

Real-case datasets can be accessed at https://github.com/bzhanglab/

COSMO. The software package COSMO is available at https://github.com/

bzhanglab/COSMO. The COSMO manual is available in supplemental exper-

imental procedures.

Challenge datasets

Merging two colon rectal cancer datasets

The transcriptomic and proteomic data of two colon rectal cancer cohorts (85

from Zhang et al.4 and 96 from Vasaikar et al.8) weremerged into datamatrices

of 181 samples. Because both studies had already been published at the time

of the challenge design, we mixed samples from the two studies and reproc-

essed the combined data to reduce possible breach of information that partic-

ipants could use as leverage. Protein quantification based on spectral count-

ing was performed as described in a previous study8 and mRNA quantification

based on fragments per kilobase of transcript per million mapped reads

(FPKM) was performed as described in the two colon rectal cancer cohorts.

For both proteomic and RNA-seq data, genes with more than 50% missing

values were removed, except for genes located in X or Y chromosomes, which

were retained even if they were missed in more than 50% of the samples. The

proteomic data were then normalized using quantile normalization followed by

batch correction using ComBat,27 whereas the RNA-seq data were normalized

using the trimmed mean of M-values normalization method (TMM)28 followed

by batch correction using ComBat (Figure S4). Quality control analysis was

performed using metaX29 before and after batch correction.

Further filtering

Next, MODMatcher13 was applied to the 181 samples to identify any ambigu-

ously matched samples between RNA-seq and proteomic data. Among 3,882

common features from both RNA-seq and proteomics, highly correlated gene-

protein pairs were used to evaluate sample similarity scores. For the purpose

of challenge design, clean ground truth would be necessary for fair evaluation

of the submitted solutions. Considering potential labeling errors in the original

dataset, we removed 19 samples with poor sample similarity scores (r < 0.5),

and the remaining 162 samples showing strong correlation between their

mRNA and protein abundance were retained. Errors were then generated

randomly among these samples.

Generation of mislabeling samples

Based on the previously observed patterns and rates of sample-labeling errors

in various TCGA or CPTAC datasets, we introduced similar error patterns from

three mislabel types: duplication, swapping, and shifting. To provide guide-

lines for the participant for their method development, we set the following

rules for the errors. (1) We introduced labeling errors to 10% of the samples

(n = 8) to proteomic data and RNA-seq data, respectively, and introduced la-

beling errors to 5% of the samples (n = 4) in the clinical information table.

Hence, there would be a total of 20 samples with labeling errors. (2) For clinical

data, we only introduced swapping between two pairs of gender-inconsistent

samples so that the errors could be recognized. (3) For proteomic and RNA-

seq data, all three error types, sample duplication (n = 1), sample swapping

(n = 4 from 2 pairs), and sample shifting (n = 3), were generated. Duplicate sam-

ples in proteomic data were actual proteomic profiles from replicate proteomic

experiments meeting the sample similarity (Figure S5, left). A duplicate sample

in RNA-seq data was simulated by adding a perturbation equal to the standard

deviation of each gene i as in SampleðiÞduplicate>SampleðiÞ ± s
a
, where s is a

standard deviation of the gene i and a is a scale factor for the s. We changed

the scale factor to generate a duplicate sample (Figure S5, middle) and, with

a = 1, correlation coefficients between simulated RNA-seq replicates and

the original samples were greater than 0.9 as similarly in proteomic duplicates

(Figure S5, right). (4) The swapped samples had different gender or MSI status.

(5) Sample-labeling errors were not shared across different types of data (i.e.,
for each sample, error only happens in one type of data matrices), so that all

three data types could be used to identify the sources of the errors.

Generation of training and testing datasets

From the 162 samples well matched among clinical attributes (genders and

MSI), RNA-seq, and proteomic data, 80 samples were randomly selected for

training and another 80 samples for testing. We then introduced mislabeling

samples into proteomic, RNA-seq, and clinical information data in both the

training and test sets following the above rules in the following order: (1) in

the proteomic (RNA-seq) matrices, one sample was randomly selected and

then replaced with the replicate of another sample in the remaining set; (2)

from the samples without replicates, two pairs of samples were randomly

selected and their sample labels were swapped; (3) in the remaining samples,

three samples were randomly selected and their labels were shifted (A to B, B

to C, and C to D). We repeated these steps 50 times to generate random pairs

of training and testing datasets.

Selection of the challenge problem set

Our baselinemethod starts with using molecular data (RNA-seq, protein) as fea-

tures to predict patient gender and MSI status. Here we only used sex genes for

predicting the gender while using all available genes to predict MSI status. We

trained XGBoostmodelswith AUROCas an evaluationmetric. Hyperparameters

were determined by a 3-fold cross-validation grid search. For each model, we

define thepredictionerroras theabsolutedifferencebetween theprovidedbinary

value and the predicted probability of the sample being positive class. Accord-

ingly, each sample now has four prediction error scores: drna; gender, drna; msi,

dpro; gender, and dpro; msi. For sub-challenge 1, a sample is considered amismatch

between clinical and protein profiling data only when both dpro; gender>0:5 and

dpro; msi> 0.5 are true. For each data type (RNA-seq, protein), we further sum

the prediction errors of both phenotypes to obtain two scores: rna_score and

pro_score. Finally, the clin_score is defined as the sum of rna_score and pro_sc

ore. For each sample, clin_score indicates overall how well the provided molec-

ular data can predict its clinical phenotypes. We denote samples with question-

able clinical data as Sc = fSi j clin score <3g. The rationale behind this is: if the

predictions are simply random, the clin_score will be 2. At the other extreme, if

thepredictionsareall perfect, theclin_score is4.We thinkascoreof3 isa reason-

able cutoff value. Next, we perform protein-RNA-seq data correlation analysis to

evaluate the mismatch between these two data types. For each gene, we calcu-

late the Spearman correlation coefficient between RNA and protein data after

scaling. The top 200 most correlated genes gtop are selected. With the selected

gtop, we compute Spearman correlation between RNA-seq and protein data for

each sample and get r = fr1;:::;r80g. We then define the outlier threshold as q =

medianðrÞ� 2 �MADðrÞ, where MAD is the median absolute deviation. Any

samplewith correlation coefficient less than the threshold is labeled as question-

able sample with unmatched protein-RNA-seq data, i.e., Spr = fSi jri <qg. From
the set of Spr , we further identify samples with questionable RNA-seq data and

with questionable protein data as Sr = frna scorei <pro scorei
�� Si ˛Sprg

and Sp = frna scoreiRpro scorei j Si˛Sprg, respectively. In our baseline anal-

ysis, we do not intend to correct the labels of sample in Sc and instead set the

corrected label as �1. However, for samples in both Sr and Sp, we employ the

cross-data type correlation analysis to assign the corrected label. Specifically,

for eachRNA-seqandprotein samplepair ðSi;SjÞ, wecompute itsSpearmancor-

relation coefficient rij with the top genes gtop. For each sample i in Sr, we set its

corrected label to the label of the protein sample with which sample i has the

largest correlation coefficient, i.e., to the label of sample k, where k =

argmaxjrij. Thesamecriteriaalsoapply toeachsample inSp.Weapply thebase-

line pipeline to the 50 randomly generated training and test dataset pairs. For

eachpair, we obtain the average F1 score of sub-challenge 1 and three sub-chal-

lenge 2 scores.We then select the pair with themedian average score (F1 score =

0.68, Figure S1) as the final dataset for the competition.

Evaluations of the challenge submission

Measurement of F1 scores

Each submission was evaluated by F1 score, the harmonic mean of precision

and recall, as F1 = 23

�
precision 3 recall
precision + recall

�
. The submitted data matrix of 80 sam-

ples in the testing dataset were compared with the answer sheet. For the sub-

challenge 1, the F1 score wasmeasured directly but for the sub-challenge 2, we

evaluated the model performance at three different levels. (1) How well the

model predicted mislabeling at the sample level: if any of the predicted labels
Patterns 2, 100245, May 14, 2021 9

mailto:bing.zhang@bcm.edu
https://precision.fda.gov/challenges/5
https://github.com/bzhanglab/COSMO
https://github.com/bzhanglab/COSMO
https://github.com/bzhanglab/COSMO
https://github.com/bzhanglab/COSMO


ll
OPEN ACCESS Article
does not match the original sample label, it is considered amislabel at this level.

(2) How the model identified the source of errors among three types of data: la-

bel prediction from clinical and omic profile data are compared with the original

labels. A prediction that correctly identifies a mislabel, but not necessarily

correctly rectifies it, will be considered as a true positive. (3) How well the model

corrected the errors bymatching accurate samples: onlywhen a corrected label

matches the true sample label will it be considered a true positive. The F1 scores

at these three levels were then averaged for the final score.

Determination of top performers

Confidence interval (CI) of F1 score of each submission was calculated by per-

forming bootstrapping resampling.30 First, a sub-set of 60 out of 80 samples

were randomly selected and the F1 score wasmeasured based on the 60 sam-

ples. The resampling was iterated 100 times to generate mean and standard

deviation from bootstrap estimate distribution of F1 score. Next, the 95% CI

was measured as

�
x � 1:96 sffiffi

n
p ; x + 1:96 sffiffi

n
p
�
. Multiple submissions from the

same group were then averaged for final determination of challenge winners.

Simulated datasets with random types/events of errors

For the validation datasets, we used two independent cohorts. From the 162

colon dataset, 100 random samples were randomly selected and the errors

were introduced, but the number of errors was not fixed to mimic real-case

scenarios. We randomly introduced three types of errors in up to 28 samples

out of 100. This procedure was iterated 50 times to generate random distribu-

tion of different types of errors. In addition, we also used 110 CCRCC tumor

samples to generate 50 random error-containing datasets including RNA-

seq and global proteomic data with associated gender information.

Development of COSMO

The COSMO algorithm works as follows: data preprocessing, pairwise align-

ment, clinical attribute prediction, and label correction. We take RNA-seq

and proteomic data as an example in the following method description. How-

ever, the application of COSMO is not limited to specific platforms or data

types and can be equally applied to other types of gene-centric datasets,

such as gene-level Riboseq or CNV data.

Data preprocessing

The genes in both RNA-seq and proteomic data are annotated with chromo-

some information and categorized into sex-linked genes or autosomal genes.

The annotation determines how missing values in the data are handled.

Missing values of sex-linked genes are replaced with 0, as these genes are

assumed to be either absent (i.e., the absence of the Y chromosome in female)

or repressed (i.e., X chromosome inactivation in male). For autosomal genes,

genes that have missing values in >50% of samples are removed. For the re-

maining genes, the missing values are either removed or imputed via RF

missing data imputation. Missing data imputation requires a noticeable time,

and the decision to do imputation depends on the portion of genes with

missing values. In our work, if the removal of missing values will result in a

loss of >30% of the data, the missing values are imputed.

Pairwise alignment

Mislabeled sampleswould constitute noise, and a predictionmodel trained us-

ing the entire dataset will result in a low prediction performance. Thus, before

training prediction models, we perform pairwise alignment to determine the

mislabeled samples to exclude them in model training. We exploit the parallel

nature of different omic data and computed correlation signals to pair RNA-

seq and proteomic samples. Corresponding samples are samples with the

same label, i.e., RNA-seq sample (r7) is corresponding with the proteomic

sample (p7), as both have the same label (7), indicating that both of them

belong to a particular patient where index = 7. If there is no mislabeling, the

corresponding samples should have the highest correlation signal with each

other and be paired together.

The correlation signal is computed from the omic data matrix. For every

autosomal gene that exists in both RNA-seq and proteomic data, g, we

compute its inter-omic correlation using Equation (1).

Corg = cor
�
R�g;P�g

	
;where g ˛ OG: (Equation 1)

Corg is the inter-omic correlation of gene g,Rg is the vector of mRNA expres-

sion values of gene g across samples, while Pg is the vector of protein
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expression values of protein g across the same samples. OG is the set of all

overlapping genes present in both RNA-seq and proteomic data. Genes with

inter-omic correlation >0.5 are extracted. The expression values of the ex-

tracted genes are used to compute the inter-samples correlation. In inter-sam-

ples correlation matrix, C indicates the correlation of any RNA-seq samples

with any proteomic sample, with a dimension of N 3 N.

Cij = corðRi ;PjÞ: (Equation 2)

Cij is the inter-samples correlation of RNA-seq sample iwith proteomic sam-

ple j. Ri is the vector of mRNA expression values of sample i across the ex-

tracted genes, while Pj is the vector of protein expression values of sample j

across the same genes.

The correlation matrix contains only the degree of association between any

pair of samples, regardless of the association with other samples. We derived

a probability matrix, PM using Equations (3), (4), and (5). The probability matrix

PM incorporates the degree of association among other samples and ranges

within 0–1, and scales the range where every RNA sample has �1 probability

distributed to every PRO sample and vice versa. PMij indicates the probability

of RNA-seq sample imatch to proteomic sample j. The pair of matching sam-

ples will have the highest probability with each other.
C_rnai* = softmax(standardize(Ci*)),
 (Equation 3)
C_pro*j = softmax(standardize(C*j)),
 (Equation 4)

PM =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Crna3Cpro

p
: (Equation 5)

The probability matrix PM is used as the preferential ranking for stable

matching algorithm, with the highest probability as the most preferred candi-

date and the lowest the least preferred. The stable matching algorithm gener-

ates N pairs of RNA-seq and proteomic samples, where N = number of tissue

sample. Every samples pair has a matching score for every pairing, which is

the sum of the preferential rank of RNA-seq sample toward proteomic sample

and vice versa. An ideal pairing should have a matching score of 2, indicating

that both RNA-seq and proteomic samples have the strongest correlation sig-

nals with each other.

Corresponding samples that are paired together are considered correctly

labeled, and these samples are called matching samples. Samples that are

not matched with its corresponding samples are mislabeled. Matching sam-

ples with a matching score >log(N), where N = number of tissue samples,

are also considered mislabeled. This is because the stable matching algorithm

will pair any RNA-seq sample with exactly one proteomic sample, thus sam-

ples that are left out (due to duplication) will be paired despite having very

low correlation signals with each other.

The correlation signal is computed again in the second iteration, when the

correlated genes are extracted using only matching samples to obtain a

more accurate correlation signal and, thus, a new set of matching samples

with higher confidence. Matching samples will be inspected for clinical swap-

ping cases and used to train the prediction models (see below). On the other

hand, mismatched samples are retained for label correction (see subsequent

section on label correction).

Clinical attribute prediction

Twomethods from the top-performing teamswere improved from the versions

used in the challenge and then integrated for clinical attribute prediction.

Method 1. Matching samples are samples with no RNA-seq or proteomic

mislabeling, since corresponding RNA-seq and proteomic samples are paired

with each other. However, this does not preclude the occurrence of clinical

data mislabeling. Clinical swapping cases constitute noise in training predic-

tion models, albeit with a low frequency (�5%).13 Thus, clinical attribute

prediction is performed in a two-iterations manner. The first iteration is to

determine those clinical swapping cases and exclude them from model

training in the second iteration.

Every sample has a clinical profile with clinical attributes labeled manually.

If it is labeled correctly, its clinical profile should be consistent with its omic

profile. An omic profile is a profile with clinical attributes predicted from

RNA-seq and proteomic data. We used two clinical attributes (MSI and
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gender) in the colorectal dataset and one clinical attribute (gender) in the kid-

ney dataset.

In the first iteration, the clinical attribute of RNA-seq and proteomic data are

predicted using 5-fold cross-validation. In each fold, four parts of thematching

samples are used for training while the remaining part is used for testing. Since

these samples are matching samples (i.e., both RNA-seq and proteomic data

should have the same clinical attribute), the predicted probability of RNA-seq

and proteomics are averaged to form an omic profile.

We compute the error rate of every sample, which is the difference between

its clinical profile and omic profile. Samples that have an error rate >0.5 are

considered as potential mislabeled samples and are filtered out. The stable

matching algorithm is then deployed to pair the omic profile and clinical profile

of the filtered samples, using error rate as the preferential ranking (the lowest

being themost preferred candidate and the highest the least preferred). Due to

false prediction, it is possible that filtered samples are in odd numbers, but the

stable matching algorithm is robust in this issue where the remaining sample

would be paired with itself. Those samples whose clinical profile does not

pair with their own omic profile will be determined as potential clinical swap-

ping cases.

In the second iteration, potential clinical swapping cases are removed from

matching samples and the remaining matching samples are used to train the

prediction models. We use weighted LR with L1 regularization for training

and different models are trained for different clinical attributes from different

omic data. The trained models are used to predict clinical attributes of every

sample, including the potential clinical swapping cases and mismatch sam-

ples. Using the newly predicted attribute, the matching samples are then

inspected again for clinical swapping cases by the same process in the first

iteration (building the omic profile, determining the error rate, filtering samples

with error rate >0.35, and feeding into the stable matching algorithm). Deter-

mined clinical swapping cases have their label corrected.

Method 2. For each dataset, highly correlated features (Pearson correlation

coefficient >0.9) were first removed. A classifier was built for each clinical

attribute. The classifier is an ensemble of LR with L1 and L2 regularization,

respectively, enabling automatic feature selection in the fitting process. Hyper-

parameters for the predictive models are chosen through cross-validation. The

modeling was repeated 100 times and the predicted probabilities for each

sample were then averaged to generate a final probability for each sample.

If multiple clinical attributes were provided, the predicted probabilities for

different clinical attributes were then combined together to obtain amulti-class

label mismatch classifier.

Label correction

The prediction models from both methods are integrated and are also used to

predict the clinical attributes of mismatched samples. We devised a correction

algorithm that utilized the pairwise alignment and predicted attributes. For clin-

ical swapping cases, the stable matching algorithm is used to pair the clinical

profile with the omic profile before correcting the label. For RNA-seq and

proteomic mislabeling, the algorithm determines which type of omics are

mislabeled by comparing the error rate between RNA-seq mislabeling and

proteomic mislabeling. There are different mislabeling error types (swapping,

duplication, and shifting), and the exact mechanism of correction is different

for each of them.

Swapping cases are the most easily identified mislabeling type. Two

different patients will have both their RNA-seq and proteomic samples

matched with each other. To determine whether it is RNA-seq or proteomic

swapping, the predicted attributes are inspected and the prediction probability

is used to compute the error rate. Considering the error rate after swapping

RNA-seq samples and after swapping proteomic samples, the one that gives

a lower error rate will have their labels corrected. In other words, if swapping

RNA-seq samples results in a lower error rate than swapping proteomic sam-

ples, it is considered as RNA-seq swapping and the labels of RNA-seq sam-

ples are corrected.

The stable matching algorithm pairs one RNA-seq sample with exactly one

proteomic sample. This complicates the identification of duplication cases, as

a duplicated sample will not pair with its matching sample. Hence, the identi-

fication of duplication cases relies on the matching score. The duplication

sample is always spuriously paired with another sample and will have amatch-

ing score higher than a threshold, log2(N). We use log2(N) as the threshold to

allow higher flexibility of spurious correlation in a dataset with higher sample
numbers. Consider a case where a sample pair with a matching score higher

than log2(N) is suspected to be a duplication. Here, the most preferred candi-

date for RNA-seq sample and proteomic sample is further inspected. This

leads to another two possible sample pairs, and the next step is to determine

whether it is RNA-seq or proteomic duplication. The derived probabilities of

these two potential sample pairs are compared, and the one with higher prob-

ability will have its label corrected.

Shifting cases always start with a duplication event. Before correcting the la-

bel, one has to identify the shifting chain. The shifting chain starts with a dupli-

cated sample, which is identified as described in the previous paragraph. The

chain is identified by iteratively inspecting the sample pair of the last sample in

the chain until the chain reaches a sample pair with a score higher than log2(N).

This is due to the nature of a stable matching algorithm, pairing one RNA-seq

sample with exactly one proteomic sample. The samples with no matching

samples are left out and thus are spuriously paired but with a high matching

score. After the shifting chain is identified, the next step is to determine

whether it is RNA-seq or proteomic shifting by classification probability.

Considering the error rate after shifting RNA-seq samples and after shifting

proteomic samples, the one that gives a lower error rate will have its labels cor-

rected. In other words, if shifting RNA-seq samples results in a lower error rate

than shifting proteomic samples, it is considered RNA-seq shifting, and the la-

bels of RNA-seq samples are corrected.

Implementation of COSMO using Nextflow and Docker

The COSMO workflow was implemented using Nextflow31 and Docker. Spe-

cifically, all the dependencies were containerized as a single Docker image.

Different components of COSMO were integrated using Nextflow. The input

files required by COSMO include protein expression file and gene expression

file at RNA level, as well as a sample annotation file containing clinical informa-

tion of samples. The source code of COSMO is available at https://github.com/

bzhanglab/COSMO.
Real-case datasets with mislabeling samples

Six independent previously published datasets including labeling errors were

further used to evaluate the performance of COSMO (Table S3). For the preQC

CPTAC LUAD dataset,21 we used 107 tumor samples in RNA-seq, global pro-

teomic, and CNV profiles as well as gender information. For the preQC CPTAC

CCRCC dataset,7 we collected 77 tumor tissues in RNA-seq, global proteo-

mic, and CNV profiles with clinical information. All the errors in the CPTAC

LUAD and CCRCC datasets were corrected after initial observation, and

currently released data are error free. For TCGA BRCA dataset,6 we down-

loaded 521 tumor samples in microarray, RNA-seq, and CNV from the

TCGA data portal (https://portal.gdc.cancer.gov/). For the CCLE data,24 we

downloaded gene expression, global proteomic, and copy-number profiles

from CCLE the dataset (https://portals.broadinstitute.org/ccle/data), and

selected 371 samples having all three types of data. For the two non-

cancerous proteogenomic datasets, Battle et al.22 and Chick et al.,23 we

downloaded their published data as instructed in their publications. All down-

loaded omic data were arranged in the same format of rows (genes) and col-

umns (samples) to be used as input of COSMO. CNV data were downloaded

directly from the original studies, and data preprocessing was diverse in

each cohort. For CPTAC CNV, whole-genome and exome sequencing data

were used to estimate circular binary segmentation means using an algorithm

called CNVEX.7,21 The TCGA BRAC study used GISTIC26 while the CCLE

study used ABSOLUTE for CNV data analysis.24

DEPswere identified based on t test (FDR < 0.05) between two tumor groups

separated by gender or immune sub-types. Functional enrichment test of the

DEPs was performed by Fisher’s exact test (FET) against 50 HALLMARK path-

ways,32 and significant pathways were determined by FET with FDR < 0.05.
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