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In the clinical application of genomic data analysis and modeling, a number
of factors contribute to the performance of disease classification and clinical
outcome prediction. This study focuses on the k-nearest neighbor (KNN)
modeling strategy and its clinical use. Although KNN is simple and clinically
appealing, large performance variations were found among experienced
data analysis teams in the MicroArray Quality Control Phase II (MAQC-II)
project. For clinical end points and controls from breast cancer, neuroblas-
toma and multiple myeloma, we systematically generated 463 320 KNN
models by varying feature ranking method, number of features, distance
metric, number of neighbors, vote weighting and decision threshold. We
identified factors that contribute to the MAQC-II project performance
variation, and validated a KNN data analysis protocol using a newly
generated clinical data set with 478 neuroblastoma patients. We interpreted
the biological and practical significance of the derived KNN models, and
compared their performance with existing clinical factors.
The Pharmacogenomics Journal (2010) 10, 292–309; doi:10.1038/tpj.2010.56
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Introduction

The US Food and Drug Administration MicroArray Quality Control (MAQC)
project is a community-wide effort to analyze the technical performance and
practical use of emerging biomarker technologies (such as DNA microarrays,
genome-wide association studies and next generation sequencing) for clinical
application and risk/safety assessment. A major objective of the second phase of
the project (MAQC-II) is to evaluate the performance of microarray-based
classifiers for clinical use.1 To facilitate this investigation, the MAQC-II project
obtained three large clinical data sets containing approximately 700 samples.
These data profile three types of cancers (breast cancer, neuroblastoma and
multiple myeloma) generated by the Affymetrix or Agilent microarray technol-
ogies. The MAQC-II organized these samples into six clinical end points, two
positive controls and two negative controls (Table 1).

The MAQC-II project extensively evaluated common practices for classifier
development and validation, such as dealing with an exceedingly large feature
space (that is, ‘curse of dimensionality’), selecting the best performing model
among those developed (that is, multiple comparisons problem) and estimating
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the performance of the classifiers for future prediction (that
is, cross-validation (CV) versus external validation (EV)). An
unbiased way to determine best practices for classifier
development and validation is to systematically explore
the entire parameter space of various classification algo-
rithms. However, due to the overwhelming number of
modeling parameters that contribute to the classifier
performance, the MAQC-II consortium determined that it
was not administratively feasible to conduct such a study.
Consequently, 36 MAQC-II analysis teams from academia,
industry and the Food and Drug Administration selected
their own methods and parameter spaces to build classifiers
using the same labeled data sets and then submitted them
to MAQC-II. Among the 19 779 classification models sub-
mitted by 36 teams, 9742 were k-nearest neighbor-based
(KNN-based) models (that is, 49.3% of the total).

Analyzing these KNN classifiers, we made two key
observations: first, KNN models have generally performed

well compared with more complicated models—a finding
which is also in line with previous studies.5,6 Second, there
have been large variations in prediction performance among
KNN models submitted by different teams (Supplementary
Figure S1). Thus, the main goals of this study were (1) to
motivate the use of classifiers such as KNN that capture
nonlinear interactions between features as apposed to main
effects; (2) to investigate the modeling factors that contribute
to the variations in KNN classifier performance; (3) to develop
a robust KNN data analysis protocol (kDAP) that can provide
reliable KNN models for clinical use; (4) to show how this
kDAP can be applied to a newly generated clinical data set
and (5) to validate the KNN predictor results through both
biological interpretation and comparison with practical
clinical risk factors. As shown in Figure 1, we develop the
kDAP using MAQC-II data and assess its clinical use by
comparing its performance to existing clinical factors for
risk stratification.

Table 1 Data set properties for 10 clinical end points

Data set

code

End

point

code

End point description Microarray

platform

Training set Validation set

Number

of

samples

Positives

(N+)

Negatives

(N�)

N+/N�
ratio

Number

of

samples

Positives

(V+)

Negatives

(V�)

V+/V�
ratio

Breast

cancer (BR)a

D Preoperative treatment

response (pCR)

Affymetrix

Human

U133A

130 33 97 0.34 100 15 85 0.18

E Estrogen receptor status

(erpos)

130 80 50 1.6 100 61 39 1.56

Multiple

myeloma

(MM)b

F Overall survival milestone

outcome (OS, 730-day

cutoff)

Affymetrix

Human

U133Plus 2.0

340 51 289 0.18 214 27 187 0.14

G Event-free survival milestone

outcome (EFS, 730 cutoff)

340 84 256 0.33 214 34 180 0.19

H Class label is the sex of the

patient used as ‘positive’

control end point

340 194 146 1.33 214 140 74 1.89

I Class label is randomly

assigned and used as

‘negative’ control

end point

340 200 140 1.43 214 122 92 1.33

Neuroblastoma

(NB)c

J Overall survival milestone

outcome (OS, 900-day

cutoff)

Different

versions

of Agilent

human

microarrays

238 22 216 0.10 177 39 138 0.28

K Event-free survival milestone

outcome (EFS, 900-day cutoff)

239 49 190 0.26 193 83 110 0.75

L Class label is the sex of the

patient and used as ‘positive’

control end point

246 145 101 1.44 231 133 98 1.36

M Class label is randomly assigned

and used as a ‘negative’ control

end point

246 145 101 1.44 253 143 110 1.30

a
Provided by the University of Texas MD Anderson Cancer Center (Houston, TX, USA).2

bProvided by the Myeloma Institute for Research and Therapy at the University of Arkansas for Medical Sciences (Little Rock, AR, USA).3

cProvided by the Children’s Hospital of the University of Cologne, Germany.4
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Background
Besides being popular in the MAQC-II Project, KNN is also a
common method used for classification in the literature
such as Nature series journals,7,8 Proceedings of the National
Academy of Sciences9–11 and the New England Journal of
Medicine.12,13 The KNN classifier assigns a label to a new
unknown sample by considering the labels of the k most
similar examples in a training set.14,15 When distinguishing
between two classes, the fraction of votes from one class
must exceed a threshold to classify the new sample to
that class. Parameters embedded in this model include
the similarity measure or distance metric, number of
neighbors (k), decision threshold and how to assign weights
to each vote. In clinical studies, if global trends exist in
gene expression, a linear classifier such as logistic regression
can classify a new sample using a weighted combination
of expression values.16,17 If nonlinear relationships exist,
KNN is a better choice because it has the capacity to learn
nonlinear relationships between genes. Within the MAQC-II
project, we investigate the factors of KNN that contribute to
performance variations and also compare its performance to
logistic regression.

In the past, published studies seldom describe in detail the
methods used to select KNN parameters. Even in the studies
that consider several parameters, the parameter space is
often limited. For example, Rosenfeld et al.8 have used a
KNN classifier to predict cancer tissue origin from microRNA
profiles. They have determined that the optimal k parameter
was 3, but only considered a limited space that includes
k values of 1, 3 and 5. Lu et al.7 have considered a similar
KNN parameter space to classify cancer using microRNA
profiles. Hoshida et al.12 have used a KNN classifier (among

other classifiers) and have considered a KNN parameter
space of k¼1, 3, 5 and 7 to predict hepatocellular carcinoma
treatment outcome from gene expression data. Indeed many
studies use KNN for prediction of various clinical properties
including breast cancer patient survival,9 identification of
neuroblastoma differentiation markers,10 hepatitis treat-
ment outcome11 and early detection of prostate cancer.13

Given the lack of a comprehensive examination of KNN’s
effectiveness when applied to gene expression studies, it is
difficult to draw conclusions on what have caused the
large variations in the 9742 MAQC-II KNN models. Thus,
we have designed and conducted a meta-analysis of KNN
modeling.

To identify factors that cause the performance variations
among KNN models, we have surveyed the metadata and
data analysis protocols from different teams in the MAQC-II
project and reviewed previous KNN modeling data.14,15

From this survey, we identify six factors that are relevant to
KNN modeling: feature ranking method, number of fea-
tures, distance metric, number of neighbors, vote weighting
and decision threshold. Among these, distance metric,
number of neighbors, vote weighting and decision thresh-
old were not explicitly shown in the MAQC-II metadata
survey, but the number of neighbors was sometimes
volunteered. Much like the common practice in medical
and science journals, many of the MAQC-II data analysis
teams either did not specify these parameters or did not
explore the parameter space.

Therefore, we decide to conduct a more thorough study of
KNN model performance over a large KNN parameter search
space. Specifically, we systematically explore modeling
factors to identify those that contribute to performance,

Figure 1 Neuroblastoma case study to show clinical applications of KNN classifier. We designed a method to test whether KNN produces classifiers

of good clinical relevance. First, we developed our approach using MAQC-II gene expression data. Then, we applied this approach to additional

Neuroblastoma data and compared it to existing clinical factors for risk.
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particularly predictable performance, of KNN classifiers
using the six clinical end points and four control end
points from three large MAQC-II cancer data sets. We
develop a kDAP with which a reliable and robust KNN
classifier is likely to be obtained. Then, we study the
predictability of this kDAP on a new data set generated
using a different microarray technology to measure the
gene expression of a subset of the original neuroblastoma
patient samples.

Finally, using neuroblastoma as a case study, we present a
clinical use of the kDAP. The success of treating neuroblas-
toma depends on the accuracy of risk assessment and early
detection. Although retrospective analysis of neuroblastoma
statistics indicates an overall improvement of treatment
success, mortality rates for advanced-stage neuroblastoma
are still high.18,19 The International Neuroblastoma Risk
Group has established a set of clinical factors for predicting
disease recurrence and survival. These clinical factors
include disease stage, age of the patient at diagnosis, histo-
logical features and several genetic markers.20 However, it is
believed that gene-expression-based methods could further
refine risk stratification.21 Indeed, several studies have
identified and proposed panels of genomic markers to predict
event-free survival (that is, survival without recurrence or
metastasis within a specific period of time after diagnosis or
treatment).4,22,23 Here, we assess the clinical use of our kDAP
by comparing its prediction performance to each clinical
factor for event-free survival of neuroblastoma patients.

Materials and Methods

Three cancer data sets and ten end points
The detailed description of each data set and associated
end points is available from the MAQC-II main paper.1

We briefly summarize the three cancer data sets in Table 1.
Each cancer data set contains two clinical end points.
For both neuroblastoma and multiple myeloma, positive
and negative controls are included. These two types of
controls are necessary to assess the performance of
the clinically relevant end points against the theoretical
maximum and minimum performance provided by the
controls. An independent working group under the
MAQC-II divided each data set into the training and
validation sets using a time-stratified approach. The date
change represents a realistic scenario for clinical applica-
tions where the data for new patients are generated at
later dates than the original training set.1 This potentially
introduces batch effects and other variations that are largely
unpredictable, including adoption of new microarray chip
designs based on manufacturer design improvements.17–19

We conduct CV for each model on the training set, followed
by EV on the validation set.

In addition to the three data sets shown in Table 1,
the MAQC-II also has an independent neuroblastoma data
set using a different microarray technology (customized
one-color array). It covers 478 neuroblastoma patients at a
much later date than both the training and validation data.

This data set provides an important validation platform to
test our proposed kDAP, and to evaluate the prediction
power of the resulting KNN models. The KNN models have
shown robustness to change in microarray technology
including many overlapping probes.24

Performance metrics

All conclusions pertaining to the performance of a classifier
depend on the choice of a performance metric. Different
performance metrics may lead to different conclusions for
selecting the best predictive model,25 and some metrics have
yet to be subjected to a thorough empirical and theoretical
analysis.26 Technology and population changes (for exam-
ple, batch effect and class prevalence) increase the variance
of threshold-based metrics.27 These factors do not appear in
CV because the training and test data are homogeneously
mixed. However, in clinical applications, these factors are
likely to change. For this study, we included a threshold-free
metric based on the ‘area under the receiver operating
characteristic curve’ (AUC), and a threshold-based metric,
Matthews correlation coefficient (MCC).25 AUC aggregates
performance across all thresholds, and thus favors models
that perform well for a variety of thresholds. MCC evaluates
a model based on its predicted class labels, and thus favors
models that perform well at a particular threshold.

A model that performs well on AUC and poorly on
MCC indicates that there is a change in data set proper-
ties (for example, class prevalence), which in turn affects
threshold in KNN classification. A model that performs well
on MCC and poorly on AUC indicates that there is an
overall data set shift, such as a batch effect, for which a
‘lucky’ threshold still performs well. To select KNN models
that perform well for a variety of thresholds and also tune
threshold during CV we incorporate both metrics to create
a unified performance metric in the kDAP. We scale MCC
to fall in the same range as AUC and then take the average
(that is, 0.5�AUCþ0.25� (MCCþ1)). Then, to assess whether
models perform predictably well on EV we use the minimum of
CV and EV performance (that is, Min(CV,EV)).

Comparison of KNN to logistic regression on Food and Drug
Administration data sets

We compared KNN to logistic regression using the labeled
training sets in the MAQC-II project. For each of the 10 end
points, we performed 15 iterations of fivefold CV. Within
each fold, we selected parameters for KNN and logistic
regression using a nested threefold CV. That is, we use four-
fifths of the training set to select the top performing
parameters from nested CV, and then evaluate the selected
parameters on the remaining one-fifth of the training set.
Each iteration results in a single estimate of performance
using AUC and MCC. For both classifiers, we vary feature
ranking method, number of features and threshold. For
KNN, we also vary the number of neighbors.

Systematic examination of KNN modeling factors
We constructed a general workflow with varying parameters
for feature ranking, number of features, distance metric,
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number of neighbors, vote weighting and decision thresh-
old (see Figure 2) as the following:

� feature ranking methods (three total):

* significance analysis of microarrays d-score (SAM
d-value)

* fold change (FC) ranking with P-value threshold of 0.05
(FC&(Po0.05)), and

* P-value ranking with FC threshold of 1.5 (P&(FC41.5));

K numbers of features (26 total):

* N between 5 and 125 in steps of five; and using all features;

K distance metrics (three total):

* Euclidean distance,
* cosine distance, and
* city block distance;

K numbers of neighbors (30 total):

* k between 1 and 30;

K vote weighting (two total):

* equal weighted voting and
* distance weighted voting; and

K decision thresholds (33 total):

* y between 0.01 and 0.99.

Feature ranking methods order genes according to their
individual ability to distinguish between the two classes of
patients. The number of features specifies how many of the
top performing genes are selected for inclusion in the
classifier. We excluded more sophisticated gene selection
algorithms such as sequential or search-based feature selec-
tion because they were computationally impractical for this
combinatorial study. The number of neighbors specifies how
many similar samples cast a vote for the label of the new
sample. Vote weighting assigns different importance to each
vote, whereas decision threshold specifies what fraction of
votes for the positive class is required to classify the new
patient as positive.

We conducted an eight-way analysis of variance (ANOVA)
using a random effects linear model to assess the relative
contribution of each modeling factor to the performance
variations. In addition to the six modeling factors, we
included a factor for data set, and within data set, we
included a nested subfactor for end point. For example, class
prevalence and labeling errors contribute to end point
variation, whereas sample size and batch effect contribute to
data set variation. As with all regression analyses, confound-
ing variables may result in misleading conclusions. For
example, the average difficulty of the end points may vary
between data sets and this variation would be attributed to
the data set factor, when in fact it belongs to end point.
Because end point is nested within data set, the sum of their

variance could be interpreted as a single ‘end point’ factor
combining the effects of data set and end point.

Results

First, we compared KNN to logistic regression to justify the
use of nonlinear classifiers for gene expression and to carry
out a deeper investigation of KNN modeling factors. Then,
we performed a systematic combinatorial study by varying
the intrinsic KNN modeling parameters to generate 463 320
classifiers for each of the 10 end points from three clinical
cancer data sets (including 4 control end points). On the
basis of these classifiers, we first analyzed the impacts of
each modeling factor on the classifier performance. Next, we
took these results to generate a kDAP as guidance for
developing a predictive classifier for clinical applications.
Finally, we evaluated the kDAP by a newly generated large
cancer data set for neuroblastoma.

Comparing KNN to logistic regression
Table 2 provides mean performance and the P-value of a
paired t-test for each end point to determine if KNN and
logistic regression perform significantly differently. Using a
Bonferroni adjusted significance level of 0.005, we found
that KNN performs equally well or significantly better than
logistic regression on all clinical end points. Specifically,
KNN performs significantly better on pathological complete
response of breast cancer and overall survival of neuroblas-
toma, as well as event-free survival of multiple myeloma
using MCC performance metric. Logistic regression,
however, only performs significantly better when classifying
gender (positive control) for the multiple myeloma
data set.

To illustrate the specific advantage of KNN for the breast
cancer data set, we selected two genes from among the
1010 unique genes, which were collected as the top 20
by any of the ranking methods used on any of the 225-folds
of nested CV. Figure 3 shows the breast cancer samples
labeled by pathological complete response, and divides
the feature space according to logistic regression and KNN
decision boundaries. Whereas linear classifiers, such as
logistic regression, divide the feature space using a straight
line, nonlinear classifiers such as KNN have the flexibility
to create more complex decision surfaces. Figure 3a
shows such a surface using genes that appeared in 28% of
the nested folds. KNN correctly classifies the positive
samples that wrap around a central and lower-right negative
region. We also implemented a search across all gene
pairs to identify relatively better performing pairs and found
similar relationships. Figure 3b provides another example of
this ‘ball-in-socket’ structure (this time with switched
labels). If these complex interactions are relevant for
classification, only nonlinear classifiers like KNN can model
them.

Systematic analysis of modeling factors
Table 3 summarizes the variance explained by ANOVA for
CV and EV. Because models have to perform well on both to
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show good predictability, we used the Min(CV,EV) to assess
the KNN models. The factor of end point is consistently the
major source of variation for classifier performance, which is
consistent with the MAQC-II project results explained in the
main article.1 In addition, we have shown that the factor
of data set captures the second most variance, which may
indicate the impact of the underlying characteristics such
as sample size or batch effect. Most of the remaining
variance can be explained by decision threshold, number
of neighbors, feature ranking method and number of
features. Perhaps unexpectedly feature ranking contributes
less to the overall variance. This suggests that the three
feature ranking methods perform similarly well for KNN,
and it does not mean that feature ranking itself is less
important. Decision threshold comprises a large portion of
the MCC variance, which is consistent with the fact that
threshold must be tuned to achieve good performance.
While it is important to avoid the potential misinterpreta-
tion that factors with large variation caused that variation,

some factors appear not to contribute. For example, as
expected, decision threshold makes no contribution to
AUC variance. However, different distance metrics and vote
weightings performed nearly identically. Thus, we selected
the conventional Euclidean distance and equal-weighted
voting for all further analysis.

We also conducted a full two-way interaction ANOVA
model on a reduced parameter space (because of memory
restrictions) and found results consistent with Table 3. The
primary contributing interactions include end point as a
factor in addition to a large contribution from the decision
threshold when using MCC. The choice of k defines equi-
valent ranges of threshold based on the kþ1 possible voting
outcomes. Clearly, the choice of k influences the choice of
threshold as can be seen in Supplementary Figure S2.

The number of neighbors (k) affects predictable perfor-
mance significantly. Box plots in Figure 4 illustrate the effect
of k on the minimum AUC of EV and CV (predictable
performance). Research articles often report ad hoc selection

Figure 2 Generalized workflow for the systematic KNN analysis. The factors shown in black were found to have very little contribution to
performance variance. Representative values of each factor in the column indicate that the complete analysis of all factors (varying only one factor

for each model) allows for accurate separation of the influence of each factor (for the purposes of ANOVA analysis).
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of k between one and seven without justification.8,28–30 Our
study suggests that larger k often improves overall perfor-
mance of a classifier as well as its predictable performance.
As depicted in Figure 4, higher mean performance and lower
variance can be attained at larger values of k. However, the
optimal value of k remains end point specific.

Figure 5 shows the parameter space including feature
ranking method, number of features and number of neighbors
using AUC. In general, cross-validation predicts a slightly
better performance than observed in external validation
(that is, EV-CV is less than zero). This is consistent with
our general understanding that CV tends to overestimate
the EV performance. For both positive controls (end points
H and L), EV-CV is nearly zero with a homogeneous
distribution. There seems to be high concordance between
CV and EV for an ‘easy’ end point regardless of the choice
of feature ranking method, and the number of features and
neighbors. However, EV-CV for both negative controls (end
points I and M) is rather heterogeneous. This indicates that
selecting a robust set of parameters in CV is important for
achieving a reliable estimation for the EV performance.

In most published studies using KNN, the default
decision threshold of 0.5 is commonly used in binary
classification. As shown in Supplementary Figure S2, the
optimal decision threshold varies with the end points
studied. Whether selecting a decision threshold a priori
or guided by CV, the tradeoffs are not well understood. We
compared both scenarios in terms of root mean-squared

difference of performance MCC between CV and external
validation. As shown in Table 4, no significant difference
between the two scenarios is observed across all clinical
end points. For both positive and negative controls, it is
almost identical to use 0.5, or to use CV in deciding
decision threshold. This indicates that there is little
threshold dependency for either signal dominant (positive
control) or noise dominant (negative control) data sets.

KNN data analysis protocol
On the basis of the systematic analysis of modeling
factors detailed above, we propose a kDAP, which can be
used in surveying a large parameter space to select a
candidate model (Supplementary Table S1). Briefly, we
suggest to use a fivefold CV over an extensive feature space
(N¼5–200 in steps of five), to use three feature ranking
methods (significance analysis of microarrays, fold-change
ranking with P-value o0.05, and P-value ranking with fold-
change greater than 1.5) and to try a large range of
neighbors (k from 1 to 30). In general, we suggest selecting
the top performing model on CV for future sample predic-
tion. Regarding performance metric, we combine AUC and
MCC (that is, 0.5�AUCþ 0.25� (MCCþ1)) to select the
candidate models. To evaluate a model’s predictability and
performance on EV, we use Min(CV,EV).

In the MAQC-II project, 36 participating analysis teams
developed a large number of classifiers for each end point
based on the training data. However, each team only

Table 2 Comparison of KNN to logistic regression

End point Classifier AUC Common parametersa MCC Common parametersa

CV P-value Rank method N K CV P-value Rank method N K Threshold

Breast cancer: pathological
complete response

KNN 0.750 0.0005 FC&(Po0.05) 14 36 0.361 0.0037 FC&(Po0.05) 14 36 0.40
LR 0.708 FC&(Po0.05) 4 NA 0.247 FC&(Po0.05) 4 NA 0.23

Breast cancer: estrogen
receptor status

KNN 0.952 0.3654 FC&(Po0.05) 9 25 0.847 0.4692 P&(FC41.5) 5 15 0.70
LR 0.956 FC&(Po0.05) 5 NA 0.840 FC&(Po0.05) 4 NA 0.51

Multiple myeloma:
overall survival

KNN 0.553 0.4390 FC&(Po0.05) 11 4 0.084 0.7561 FC&(Po0.05) 14 85 0.32
LR 0.564 FC&(Po0.05) 11 NA 0.092 FC&(Po0.05) 10 NA 0.53

Multiple myeloma:
event-free Survival

KNN 0.636 0.0506 P&(FC41.5) 15 15 0.245 0.0027 P&(FC41.5) 16 39 0.40
LR 0.652 P&(FC41.5) 10 NA 0.208 FC&(Po0.05) 11 NA 0.48

Multiple myeloma:
positive control

KNN 0.962 0.0001 FC&(Po0.05) 13 18 0.834 0.4083 FC&(Po0.05) 7 152 0.49
LR 0.968 FC&(Po0.05) 5 NA 0.841 FC&(Po0.05) 5 NA 0.55

Multiple myeloma:
negative control

KNN 0.527 0.7992 P&(FC41.5) 10 8 0.045 0.3761 P&(FC41.5) 9 8 0.31
LR 0.525 FC&(Po0.05) 10 NA 0.026 FC&(Po0.05) 12 NA 0.34

Neuroblastoma:
overall survival

KNN 0.831 0.0001 FC&(Po0.05) 14 48 0.380 0.0000 FC&(Po0.05) 12 71 0.18
LR 0.768 FC&(Po0.05) 6 NA 0.262 FC&(Po0.05) 8 NA 0.31

Neuroblastoma:
event-free survival

KNN 0.857 0.9658 FC&(Po0.05) 16 45 0.524 0.0673 FC&(Po0.05) 15 103 0.19
LR 0.857 P&(FC41.5) 7 NA 0.499 P&(FC41.5) 7 NA 0.20

Neuroblastoma:
positive control

KNN 0.973 0.2942 SAM 4 40 0.909 0.1387 SAM 5 4 0.63
LR 0.970 SAM 4 NA 0.922 SAM 2 NA 0.29

Neuroblastoma:
negative control

KNN 0.493 0.8727 P&(FC41.5) 10 1 -0.019 0.0636 SAM 9 26 0.40
LR 0.491 FC&(Po0.05) 9 NA 0.009 FC&(Po0.05) 8 NA 0.60

Abbreviations: AUC, area under the receiver operating characteristic curve; CV, cross-validation; FC, fold change; KNN, k-nearest neighbor; LR, logistic regression;

MCC, Matthews correlation coefficient; SAM, significance analysis of microarrays.

Bold values indicate a P-value less than 0.005.
aMode of rank method and median of N, K and threshold.
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nominated one classifier per end point for blind testing on
the validation set, resulting in 251 classifiers for the 10
clinical end points. These so-called candidate models were
developed using various machine learning methods and

provide a fair representation of the common practice in the
microarray gene expression analysis community. Figure 6
compares the kDAP-derived models with the candidate
models from MAQC-II. The kDAP classifiers perform among
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the better candidate models including the KNN-based models.
In addition, the kDAP classifiers are close to the diagonal
line indicating predictable EV performance. Supplementary
Figure S3 shows a kernel-smoothed density of the scatter
plots in Figure 6 in terms of EV–CV, where values near zero
are desirable. The kDAP classifiers appear in a region near
the middle of this distribution.

Clinical use of kDAP

Using neuroblastoma clinical end points as a case study, we
illustrate the clinical use of the kDAP by exploring a large
parameter space. We consider the biological and practical
interpretation of the derived modeling parameters, the
predictive performance of the derived models compared to
existing clinical factors, and the biological interpretability of
the derived gene lists.

There are two sets of data generated using neuroblastoma
patient samples. The original MAQC-II neuroblastoma data set
was generated using a two-color Agilent microarray platform
as shown in Table 1. Then at a much later date, a new data set
was generated using a one-color Agilent microarray platform.24

The new data set contains 21 fewer samples, approximately 700
fewer genes and covers the same end points. To mimic the real
clinical application, we kept the identity of these end points
and labels in the validation set confidential during our entire
KNN classification model selection process (that is, we were
not aware of which two of the four end points were controls,
nor the identities of any of the samples).

KNN model parameters selected by kDAP

First, we apply the kDAP to develop KNN classification models
by using the MAQC-II-provided training sets of 236, 237,
244 and 244 patients. Second, we use the top performing
CV KNN model for each end point to predict class labels
of the subsequently released validation set of 159, 175, 219
and 234 patients. Table 5 summarizes both the CV and
EV performances. All four end points show strong corre-
spondence between model parameters and performance for
the one-color (new) and two-color (original) data set.

In general, we expect the number of features (N) to
indicate the complexity of the biological process (that is,
more genes are required to model relationships that
are more complex). The performance of models with
a specific number of neighbors (k) may also be related
to complexity of the classification problem. Difficult
problems may require more training data points to reduce
the effect of outliers, or may lead to over-fitting. Simple
problems may lead to an arbitrary choice of k as very little
training data are required to make the decision. The choice
of decision threshold tends toward the prevalence (defined
as percentage of negative samples) of the training set,
especially for high k. When the candidate model’s para-
meters make sense according to our understanding of the
clinical problem, we are more confident in its performance
on future data sets.

The positive controls provide an example of simple
biological problems resulting in a simple classifier with a
small number of difficult or outlier samples. For both
positive controls, the peak performing KNN model during
CV uses a small number of features, large number of
neighbors and low threshold favoring the prevalence, which
is consistent with our understanding of parameter behavior
(Table 5). A smaller number of features focuses the model
on a few quality genes, and large k smoothes, and simplifies
the decision surface, yielding a high-performing model
for an easy end point. Both negative controls use a small
number of neighbors and small enough threshold to yield
a complex classifier favoring the larger class and resulting
in higher sensitivity and lower specificity. It is important to
note that all models perform uniformly poorly on negative
controls.

Supplementary Figure S4 shows the overall distribution
of the population of models for the clinical end points
compared with the control end points. The overall survival
and event-free survival end points use large k and moderate
N, falling somewhere between the positive and negative
controls in difficulty. For both clinical end points, the kDAP
performs slightly worse in EV compared with CV, which is

Table 3 Sources of variation in CV and external validation performance and their minimum (a measure of predictable
performance)

ANOVA all end points Cross-validation variance (%) External validation variance (%) Min(CV,EV) variance (%)

Performance metric AUC MCC AUC MCC AUC MCC

Feature ranking 0.01 0.23 0.00 0.12 0.00 0.13
Number of features 0.38 0.48 0.15 0.37 0.24 0.46
Distance metric 0.00 0.00 0.00 0.00 0.00 0.00
Vote weighting 0.00 0.00 0.00 0.00 0.00 0.00
Number of neighbors 1.56 0.93 0.84 0.56 1.09 0.57
Decision threshold 0.00 6.41 0.00 6.14 0.00 5.81
End point (data set) 78.70 68.99 85.04 71.30 83.90 72.01
Data set 16.46 6.22 9.77 3.33 11.14 4.16
Residual 2.88 16.73 4.19 18.16 3.62 16.85

Abbreviations: ANOVA, analysis of variance; AUC, area under the receiver operating characteristic curve; MCC, Matthews correlation coefficient.
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also consistent with what we have observed for the MAQC-II
data sets using KNN. These models still perform predictably
well in terms of Min(CV,EV).

Case study for clinical use of kDAP

In Figure 7, we use Kaplan–Meier plots to compare the
performance of the kDAP to some clinical factors.4 Established
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Figure 4 Number of neighbors affects cross-validation performance for end points D, E, F, G, J, and K in subparts (a), (b), (c), (d), (e), and (f),
respectively. Box plots represent the distribution of predictable performance (i.e., Min(CV,EV)) for the population of models with varying k using
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medians with small range are desirable.
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by the International Neuroblastoma Risk Group, the com-
monly used factors include patient age at diagnosis,
histology, disease stage at diagnosis, MYCN status and
chromosomal status.20 Retrospective neuroblastoma statis-
tics have shown that survival rates are significantly asso-
ciated with age at diagnosis, with younger patients showing
more favorable results.19 Also, genetic anomalies. such as
MYCN amplification or chromosomal deletions or im-
balance, are associated with patient survival.33–35 In addi-
tion, histological information (for example, morphological

characteristics and degree of tissue differentiation) were
shown to further improve risk stratification.31 All of these
factors are included as part of the International Neuroblas-
toma Staging System, which categorizes neuroblastoma into
stages 1, 2, 3, 4s and 4.36 Stages 1, 2 and 4s are generally
favorable, with high patient survival rates, compared with
stages 3 and 4.

As shown in Figure 7, for event-free survival of neuro-
blastoma patients, the KNN predictor performs among the
better clinical factors. Using log-rank statistics, we find that
the KNN predictor has the smallest P-value. In addition, the
kDAP optimizes for the 900-day cutoff for event-free survival
and outperforms the clinical factors at this cutoff (higher
green line and lower red line at the vertical dashed line at
900 days).

MYCN amplification, measured using fluorescent in situ
hybridization, appears to be the best clinical factor for
stratifying patients into low- and high-risk groups. In our
gene expression data, MYCN is overexpressed nearly twofold
(1.9) in high-risk patients. Among the top-ranked genes in
the KNN model are several genes known to be related
to neuroblastoma (Table 6). For example, Gene Ontology
analysis using GOstat reveals that the top 200-ranked genes
primarily represent cell-cycle and cell division processes.37

This is not surprising as high-risk neuroblastoma patients
typically show faster disease progression or recurrence,
hence, faster cell growth. Also, NTRK1, a neuroblastoma
tumor suppressor is overexpressed nearly fourfold in low-
risk patients.38 In addition, NEK2 and MAPT are oppositely
expressed by nearly two-fold.39 Several other genes in Table 6
have been previously implicated in neuroblastoma or

Figure 5 No single set of parameters perform reproducibly for all end points. The reproducibility of model performance is quantitatively measured

as the percent change of external validation (EV) from internal cross validation (CV). Across the KNN parameter space (including k, feature ranking
method and number of features with a decision threshold of 0.5), the difference between EV and CV AUC ranges from þ20 to �20%, with distinct

regions of higher or lower EV performance relative to CV. Reproducible models are the white regions of the heat map, indicating very small

differences between EV and CV. Overall, no single set of KNN parameters performs well for all end points.

Table 4 Root mean-squared difference between CV and
external validation performance (MCC) for different decision
thresholds

End point Decision threshold

A priori,
0.5

Best cross-
validation

Breast cancer, pathological complete
response (D)

0.045 0.087

Breast cancer, estrogen receptor status (E) 0.052 0.064
Multiple myeloma, overall survival (F) 0.040 0.033
Multiple myeloma, event-free survival (G) 0.036 0.041
Multiple myeloma, positive control (H) 0.024 0.024
Multiple myeloma, negative control (I) 0.033 0.033
Neuroblastoma, overall survival (J) 0.043 0.045
Neuroblastoma, event-free survival (K) 0.027 0.021
Neuroblastoma, positive control (L) 0.027 0.027
Neuroblastoma, negative control (M) 0.038 0.040

The values given in bold indicate lower error for each end point.
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cancer, in general, including CNTNAP2,40 EBF1,41 PDE4-
DIP,42 AMIGO2,43 PKIB,44 EPHA5,45 CENPA,46 CENPF,47

SCG2,48 TWIST149 and BMP7.50

Discussion

Development and assessment of microarray-based classifiers
has become an active area of research in pharmacogenomics
to improve clinical diagnosis and treatment. In comparison
with previous work, our studies have a number of new and
advanced features.

First, we used three large cancer data sets each having
two clinical end points. The classifiers were developed on
training sets and evaluated on validation sets that were
generated on different dates to mimic real-world clinical
applications. The validation sets are sufficiently large, which
provide a robust estimation of the classifier performance.
In this study, we centered our analysis to a specific measure-
ment, Min(CV,EV), that evaluates the minimum perfor-
mance between CV and EV. This measure favors models
that perform predictably well and assesses whether the
CV-derived classifier is reliable and robust to predict future
samples in a clinical application.

Second, we motivated the use of nonlinear classifiers such
as KNN for gene expression analysis by showing specific
examples where genes show complex relationships relevant
to classification. Interestingly, the complex interaction in
Figure 3a was identified by relatively unsophisticated feature
ranking methods that do not explicitly search for such
structure. That is, each gene performs well enough on its
own to perform in the top 0.1% of all genes. Sequential
or search-based feature selection could identify the pair
of genes in Figure 3b and are worthy of future research.
We speculate that these feature interactions explain the
significant performance improvement of KNN over logistic
regression for end point D.

Third, we conducted a combinatorial study by exploring
a list of modeling parameters related to KNN classifier
development. Realizing that different performance metrics
might lead to divergent conclusions, we also included two
performance metrics (that is, AUC and MCC) to assess the
classifier performance. Our approach is different from many
published studies that validate novel algorithms for clinical
applications in that they use fixed modeling parameters,
a single performance metric, CV without EV or EV using
only one selected model. Instead of relying on a single-point
estimate of a classifier’s validation performance, we acquire
an understanding of the sensitivity of the model to pertur-
bations in modeling factors or data set properties and thus
gain a comprehensive picture to inform our kDAP.

Fourth, positive and negative controls are available for
the multiple myeloma and neuroblastoma data sets. There
are several benefits to include both controls in clinical
practice. For example, using this information, we are able to
compare the performance of the clinically relevant end
points against the theoretical maximum and minimum
performance provided by the controls. The distributions ofT
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clinical end points for patients with multiple myeloma
are closer to the negative control than that observed for
patients with neuroblastoma, indicating that the multiple
myeloma data set is more difficult to model compared
with the neuroblastoma data set (Supplementary Figure S4).
In addition, both controls can serve as quality metrics to
identify overfitting (for example, bias in feature selection)
and modeling errors (for example, mistakes in the computer
code). As both positive and negative controls are readily

available for most clinical data sets, we strongly recommend
that they be included as a baseline practice for developing
classifiers using gene expression profiles or other emerging
molecular biomarker technologies in clinical applications.
In addition to outperforming negative controls, the kDAP
performs comparably well to currently established clinical
factors for neuroblastoma event-free survival. Because the
kDAP optimizes for the 900-day cutoff for event-free
survival, it better differentiates the samples for that cutoff.
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Figure 7 Comparison of KNN prediction of neuroblastoma event-free survival to established clinical factors for risk stratification. Kaplan–Meier

plots compare the prognostic accuracy of the kDAP model on (a) two-color data set and (b) one-color data set compared with several clinical

factors: (c) age of the patient at diagnosis, (d) stage of the disease at diagnosis, (e) favorable or unfavorable histology using the Shimada
system,31 (f) MYCN amplification,32 (g) risk stratification from the German Neuroblastoma Trials (intermediate-risk (IR) patients were grouped

with low-risk (LR) patients), (h) the status of chromosome 11q23 and (i) the status of chromosome 1p36.
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Although no single set of modeling parameters perform
equally well for all end points and most factors are end point
specific, several important patterns are observed. For
example, distance metric and vote weighting are not
significant. Factors such as feature ranking method, number
of features, number of neighbors and decision threshold
interact with each other to affect the classifier performance.
In particular, we observe the impact of the decision thresh-
old to the classifier performance as depicted in Supplemen-
tary Figure S2. It appears that the choice of threshold
depends on the prevalence of the training set and the target
population. Although choosing an a priori decision thresh-
old of 0.5 in CV generally provides a fair estimation for EV,
the complex nature of decision threshold related to the
classifier performance may deserve further investigation.

Summary

Through systematic analysis of the KNN modeling practice
using large cancer gene expression microarray data sets with
both positive and negative controls, we have developed a
KNN data analysis protocol (kDAP) for clinical applications.
We have considered six modeling factors for KNN and find
that two do not contribute to variations in predictive
performance: distance metric and vote weighting. Using
the remaining factors (feature ranking method, number of

features, number of neighbors and decision threshold), we
find that the selection of all remaining parameters to be end
point specific. In particular, the kDAP selects much larger
values of k than that typically reported in practice, perhaps
due to the large size of the MAQC-II data sets by current
standards. The kDAP candidate models perform predictably
well on the external validation sets compared with other
candidate models in the MAQC-II project. More impor-
tantly, we use a clinical case study, neuroblastoma cancer
data set, to validate the kDAP. The kDAP produces consistent
KNN prediction models on a newly generated data set
created by a different microarray technology. The resulting
KNN model parameters reveal the underlying biological and
practical characteristics of the end points. The kDAP also
improves on existing clinical factors for risk stratification for
predicting the 900-day cutoff of event-free survival and
performs comparably for stratifying low- and high-risk
patients for event-free survival. In addition, many of the
genes used in the candidate model correspond to known
genes implicated in neuroblastoma or cancer.

The kDAP provides a starting point for the research
community to enhance the best practice for use of KNN
classifiers in clinical genomics. Moreover, the described
approach should be extendable to other machine learning
methods as well as other emerging molecular biomarker
technologies in clinical applications. By validating the kDAP
against existing clinical factors, we envision its application
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to emerging problems where no suitable factors exist.
Whereas discovering new clinical factors for disease has
been a painstaking hypothesis-driven pursuit, we have
shown the use of the hypothesis-free kDAP that may
increase the translation of clinical predictors.
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