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Abstract

Cryptosporidium spp. are protozoan parasites that belong to subphylum apicomplexa and

cause diarrhea in humans and animals worldwide. Data on the prevalence of Cryptosporid-

ium spp. and its subtypes among calves in the Republic of Korea (KOR) are sparse. Hence,

our study aimed to investigate the prevalence and association between the age of calf and

the identified Cryptosporidium spp. and to determine the genotypes/subtypes of Cryptospo-

ridium spp. in pre-weaned calves with diarrhea in the KOR. A total of 460 diarrheic fecal

samples were collected from calves aged 1−60 days and screened for Cryptosporidium

spp. by the 18S rRNA gene. Species identification was determined using the sequencing

analysis of the 18S rRNA gene, and C. parvum-positive samples were subtyped via the

sequence analysis of the 60-kDa glycoprotein (gp60) gene. Sequence analysis based on

the 18S rRNA gene revealed the presence of three Cryptosporidium spp., namely, C. par-

vum (n = 72), C. ryanae (n = 12), and C. bovis (n = 2). Co-infection by these species was not

observed. The infection rate was the highest in calves aged 11−20 days (26.1%, 95% CI

17.1−35.1), whereas the lowest rate was observed in calves aged 21−30 days (7.7%, 95%

CI 0.0−16.1). The prevalence of C. parvum was detected exclusively in calves aged�20

days, and the highest infection rate of C. ryanae was seen in calves�31 days of age. The

occurrence of C. parvum (χ2 = 25.300, P = 0.000) and C. ryanae (χ2 = 18.020, P = 0.001)

was significantly associated with the age of the calves. Eleven different subtypes of the IIa

family that belonging to C. parvum were recognized via the sequence analyses of the gp60

gene. Except for two (IIaA18G3R1 and IIaA15G2R1) subtypes, nine subtypes were first

identified in calves with diarrhea in the KOR. IIaA18G3R1 was the most frequently detected

subtype (72.2% of calves), followed by IIaA17G3R1 (5.6%), IIaA15G2R1 (4.2%),

IIaA19G4R1 (4.2%), IIaA16G4R1 (2.8%), IIaA17G4R1 (2.8%), IIaA19G3R (2.8%),

IIaA14G1R1 (1.4%), IIaA14G3R1 (1.4%), IIaA15G1R1 (1.4%), and IIaA19G1R1 (1.4%)

These results suggest that the prevalence of Cryptosporidium spp. is significantly associ-

ated with calf age. Furthermore, the findings demonstrate the high genetic diversity of C.

parvum and the widespread occurrence of zoonotic C. parvum in pre-weaned calves.
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Hence, calves are a potential source of zoonotic transmission with considerable public

health implications.

Introduction

Cryptosporidium spp. are protozoan parasites that cause mild-to-severe diarrhea in humans

and a wide range of animals [1]. Infections with these parasites occur via the fecal−oral route

either by direct contact with infected animals or by the ingestion of infective oocysts from con-

taminated water or food [2–5]. To date, 40 Cryptosporidium spp. have been described [6], and

among them, four species, namely, C. andersoni, C. bovis, C. parvum, and C. ryanae, have been

identified in cattle. The distribution of these species is known to vary according to age [4, 7].

In particular, C. parvum is one of the most important pathogens causing diarrhea in neonatal

calves worldwide and leads to severe economic losses owing to poor growth, decreased pro-

ductivity, and even death [8]. Moreover, C. parvum is the major pathogenic species that affects

humans [9, 10]. Unlike C. parvum, C. bovis, and C. ryanae usually infect post-weaned calves

and yearlings without causing illness, and C. andersoni is mainly found in adult cattle [11–13].

The pathogenicity of C. bovis, and C. ryanae in post-weaned calves has not been established

[9]. The oocysts of C. parvum, C. bovis, and C. ryanae are similar in size and shape. While C.

ryanae is smaller than the others and requires molecular methods for its determination [14,

15], C. andersoni is larger in size and infects the abomasum [16].

According to the subtyping of C. parvum based on sequence analysis of the 60-kDa glyco-

protein (gp60) gene, Ⅱa and Ⅱd subtypes have been detected in both humans and calves and

can cause zoonotic cryptosporidiosis [17]. The Ⅱa subtype is mostly identified in calves, and

IIaA15G2R1 is the predominant subtype [7] globally, including the Republic of Korea (KOR)

[18]. The IId subtype is usually found in lambs and goat kids [4, 19] and has been described in

calves in some countries such as Sweden, Turkey, Egypt, and China [20–23]. To date, most

investigations of cryptosporidiosis in calves caused by C. parvum have focused on the IIa sub-

type in most countries. However, there are a few studies on C. parvum subtypes in calves in the

KOR [18, 24].

Cryptosporidium parvum infects the intestinal mucosa and accounts for over 90% of Crypto-
sporidium infections in neonatal calves [23]. In contrast, in pre-weaned calves, the prevalence

of C. bovis and C. ryanae and their effects on causing diarrhea remain unclear. Several studies

have reported that C. bovis and C. ryanae are present in pre-weaned calves [23, 25, 26] and that

C. ryanae infections are particularly associated with moderate diarrhea in pre-weaned calves

[23]. However, little is known about the association between C. bovis and diarrhea. In addition,

a previous study has indicated the high prevalence of C. bovis and C. ryanae in hemorrhagic

diarrhea in the KOR [24]. Nevertheless, the pathogenicity of these organisms is still unclear.

So far, for the identification of Cryptosporidium spp., a nested polymerase chain reaction

(PCR) technique based on the SSU rRNA gene has been the most widely used method [27].

However, in the present study, a conventional PCR method using species-specific primers was

used [24]. Although the amplification had a short fragment compared with a previous method,

this PCR technique enabled the differentiation between C. bovis and C. ryanae. Therefore, this

study aimed to investigate the prevalence of Cryptosporidium spp. using species-specific prim-

ers in pre-weaned calves with diarrhea and to evaluate the association between the age of calf

and the identified Cryptosporidium spp. Furthermore, we intended to determine the genotype

of Cryptosporidium spp. and subtyping of C. parvum in calves in the KOR and to assess the sig-

nificance of calves as a source of human infections.
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Materials and methods

Ethics statement

All animal procedures were conducted according to ethical guidelines for the use of animal

samples, and were approved by the Jeonbuk National University (Institutional Animal Care

and Use Committee Decision No. CBNU 2020–052). All procedures and possible conse-

quences were explained to the managers of the surveyed farm, and written consent was

obtained.

Sample collection

Between August 2019 and August 2020, fresh fecal samples were collected directly from the

rectum of 460 diarrheic pre-weaned calves (up to 60 days of age) by an experienced veterinar-

ian using sterile plastic gloves in 11 different farms located in the KOR. The samples were

placed in labeled sterile plastic tubes and transported to the Animal Immunology Laboratory

of Kyungpook National University in a cooler with ice packs. Upon arrival, sampling date, age,

animal identification number, and fecal consistency (pasty, loose, watery, or hemorrhagic)

were recorded for each animal. The collected feces were mostly pasty or loose. Prior to DNA

extraction, all feces were stored at 4˚C for no more than 2 days without the additional treat-

ment of preservation. The fecal samples were divided according to age as follows; 1−10 days

(n = 271), 11−20 days (n = 92), 21−30 days (n = 39), and�31 days (n = 58). No microscopic

examination was performed for the detection of oocysts.

DNA extraction, molecular analysis, and sequencing

DNA was extracted from 200 mg of each fecal sample using the QIAamp Fast DNA Stool Mini

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. In brief, samples

were suspended in lysis buffer, followed by boiling at 70˚C for 5 min. Next, the inhibitors pro-

vided in the kit were added to the solution to remove substances that can degrade DNA and

inhibit downstream enzymatic reactions. Supernatants were subsequently transferred into a

tube containing proteinase K and then heated at 70˚C for 10 min. A final volume of 200 μL of

each DNA sample was then stored at −20˚C until PCR amplification. The identification of

Cryptosporidium spp. was first tested using the 18S rRNA gene [28]. Samples that yielded posi-

tive results for Cryptosporidium spp. via the sequence analysis were further screened to detect

the four species using species-specific primers [24]. Positive samples for C. parvum were

retested using the 60-kDa glycoprotein (gp60) gene to determine its subtype [4], whereas posi-

tive samples for C. bovis/C. ryanae were differentiated by sequence analysis. The subtypes of

gp60 were named based on the repeated number of TCA (A), TCG (G), and ACATCA (R), as

described previously [29]. All positive PCR products were purified using the AccuPower PCR

Purification Kit (Bioneer, Daejeon, KOR) and employed for direct sequencing (Macrogen,

Daejeon, KOR). The nucleotide sequences obtained in this study were analyzed using BioEdit

(version 7.2.5) and compared with the reference sequences using the Basic Local Alignment

Search Tool available at the National Center for Biotechnology Information database. As the

sequences of C. bovis and C. ryanae are highly similar, all amplified samples were differentiated

by comparing the sequences between the two species. To determine the subtype of C. parvum
as well as the genotypes of C. bovis and C. ryanae, nucleotide sequences were aligned using

ClustalX and then analyzed via direct comparison with reference sequences from GenBank. In

this study, only samples showing a good sequencing result were considered positive for each

Cryptosporidium spp. All nucleotide sequences generated in this study were deposited in the
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GenBank database with appropriate accession numbers (18S rRNA: MZ736386−MZ736399;

gp60: MZ736314−MZ736385).

Statistical analysis

Statistical analysis was performed using SPSS Statistics 26 software package for Windows

(SPSS Inc, Chicago, IL, USA). Chi-square test was used to determine the association between

the prevalence of each species and age. Moreover, multinomial logistic regression analysis was

used to determine any associations between the subtypes of C. parvum and age. A p-value of

less than 0.05 was considered statistically significant.

Results

Prevalence of Cryptosporidium spp.

Among the 460 diarrheic fecal samples examined, 86 (18.7%) were positive for Cryptosporid-
ium spp. on PCR analysis and sequencing based on the 18S rRNA gene. Three Cryptosporid-
ium spp. were identified in pre-weaned Korean native calves (Table 1). No C. andersoni was

detected in this study. Of these, C. parvum (15.7%, 72/460) was the most detected, followed by

C. ryanae (2.6%, 12/460) and C. bovis (0.4%, 2/460). Co-infection of these species was not

observed. The prevalence of the three Cryptosporidium spp. was compared according to the

age groups. As shown in Table 1, the infection rate of Cryptosporidium spp. was highest in

calves aged 11−20 days (26.1%, 95% CI 17.1−35.1), whereas the lowest infection rate was

observed in calves aged 21−30 days (7.7%, 95% CI 0.0−16.1). All three Cryptosporidium spp.

were detected only in calves aged 1−10 days (Table 1). The association between Cryptosporid-
ium spp. and age-distribution was investigated. Interestingly, the identified Cryptosporidium
spp. varied according to the age of the calves. C. parvum infection was detected exclusively in

calves�20 days of age (Table 2). The prevalence peaked at the age of 11−20 days and decreased

rapidly thereafter (Table 2). C. parvum infection was significantly associated with the age of

the calves (χ2 = 25.300, P = 0.000). Unlike C. parvum, C. ryanae was found in all age groups,

and the highest infection rate was observed at�31 days of age (Table 2). C. ryanae infection

Table 1. Prevalence and distribution of Cryptosporidium species according to age group in pre-weaned calves.

Age (days) Sample size No. of positive (%) 95% CI Cryptosporidium species (No.)

C. parvum C. ryanae C. bovis
1−10 271 53 (19.6%) 14.8–24.3 49 3 1

11−20 92 24 (26.1%) 17.1–35.1 23 1 0

21−30 39 3 (7.7%) 0.0–16.1 0 3 0

31−60 58 6 (10.3%) 2.5–18.2 0 5 1

Total 460 86 (18.7%) 15.1−22.3 72 12 2

https://doi.org/10.1371/journal.pone.0259824.t001

Table 2. Distribution of Cryptosporidium species in pre-weaned Korean native calves according to age group.

Age (days) Frequency of C. parvum positivity

(%)

χ2 (P-value) Frequency of C. ryanae positivity

(%)

χ2 (P-value) Frequency of C. bovis positivity

(%)

χ2 (P-value)

1−10 49/271 (18.1%) 25.300

(0.000)

3/271 (1.1%) 16.020

(0.001)

1/271 (0.4%) 2.824

(0.419)11−20 23/92 (25.0%) 1/92 (1.1%) 0

21−30 0 3/39 (7.7%) 0

31−60

(Ref.)

0 5/58 (8.6%) 1/58 (1.7%)

https://doi.org/10.1371/journal.pone.0259824.t002
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also had a significant age-related distribution (χ2 = 18.020, P = 0.001). In contrast, C. bovis was

detected only in two calves aged 10 days and 35 days, and there was no statistical significance

in the age-related distribution (P = 0.590).

Distribution of Cryptosporidium spp. and C. parvum subtypes

All 72 C. parvum-positive samples were successfully amplified and subtyped by sequence anal-

ysis of the gp60 gene. A total of 11 different subtypes belonging to the family IIa were identified

(Table 3). Subtype family IId was not detected. The distinction of each subtype within the IIa

was in the number of trinucleotide region of TCA and TGA repeats (i.e., had one copy of

sequence ACATCA immediately after the trinucleotide repeats). As shown in Table 3, in pre-

weaned Korean native calves, the most frequently detected subtype was IIaA18G3R1 (72.2%),

followed by IIaA17G3R1 (5.6%), and then IIaA15G2R1 (4.2%) and IIaA19G4R1 (4.2%). Other

subtypes, namely, IIaA14G1R1 (1.4%), IIaA14G3R1 (1.4%), IIaA15G1R1 (1.4%), IIaA16G4R1

(2.8%), IIaA17G4R1 (2.8%), IIaA19G1R1 (1.4%), and IIaA19G3R1 (2.8%) were also identified.

Except for the IIaA18G3R1, no statistical correlation was found between calf age and a specific

subtype (Table 3). IIaA19G4R1 was observed only in calves aged 1−10 days, whereas

IIaA17G3R1 was found exclusively in calves aged 11−20 days. Several more subtypes were

found in calves aged 1−10 days (Table 3). The most predominant subtype, IIaA18G3R1, was

seen in all ages.

Based on the 18S rRNA gene, 14 (12 C. ryanae and 2 C. bovis) sequences were obtained and

compared with the published literature. Twelve sequences of C. ryanae showed 95.1%−100%

similarity with each other. The C. ryanae sequences shared 95.7%−100% identity with those

found in Austria, China, India, Thailand, and Japan. Two sequences of C. bovis shared 94.1%

similarity. These sequences demonstrated 95.5%−96.2% identity with those identified previ-

ously in the KOR and had 91.9%−96.2% homology with those from Austria, USA, Japan, and

China. Interestingly, differences in nucleotides between C. ryanae and C. bovis were observed.

As shown in Fig 1, the nucleotides in the six positions, i.e., 440, 460, 464−466, and 470, were

different between the two species.

Discussion

Cryptosporidium, along with rotavirus, has been well recognized as the main pathogen causing

diarrhea in neonatal calves worldwide [30]. Our findings established the prevalence of

Table 3. Distribution of Cryptosporidium parvum subtype according to age group.

gp60 subtypes Age groups (days) No. of positive calves P-value

1−10 11−20

IIaA18G3R1 36 16 52 (72.2%) 0.000

IIaA17G3R1 1 3 4 (5.6%) 0.753

IIaA15G2R1 3 0 3 (4.2%) 0.785

IIaA19G4R1 3 0 3 (4.2%) 0.785

IIaA16G4R1 1 1 2 (2.8%) 0.823

IIaA17G4R1 1 1 2 (2.8%) 0.823

IIaA19G3R1 0 2 2 (2.8%) 0.677

IIaA14G1R1 1 0 1 (1.4%) 0.874

IIaA14G3R1 1 0 1 (1.4%) 0.874

IIaA15G1R1 1 0 1 (1.4%) 0.874

IIaA19G1R1 1 0 1 (1.4%) 0.874

Total 46 26 72

https://doi.org/10.1371/journal.pone.0259824.t003
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Cryptosporidium spp. in pre-weaned diarrheic calves according to age, and the presence of var-

ious zoonotic subtypes of C. parvum in the KOR were identified. In the present study, the over-

all prevalence of Cryptosporidium spp. was found to be 18.7%, which is higher than that

reported previously in the KOR [18, 24, 31]. These variations could be explained by the age of

the animals, time of sample collection, and the differences in geographical location. However,

the percentage of Cryptosporidium spp.-positive samples found in our study was lower than

that reported in other countries such as Germany (88.9%), Japan (83.8%), China (38.4%), Italy

(38.8%), Colombia (26.6%), Argentina (22.5%), and Estonia (22.6%) [25, 32–37].

In this study, the presence of three Cryptosporidium spp. in pre-weaned Korean native

calves was ascertained: C. bovis, C. parvum, and C. ryanae. Of them, C. parvum was the most

predominant species in the KOR. This finding agrees with the results observed in several other

countries [7, 25, 33, 36, 38, 39]. Most studies have proven that C. parvum mainly infects calves

up to 1 month of age [33, 40–43]. The results of the present study demonstrated that C. parvum
was detected only in calves aged�20 days, and the infection rate was the highest in calves aged

Fig 1. Sequence comparisons between C. bovis and C. ryanae for the partial18S rRNA gene from Korean

sequences obtained in this study and reference strains. Six nucleotide differences at 440, 460, 464−466, and 470 are

shown. An asterisk indicates sequences obtained in this study.

https://doi.org/10.1371/journal.pone.0259824.g001
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11−20 days. This observation is consistent with a previous study performed by our group [18].

According to our findings, C. parvum was detected in calves aged�20 days. It is considered

that calves in this age group are susceptible to C. parvum infection owing to their immature

immune system [44]. In addition, it is well known that young calves can become infected with

C. parvum and begin shedding the oocysts soon after birth [45–47]. This could be associated

with cow-to-calf transmission. Several studies have reported that the possible source of infec-

tion in calves is transmission at birth from their mothers [48, 49]. However, at present, we do

not have exact information on whether these calves were immediately removed from their

mothers after birth, but the possibility of contamination via exposure to mother’s feces or the

surroundings should be considered. Moreover, C. parvum is known to cause watery diarrhea

[23, 30]. In this study, the number of animals with watery feces was small; hence, the associa-

tion with diarrhea was not evaluated. Although we were not able to compare the occurrence of

C. parvum with the diarrhea status, C. parvum was found to be the causative agent of diarrhea

in young calves. Our results suggest that C. parvum infection is attributed to the significant

age-related distribution (P = 0.000). Consequently, C. parvum was strongly associated with

diarrhea in calves aged�20 days.

Cryptosporidium ryanae was the second most frequently detected species in pre-weaned

Korean native calves. In general, C. ryanae is often found in post-weaned calves [15]. The

results revealed that C. ryanae was detected in all age groups and that its occurrence increased

with age. In particular, the infection rate of C. ryanae showed a low prevalence in calves aged

<20 days, whereas it was rather high in calves aged�31 days (Table 2). The prevalence of C.

ryanae found in this study was similar to that of a previous study performed in the KOR [24].

Our observation confirmed that C. ryanae has an age-associated distribution, similar to C. par-
vum. A recent study has reported that C. ryanae was common in pre-weaned as well as post-

weaned calves and that the infection was associated with the occurrence of moderate diarrhea

in pre-weaned calves [23]. In contrast, other studies have shown that C. ryanae was not associ-

ated with diarrhea [26, 39, 50]. So far, the pathogenicity of C. ryanae is controversial. A previ-

ous study conducted in the KOR demonstrated that although it is not a single infection, the

prevalence of C. ryanae was significantly high in hemorrhagic diarrhea [24]. We could not

arrive at a conclusion regarding the correlation with diarrhea since the number of C. ryanae-
positive samples from diarrheic calves was small. Hence, C. ryanae infection may cause diar-

rhea in calves�21 days of age and should be considered as a causative agent of diarrhea in this

age group. Further studies are necessary to clarify the pathogenicity of C. ryanae in pre-weaned

calves.

We found that the prevalence of C. bovis was the lowest in pre-weaned Korean native calves.

This observation is contradictory to the results reported by several studies in which C. bovis
was the dominant species in pre-weaned calves [20, 47, 51–53]. In this study, C. bovis was

detected only in two calves aged 10 and 35 days. Several studies have stated that C. bovis is

common in 2−3-week-old calves [42, 50]. However, our result signified that C. bovis was not

detected in this age (Table 1). Cai et al. mentioned that C. bovis usually appears after weaning

and that the infection can last weeks or months and contribute to the small increase in Crypto-
sporidium infection rates soon after weaning [26]. This observation may also explain the low

prevalence of C. bovis in the present study. To date, information on the prevalence and clinical

signs of C. bovis infection in both pre-weaned and post-weaned calves is very limited in the

KOR. C. bovis could have probably been considered to be less important than C. parvum and

therefore overlooked as an etiological agent of diarrhea in calves. Moreover, the results

revealed that infection by C. bovis, unlike the two other species, was not age-related. Most

importantly, the involvement of C. bovis in diarrhea remains unclear. Unlike C. ryanae, many

studies have suggested that C. bovis was associated with diarrhea [23, 26, 39, 54]. However,
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infection by C. bovis/C. ryanae may lead to clinical signs owing to the presence of C. parvum
[33]. Therefore, the prevalence and pathogenicity of C. bovis in pre-weaned and post-weaned

calves must be investigated through large-scale epidemiological surveys.

C. parvum IIa family is common in humans as well as calves and is considered potentially

zoonotic. To date, three C. parvum subtypes have been detected in calves in the KOR [18, 24],

whereas one subtype (IIaA16G3R1) was not found in this study. In addition to the two sub-

types (IIaA15G2R1 and IIaA18G3R1) described above, nine other subtypes (IIaA14G1R1,

IIaA14G3R1, IIaA15G1R1, IIaA16G4R1, IIaA17G3R1, IIaA17G4R1, IIaA19G1R1,

IIaA19G3R1, and IIaA19G4R1) that have not previously been detected in the KOR were iden-

tified for the first time, showing the presence of high genetic diversity. Among them,

IIaA18G3R1 was most commonly found in pre-weaned Korean native calves with diarrhea.

This result is inconsistent with that of a previous study in which IIaA15G2R1 was shown as the

predominant subtype [18]. This difference could be attributed to the fact that in the previous

study, both normal and diarrheic feces were used and that IIaA15G2R1 was detected regardless

of diarrhea [18]. Other variations are due to the differences in the season of sampling, regions,

the number of samples, and herd management. IIaA15G2R1 has been known as the most prev-

alent C. parvum subtype infecting humans and cattle in many countries [7, 34, 55–59] and has

also been detected in calves without diarrhea [18, 33, 60]. There seems to be no relationship

between the subtype and diarrhea. In the present study, IIaA15G2R1 was detected only in

three calves with diarrhea and was the third frequent subtype along with IIaA19G4R1.

Here, IIaA18G3R1 was the dominant subtype that accounted for 72.2% of C. parvum-

infected pre-weaned Korean native calves and was the frequent cause of human cryptosporidi-

osis, besides being reported in calves and foals [61–66]. The second common subtype in the

KOR, IIaA17G3R1, has been found in calves and humans in several countries [67–71].

IIaA19G4R1 was the third frequent subtype identified in the pre-weaned Korean native calves

and was also detected in small ruminants and fish as well as humans and calves [61, 70, 72–

74]. Interestingly, all sequences belonging to the IIaA19G4R1 subtype were identical to those

reported from other countries previously. These subtypes are considered to be the most com-

mon ones in calves in the KOR.

The other seven subtypes were also identified in pre-weaned Korean native calves with diar-

rhea, but their prevalence was relatively low. Subtypes IIaA14G1R1, IIaA14G3R1, and

IIaA15G1R1 were each detected in one calf. IIaA14G1R1 was identified in calves, goat kids,

and humans [7, 12, 17, 19, 25, 34, 57, 58]. IIaA14G3R1 was found in humans, calf, lambs, and

fresh molluscan shellfish [19, 25, 75, 76]. IIaA15G1R1 has been reported in humans [29, 57,

58, 77, 78] as well as in cattle and goat kids [22, 79–81]. Subtypes IIaA16G4R1 and

IIaA17G4R1 were each found in two calves in the current study. Unlike the other subtypes,

IIaA16G4R1 has so far been noted only in neonatal calf with diarrhea [82], which is consistent

with our findings. Subtype IIaA16G4R1 has not yet been detected in humans; however, the

possibility that this may represent a significant health risk cannot be excluded. The

IIaA17G4R1 subtype has been identified in humans, cattle, and goats [32, 34, 65, 76, 82, 83]

and has also been detected in diarrheic calves [32]. Finally, subtypes IIaA19G1R1 and

IIaA19G3R1 have each been identified in one calf. IIaA19G1R1 has been reported in humans,

cattle, and sheep [36, 58, 69, 84–86]. IIaA19G3R1 has been identified in humans, cattle, and

deer [66, 87–90]. To the best of our knowledge, this is the first study to report the presence of

various subtypes in pre-weaned calves in the KOR.

To detect C. bovis and C. ryanae, 18S rRNA and heat-shock protein 70 genes are generally

used [15]. According to sequence analysis of the 18S rRNA gene, C. bovis and C. ryanae
showed�99% identity, and it is not always possible to differentiate between them by PCR [91,

92]. However, in this study, we used only the 18S rRNA gene. Even without phylogenetic
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analysis, the difference between the two species could be confirmed via sequence analysis. At

the six nucleotide positions of 440, 460, 464−466, and 470, C. bovis had C, T, A, T, C, and A,

whereas C. ryanae had T, C, G, C, T, and G, respectively. These positions are representative

markers that distinguish C. ryanae from C. bovis. Our results suggest that these two species can

be discerned using the 18S rRNA gene.

Conclusion

Our results confirm the presence of three Cryptosporidium spp. in pre-weaned calves with

diarrhea: C. bovis, C. parvum, and C. ryanae. C. parvum was found to be the dominant species

in young calves in the KOR. The occurrence of C. ryanae and C. parvum, but not C. bovis, in

pre-weaned Korean native calves was significantly related to age; the prevalence of C. parvum
decreased with age, whereas that of C. ryanae increased with age. The most frequently detected

subtype in calves with diarrhea was IIaA18G3R1, which was responsible for zoonotic transmis-

sion. This is the first report to identify nine potentially zoonotic subtypes belonging to the fam-

ily IIa, which have not previously been reported in cattle in the KOR. This study establishes the

high genetic diversity of C. parvum in diarrheic calves and the widespread distribution of zoo-

notic C. parvum in the KOR. Therefore, the results emphasize that young calves may be a

potential source of infection and may serve as an important zoonotic reservoir for human

cryptosporidiosis [47, 49].
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