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Abstract: Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. An effective
management and treatment of CVDs highly relies on accurate diagnosis of the disease. As the most
common imaging technique for clinical diagnosis of the CVDs, US imaging has been intensively
explored. Especially with the introduction of deep learning (DL) techniques, US imaging has
advanced tremendously in recent years. Photoacoustic imaging (PAI) is one of the most promising
new imaging methods in addition to the existing clinical imaging methods. It can characterize
different tissue compositions based on optical absorption contrast and thus can assess the functionality
of the tissue. This paper reviews some major technological developments in both US (combined with
deep learning techniques) and PA imaging in the application of diagnosis of CVDs.

Keywords: cardiovascular diseases; ultrasound imaging; photoacoustic imaging; segmentation; deep
learning; vulnerable plaques

1. Introduction

Cardiovascular diseases (CVDs) are a class of diseases affecting the heart and/or the
blood vessels. It is still an alarming threat to global health and is responsible for about one
third of all deaths, being the number-one killer worldwide [1]. In addition, CVDs is also
the major economic burden to the social health-care system due to the substantial direct
and indirect cost related to the management of CVDs [2]. For an effective management and
treatment of CVDs, accurate diagnosis of the disease and real-time interventional guidance
is critical. Various imaging techniques such as X-ray-based imaging (cardiac CT, coronary
angiogram), magnetic resonance imaging (MRI) and ultrasound (US) imaging are currently
commonly applied in clinics for the diagnosis of CVDs [3]. However, X-ray-based imaging
involves a high radiation dose, and MRI is relatively expensive and not always available
for frequent, daily use. US imaging is safe, easy to operate, and is known for its high
spatial and temporal resolution, low cost, and high accessibility. Therefore, US imaging
has become the most commonly used diagnostic imaging technique in cardiology [4].

New imaging techniques are being investigated and developed. Photoacoustic (PA)
oroptoacoustic) imaging is a novel imaging technique, taking advantage of both light and
sound. In PA imaging, short pulses of laser light are transmitted to irradiate the tissue,
and are absorbed in the tissue, generating ultrasound signals due to the thermo-elastic
expansion. These ultrasound signals can be received by a conventional US transducer
to reconstruct PA images [5]. Generally, the amplitude of the PA signal is proportional
to the optical absorption of the tissue. By operating at different optical spectral ranges,
the multispectral photoacoustic imaging can reveal the unique wavelength dependent
behavior of different materials [6] and is useful to characterize different tissue compositions
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and assess tissue functionality [7–9]. Over recent decades, substantial improvements have
been achieved in the field of PA imaging in the diagnosis of CVDs.

As mentioned above, US imaging has been and will remain one of the most widely
applied imaging techniques in cardiology in the coming future. PA imaging is intrinsically
bonded to and is complementary to US imaging, making it a promising new imaging
technique towards clinical applications in cardiology. Furthermore, with the increase
in GPU power, deep learning (DL) techniques have gained popularity. DL algorithms
require less knowledge about the domain and can capture data features on their own,
and hence can be easily applied in complex scenarios [10] while requiring few experts
for manual annotations after the model development is complete [11,12]. DL techniques
substantially impact the advancement of modern US and PA imaging processing methods.
DL techniques generally have become the state-of-the-art methods for segmentation [13–15],
classification [16], reconstruction [17,18], and registration tasks.

In this paper, we summarized the development of US and PA imaging and the appli-
cation of DL techniques in both imaging modalities in cardiology. In Section 2, we will
first give a condensed overview of the major developments in US imaging and then focus
on the DL-based advanced US imaging processing methods. In Section 3, we will first
comprehensively review the recent technical advances in PA imaging and then briefly
discuss the application of DL-based PA imaging techniques in cardiology. Finally, findings
are summarized, and some remaining/future challenges are discussed in Section 4.

2. Advanced US Imaging in Cardiology and DL Techniques

The use of ultrasound in cardiology was first introduced by Edler and Hertz [19,20].
They were the first one to record the echoes from the anterior leaflet of the mitral valve.
The basic US imaging principle can be found in [21]. Since then, US imaging has evolved
to 1-D A and M-mode imaging, real-time 2-D and 3-D B-mode, intravascular US imaging
to directly visualize the artery wall from inside, e.g., in the coronaries, and the ultrafast
US imaging to better characterize the cardiac functions [22–24]. Moreover, US is known
for its many functional imaging modalities [4], such as US-based Doppler imaging to
measure blood [25], strain imaging to quantify myocardial dynamics [26], shear wave
elastography [27], and the use of contrast agents to further improve US imaging quality
and flow imaging, and quantify tissue perfusion[28,29].

2.1. DL Techniques in US Imaging in Cardiology

Besides the developments in US imaging itself, with the introduction of DL, advanced
imaging processing techniques are available and can further improve diagnosis and treat-
ment of CVDs patients [30]. Unlike conventional machine learning algorithms, which
mainly rely on manual feature extraction (see Figure 1), DL techniques do not require
substantial domain knowledge [31]. Instead, they automatically learn a high-level repre-
sentation of data.

Figure 1. Conventional machine learning vs. DL for a classification task.



Sensors 2021, 21, 7947 3 of 24

Advances in DL extend the application of artificial neural network (NN) theory by
providing the possibility of training a NN architecture with multiple hidden layers using
a backpropagation algorithm [32]. Convolutional neural networks (CNN) [33], recurrent
neural networks (RNN) [11], and generative adversarial neural networks (GAN) [34] are
the most commonly used deep neural networks (DNN) for cardiovascular image analysis.
In the following section, we will selectively focus on reviewing some typical work about
the application of diverse DL methods that are gaining increased attention in the field,
such as viewpoint classification, Left ventricle segmentation, and intravascular ultrasound
segmentation. Furthermore, we state the importance of point of care ultrasound imaging.

2.1.1. Advanced Techniques for Cardiac Viewpoint Classification

Different views of the heart are acquired using a transthoracic echocardiogram (TTE)
which can help in understanding the complex anatomy and functions of the heart. These
views consist of various video clips, Doppler images from different angles, as well as
still images. The information is presented in terms of m-mode recordings, continuous
and pulsed wave Doppler imaging. The determination of the view is a very important
step in understanding the echocardiogram [35]. This step is challenging as the views
sometimes differ very slightly from one another and cannot be classified so easily. The
methods generally are time-consuming and require manual intervention by the operator
for annotating the features.

Various techniques, classical as well as machine learning-based, have been used for
classification of echo videos and images. Support vector machines (SVM) and linear dis-
criminant analysis (LDA) have been used as one of the primary tools for classification
by learning the decision boundaries and classifying the different views in space [36–41].
Multi-class logit-boost classifiers are also proposed for classification of the view in echocar-
diographic images [42,43]. Khamis et al. [44] proposed a multi-stage classification algorithm
for employing spatio-temporal feature extraction and supervised dictionary learning to
classify longitudinal scans namely: apical two-chamber (A2C), apical four-chamber (A4C)
and apical long-axis (ALX), as shown in Figure 2. The inherent noise makes the classi-
fication challenging. Introducing discriminative dictionary learning helped reaching an
average accuracy rate of 95% ( 97%, 91% and 97% of A2C, A4C and ALX respectively). Park
et al. [45] proposed a probabilistic boosting network principle using the local structure
dependence for identifying the cardiac view of B-mode images and then builds on this for
inferring the final Doppler gate location in B-mode echocardiograms.

Figure 2. Echocardiographic apical views: (a) Apical 2 Chamber view (A2C), (b) Apical 4 Chamber
view (A4C) and (c) Apical Long-Axis view (ALX). (Courtesy and copyrights: 123sonography.com)
(Reprinted from [44] with permission).
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The classical methods for classifying view in echocardiograms are time-consuming
and require operator-dependent manual intervention to obtain the desired results. Hence,
there has been a wide interest in DL-based approaches for classifying the view of the
heart. Penatti et al. [46] proposed a bag of visual words (BOVW) representation for the
classification of four cardiac view planes. A BOVW for an image represents an image as a
set of features which consists of keypoints and descriptors. Keypoints are the distinct points
in the image while the descriptors are the descriptions for the keypoint. The keypoints and
the descriptors are used to construct vocabularies of the image and represent the image as a
frequency histogram of features. From the frequency histogram, we can predict the category
of the image [47]. The technique was robust to noise filtering, down-sampling, and achieved
a classification accuracy of 90%. Gao et al. [48] proposed a fused DL-based architecture for
integration of spatial as well as temporal information for classifying the echocardiographic
videos for eight viewpoints, and achieved an accuracy of 92.1%. Madani et al. [49] proposed
a DL-based classification of echocardiograms using CNNs for classifying 15 standard views
(3 still and 12 videos) from a large dataset consisting of 267 transthoracic echocardiograms.
The model was able to achieve an accuracy of 97.8% and 91.7% for low-resolution images.
Another area of research is developing lightweight models for performing viewpoint
classification which have fewer parameters and can be used for fast mobile applications
for point of care ultrasound applications. Vaseli et al. [50] proposed a lightweight model
and used only 1% of the parameters normally comprising a DL model, and achieved a
comparable accuracy of 88.1% for 12 view classification in a dataset of 16,612 echograms
obtained from 3151 patients.

2.1.2. Advanced Techniques in US Imaging to Improve Left Ventricle Segmentation

Segmentation of the left ventricle (LV) of the heart is a very important step in diag-
nosing cardiopathies. Segmentation in US echocardiography image sequences is generally
challenging, mainly due to the existence of speckle-noise, shadowing, artifacts, and edge
dropouts. Earlier studies on cardiac image segmentation rely on deformable models [51],
active contours [52], and classical feature extraction techniques [53]. Despite their popu-
larity, these techniques suffer from some limitations. For example, active contours and
deformable models need prior knowledge about the tissue shape and appearance [54,55].
Manual feature extraction is a computationally intensive process [56]. Furthermore, it is
mainly based on generic researchers’ domain knowledge rather than encoding information
in data. Thus, some important information present in the data may be left unused in the
segmentation phase.

To tackle the issues mentioned above, recently, DL has been used in cardiac image seg-
mentation and has shown considerable improvement in terms of accuracy and speed [57].
CNN-based models, i.e., fully convolutional neural networks (FCN) [58], U-net [14] and
its variations are among the most commonly used DL-based models for cardiac image
segmentation. These models have been widely employed for LV segmentation on 2D or
3-D US cardiac images [59–64].

The performance of LV segmentation relying on a single DL model might be limited
due to the inherent challenges of US images, such as low signal-to-noise ratio, the existence
of speckle and resulting low image contrast [65]. To overcome the above limitations and
further improve the LV segmentation, several studies have proposed hybrid methods, com-
bining a DL-based segmentation model, such as a CNN, with (i) a classical segmentation
model, e.g., a deformable model [66]; or (ii) another DL architecture such as an RNN [67].

In the hybrid framework combining DL-based segmentation and deformable mod-
els [65,68–71], the deformable models act as a post-processing step to refine the output of
segmentation. Experimental results of such a hybrid framework in [71] demonstrated the
effectiveness of the proposed method in providing accurate segmentation of LV.

Another hybrid framework based on the combination of DL-based segmentation with
RNNs was proposed to include spatio-temporal information of data in the learning proce-
dure. In [67], the spatio-temporal information from echocardiography was simultaneously
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captured by this hybrid framework while segmenting LV structure. The proposed method
was applied on the raw echocardiography frames, resulting in a segmentation accuracy
of 97.9%.

Elsewhere, Oktay et al. [72] introduced an anatomically constrained CNN for LV
segmentation. This model included prior knowledge about the organ’s shape in a CNN
through a regularization model, which is based on an autoencoder network. This regular-
ization model encourages the segmentation model to follow the anatomical priors of the
underlying anatomy via learned nonlinear representations of the shape. The performance
of the proposed segmentation method was evaluated using a Dice score which is defined
as a ratio of overlap between the ground truth and the segmentation output, ranging from
0 (no overlap) to 1 (complete overlap). The experimental results on the CETUS’14 challenge
dataset [73] showed a high performance with a Dice score of 0.91 for end-diastole and 0.87
for end-systole.

Most DL architectures applied for LV segmentation are trained in a supervised man-
ner. In supervised learning, data with corresponding labels are given to a network for
segmentation or classification purposes. However, data labeling is an expensive and time-
consuming task. To overcome these challenges, semi-supervised learning algorithms are
used to leverage the unlabeled data for improving the overall performance of LV segmen-
tation [55,74,75]. In a more recent work by Ta et al. [75], a semi-supervised joint learning
method was used for simultaneous LV segmentation and motion tracking in 2D+t echocar-
diographic sequences. A network with two branches, one for motion tracking and another
for segmentation tasks, are trained simultaneously such that each branch gradually refines
the result of the other. Their proposed method for LV segmentation showed the Dice score
of 0.95 ± 0.01 on synthetic human echocardiographic sequences and 0.87 ± 0.01 on in vivo
canine models. This framework was also applied on 3D+t echocardiographic sequences
to further improve the segmentation and motion tracking of LV [76]. Jafari et al. [77]
presented a semi-supervised learning framework based on a hybrid DL model comprised
of a generative model and U-net for LV segmentation. The model was trained on the whole
cine where the ground truth was only available for end-diastolic and end-systolic frames.
The results on a dataset comprised of 648 AP4 echo cines demonstrated an enhancement
of Dice score by an average of 3% compared to a U-net trained on the end-diastolic and
end-systolic frames in a supervised manner. Figure 3 demonstrates this improvement for
four sample subjects.

Figure 3. Illustration of LV segmentation for four sample subjects. The results of the semi-supervised
method and U-net are shown by blue and cyan colors, respectively. The red color indicates the
ground truth. Reprint from [77] with permission.

2.1.3. Advances in Intravascular Ultrasound (IVUS) Image Segmentation
and Characterization

Atherosclerosis is the build-up of plaques inside the artery walls. The rupture of
atherosclerotic plaques is the major cause of acute cardiovascular events, such as cardiac
infarction or stroke. Clinically, local treatment of such a rupture-prone plaque (or vulnerable
plaque) in coronary arteries is percutaneous coronary intervention (PCI), which is a catheter-
based procedure to open up the narrowed or blocked arteries and restore the blood flow.
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Thus, the detection of such vulnerable plaques is of paramount importance in clinical
applications to prevent the occurrence of acute fatal events, such as heart attack and stroke
and to guide PCI.

Intravascular ultrasound imaging (IVUS) is an important minimally invasive imaging
technique which offers a close visualization of the coronary arteries from inside, providing
a direct measurement of a few mm of the atherosclerotic plaques [78]. It is considered the
gold standard for in vivo imaging of coronary arterial walls and is routinely used in clinics
to assess the degree of, for instance, lumen stenosis, plaque anatomy [79]. For this purpose,
segmentation of the lumen, vessel wall (intima and media layer), and plaque is required.
However, the segmentation of arterial structures in IVUS images can be very challenging
due to the presence of artifacts, low contrast, and poor signal-to-noise ratio. Thus, new
advanced techniques for accurate segmentation are necessary.

CNNs have been widely employed on IVUS data for segmentation purposes, but
large datasets are not easily acquired or available. To circumvent this problem, several
groups have focused on the use of data augmentation techniques and optimizing the
CNN architecture to improve the feature learning capability of the network on small
datasets [80–83]. For example, in [80], the authors applied an FCN, called IVUS-Net,
followed by a post-processing step on a publicly available IVUS B-mode dataset [84] to
segment the lumen and media–adventitia regions of the artery. Compared with the state-
of-the-art methods, their proposed method showed an improvement by 8% and 20% in
terms of Hausdorff distance [85] for the lumen and the media segmentation, respectively.
In a more recent study, Yang et al. [81] proposed an optimized extension of IVUS-Net,
called DPU-Net, for the lumen and media–adventitia segmentation. Furthermore, to tackle
the lack of training data, the authors introduced a real-time augmenter to generate more
IVUS data with artifacts. The model was applied on a publicly available dataset with
a center frequency of 40 MHz and 20 MHz frames, respectively [84]. The experimental
results illustrated the superiority of the proposed architecture over several competing
methods, such as SegNet [86] and U-net. DPU-Net also demonstrated high generalizability
for predicting images in the test sets that contain a significant number of artifacts that are
not presented in the training set. Figure 4 depicts a visual comparison between the manual
segmentation by experts and predictions based on DPU-Net.

To further improve the performance and the generalizability of CNNs for the IVUS
segmentation, Bargsten et al. [87] applied anatomical constraints to train a U-net architec-
ture. These constraints were represented by regularization terms which considered some
prior knowledge about the lumen and vessel wall, such as location and shape. Compared
to a baseline U-net model, the experimental results showed a performance improvement of
up to 59.3% in terms of the modified Hausdorff distance.

Figure 4. Example results of detecting the lumen and media borders for images obtained at 20 MHz
(first row) and 40 MHz (second row). The segmentation results for lumen and media are shown by
cyan and red colors, respectively. The yellow dashed lines show manual annotations by experts [84].
Reprint from [81] with permission.

In addition to the lumen and vessel wall segmentation, several other studies in the
field employed CNN-based models for plaque segmentation. These studies usually use
a two-stage segmentation framework: a network for plaque region localization followed
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by a segmentation network. For example, Olender et al. [88] used a CNN architecture for
arterial tissue classification. The method comprised three steps. First, the area between the
lumen-intima border and the media–adventitia border were identified. This region was
then divided into pathological and non-pathological tissue. Pathological areas were then
fed into a CNN architecture for plaque-type classification. The experimental results showed
an overall accuracy of 93.5%. Li et al. [89] presented a U-net architecture in a two-stage
pipeline to segment calcified plaque, luminal regions, and media–adventitia. In the first
stage, a U-net architecture segmented the lumen and media–adventitia regions. Then, the
output of this stage was provided to another U-net architecture for the calcified plaque
identification. Using a two-stage U-net prevented the model from recognizing bright
speckle-noise outside the plaque as the calcification. The proposed model was applied on
a dataset containing 713 grayscale IVUS images with three different loss functions. The
proposed method showed high accuracy even when the target vessel was surrounded by
shadow artifacts or side vessels.

2.1.4. Advances of Point of Care Ultrasound (POCUS)

Point of care ultrasound (POCUS) refers to ultrasound examination outside the ultra-
sound lab, such as bedside care, ambulant care, or in emergency departments. POCUS has
been a widely used tool for imaging and therefore reducing the time in clinical decision-
making ([90]), pediatric emergency, medical education. It has achieved even more success
because of the development of portable technologies as well as increased availability of
POCUS machines [91–93]. There are still barriers to widespread use of POCUS because of
the lack of a structured curriculum to educate physicians [94].

Kimura [95] presented a review of literature for point of care cardiac ultrasound tech-
niques for physical examination. It provides insight on the utility of POCUS in detection
of left atrial enlargement, signs of left ventricular systolic dysfunction, lung congestion,
and elevated central venous pressures which are missed in the routine cardiac exami-
nation. It also focused on the utility of POCUS as a standard physical examination in
cardiovascular medicine for augmenting cardiac physical examination and improving
bedside diagnosis. These devices play a very important role in screening, complementing
the abilities of physicians for performing cardiac auscultation [96]. The importance of
handheld echocardiography has been studied extensively and it was shown that pocket
size echocardiography (PSE) combined with other tests had a significant impact on the
cardiology examination helping in finding the proper diagnosis [97]. Additionally, the
benefits of the devices can be increased if proper training of personnel is done so that they
can use these devices correctly, and with ease. Fox et al. [98] studied the impact of stu-
dent volunteers with minimal training on the screening of Hypertrophic Cardiomyopathy
(HCM) which is a life-threatening condition. The number of participants involved were
2332, and it was found that the volunteers were able to successfully screen for HCM with a
sensitivity of 100%.

Kalagara et al. [99] in their review discussed the utility of POCUS for various clinical
tasks such as in the operating room (OR), preoperative clinic, intensive care unit (ICU)
and concluded that it is a valuable diagnostic bedside tool. They also discussed the
affordability of the ultrasound systems, POCUS related education as well as the benefits of
the POCUS in the clinical side. Gaspari et al. [100] performed a study based on 20 hospitals
(793 patients) including patients from Advanced Cardiac Life Support (ACLS). Ultrasound
was performed before and after the ACLS and it was found that the POCUS of the cardiac
activity was the most important variable for deciding survival to hospital admission,
survival to hospital discharge and return of spontaneous circulation. There have been
many efforts to discuss these approaches and the common limitations of these techniques.
Since these approaches are becoming quite popular the need to educate the practitioners
for acquiring high-quality images, and interpreting, is becoming increasingly urgent [101].

The use of DL-based methods for POCUS imaging is a rapidly developing field. A re-
view of the popular and most recent architectures was done by Blaivas and Blaivas [102]
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using AlexNet, VGG-16, VGG-19, ResNet50, DenseNet201, and Inception-v4. They used
a public dataset with 750,018 individual ultrasound images of five different types and
showed that the classification accuracy varied from 96% to 85.6% for the various models,
with VGG-16 giving the best performance while the DenseNet201 performed the worst for
classification. Another work by Blaivas et al. [103] proposed a LSTM network for inferior
vena cava (IVC) POCUS videos in patients undergoing the intravenous fluid resuscitation
and use 211 videos and achieved the receiver operating characteristic curve of 0.70 (95%
confidence interval [CI], 0.43–1.00) for predicting the fluid responsiveness. Generative
Adversarial Networks (GANS) have also gained popularity for generating more data as
well as applicable in the cases where the paired input/output pairs are not easily avail-
able for training the models. Using the idea, Khan et al. [104] proposed a CycleGAN for
improving the contrast and resolution of POCUS images for images acquired in vivo as
well as phantoms. Thus, recently DL-based models have gained a lot of importance in the
advanced development of POCUS-based imaging.

Another research area where DL is making significant progress is in improving the
quality of image acquisition using POCUS [105]. Blaivas et al. [106] developed a DL-
based model for image quality assurance for automatic image classification. They used
a large dataset of 121,000 images extracted from US sequences and had an accuracy of
98%. Cheema et al. [107] highlighted the importance of DL-based models trained on highly
skilled cardiac sonographers to train novice users to acquire high-quality images which can
be easily extended to POCUS systems. Shokoohi et al. [105] further emphasized on using
DL-based models for removing the background noise, which can help in training newly
trained sonographers by focusing them on finding specific features and hence enhancing
the image quality. Thus, DL-based models are also helpful in acquiring good quality images
in POCUS-based systems.

In summary, we have outlined all the aforementioned applications of major DL-based
models in Table 1.

Table 1. Popular DL models used for various cardiac ultrasound applications.

Application Popular Deep Learning Models

Cardiac viewpoint classification Custom architecture based on VGG, ResNet, DenseNet [50];
Custom architecture based on CNNs [49]; Custom architecture
fusing spatial and temporal information using CNNs [48]

LV segmentation U-net-based architectures [59,60,62,63,71]; CNN [61]; Deep
belief network (DBN) [55,68–70,74]; U-net combined with
RNNs [64,67,75]; U-net with TL-net [72,77]

IVUS image segmentation U-net-based architectures [80,81,83,87,89], Autoencoder [82],
CNN [88]

Point of care ultrasound (POCUS) AlexNet, VGG-16, VGG-19, ResNet50, DenseNet201 [102];
LSTM [103]; CycleGAN [104];

3. PA Imaging and DL Techniques in Cardiology
3.1. The Development of PA Imaging Techniques in Cardiology

The detection of the vulnerable plaque is crucial to guide cardiovascular interventions
and thus prevent the occurrences of the acute cardiac events. The vulnerability of the
plaques is highly related to their compositions. Specifically, the typical composition of the
vulnerable plaques can be concluded as the presence of lipid, calcification, intraplaque
hemorrhage and macrophages [108,109]. All these typical components in vulnerable
plaques can be well visualized by PA imaging, making PA imaging a very powerful
tool to characterize vulnerable plaques. Over recent years, PA imaging for vulnerable
plaque detection and characterization has become a massive research topic with a lot of
ongoing efforts.
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In general, there are two typical approaches in PA imaging of vulnerable plaques:
endoscopic catheter-based PA imaging, i.e., intravascular PA (IVPA) imaging, and non-
invasive PA imaging. In the following section, the major technological developments of
both PA imaging approaches are reviewed.

3.2. Intravascular PA Imaging of Vulnerable Atherosclerotic Plaques
3.2.1. IVPA Imaging Catheter Development

As an essential part of the general IVPA imaging system, an IVPA catheter mainly
consists of a light delivery part, and an ultrasound transducer. A good IVPA catheter
requires small dimensions, high imaging sensitivity, and sufficient mechanical support
while advancing in the coronary arteries. It is one of the key challenges for the application
of IVPA imaging to detect vulnerable plaques. So far, there are two typical designs of
a IVPA catheter based on the configuration of light delivery and an US transducer: a
co-linear design and an offset design, which are shown in Figure 5. The co-linear design
offers the most overlap between the optical and acoustic beams, resulting in a higher
imaging sensitivity; however, miniaturization is difficult. Cao. et al. developed the first
co-linear IVPA catheter with the outer diameter of 1.6 mm [110]. The second catheter
design, with an offset (longitudinally or laterally) between the optical and acoustic beams,
is preferred in practice due to its great potential of miniaturization. However, the offset
in the catheter can lead to signal loss when the imaging targets are close by and far away
from the transducer [111,112]. The smallest IVPA catheter reported so far has a diameter of
0.09 mm [113].

Figure 5. Schematic of different IVPA catheter designs. (a) Schematic of a collinear IVPA catheter
design. (b) Schematic of an IVPA catheter with a longitudinal offset between optical and acoustic
beams (red optical beam and green ultrasound beam). Reprinted from [114] with permission.

3.2.2. IVPA Imaging of Diverse Compositions in Vulnerable Plaques

As mentioned before, compositions such as lipid accumulations, intraplaque hem-
orrhages, and inflammation can be imaged and are used as effective indicators to detect
vulnerable plaques with IVPA imaging. Among these compositions, lipid is the most
commonly used PA biomarker and has been studied intensively [9,110,115–121]. It is well
established that the best wavelengths for imaging lipid-rich plaque is around 1200 nm and
1700 nm [116]. It is even possible to image lipid in the presence of blood [122]. Figure 6
shows an IVPA image of a lipid-rich plaque in a rabbit aorta through blood.

Moreover, multispectral PA imaging has been proposed to characterize different lipid
types in a plaque as well as the surrounding peri-adventitial adipose tissue with only
two wavelengths (Figure 7) [123]. A further characterization of the lipid’s PA spectral
signatures in human plaques (and )corresponding molecular validation has been achieved
recently based on a novel PA slide microscope (µsPA) system [124]. As lipids are involved
in all stages of the development of plaques, a comprehensive characterization of lipids can
potentially guide the development of PA-based atherosclerosis disease staging [124].

As another key component involved in the pathology of atherosclerosis, macrophages
are present at a relatively early stage in atherosclerosis due to the initial inflammation in
the arterial endothelial layer. Macrophages can accelerate the progression of atherosclerosis
by the release of matrix metalloproteinases (MMPs), which weaken the fibrous cap and
make the plaques more prone to rupture. Therefore, the visualization of macrophages or
MMPs can detect vulnerable atherosclerotic plaques at an early stage. However, due to
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their insufficient endogenous PA contrast, it requires special PA contrast agents to visualize
macrophages and MMPs.

Figure 6. (a) IVUS, (b) IVPA, and (c) combined IVUS/IVPA images of an atherosclerotic rabbit aorta
acquired in the presence of blood. (d) Combined IVUS/IVPA image of the same cross section of the
aorta imaged in saline. IVUS and IVPA images are displayed at 35 dB and 20 dB, respectively. The
scale bar is 1 mm. (e) H&E and (f) Oil red O stain of the tissue slice adjacent to the imaged tissue
cross section indicate that the aorta has lipid-rich plaque. (Reprint from [122] with permission).

Figure 7. Ex vivo lipid differentiation result of an atherosclerotic human coronary artery. (a) His-
tology: Oil Red O staining of the IVPA/IVUS imaging cross section (lipids are in red). (b) Lipid
differentiation map overlaid on a co-registered US image of the coronary artery. The lipids in plaques
are in yellow whereas lipids in the peri-adventitial tissue are in red. The dynamic range of the US
image is 45 dB. Reprint from [123] with permission.
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Contrast agents such as gold nanoparticles and organic dyes such as ICG or ICG-
based PA nanoprobes were introduced to selectively label the macrophages and MMPs,
and enhance the PA visualization [125–128]. Later, Weidenfeld et al. introduced a novel
homogentisic acid-derived pigment (HDP) as a biocompatible label to “paint macrophages
black”, which can be easily visualized by PA imaging [129]. The PA image of such HDP-
labeled macrophages is shown in Figure 8. This HDP cell label has the great potential for in
vivo applications and will provide new insights into the behavior of macrophages during
different pathophysiological states of atherosclerosis.

Figure 8. HDP facilitates single-cell visualization with raster-scan optoacoustic mesoscopy (RSOM).
Signals of HDP-laden primary macrophages are separated from hemoglobin in blood-agar phantoms
and depicted in a volumetric scatter plot. Subcutaneous injection in the dorsal area of a FoxN1 nude
mouse of the cells measured in (a). A catheter was used to determine the injection area and scans
were recorded pre- (b,d) and post (c,e) cell injection showing the top view and a depth profile. The
opening of the needle is seen on the right side of the images from which the macrophages emerge
post injection as a dense line-up (arrows), 0.7–1 mm below the skin surface (–). Blood vessels are
faintly detected at 630 nm and indicated by *. Scale bars are 500 µm in x, y, and z. Inset in panel
(c) shows labeled macrophages in histological tissue sections with Schmorl’s staining. The outtake
corresponds to an area near the needle tip. Scale bar is 50 µm. Reprinted from [129] with permission.

3.2.3. Towards In Vivo IVPA Imaging of Vulnerable Atherosclerotic Plaques

To move towards in vivo clinical applications, ongoing efforts to develop a real-time
IVPA imaging system and to initialize in vivo PA imaging in animal models were made.
Wu et al. developed a real-time IVPA/US imaging system capable of IVPA imaging of lipid-
rich plaques in a swine model at 20 frames per second in vivo [9]. Later, Xie et al. developed
a new IVPA imaging system that can reach an imaging speed as fast as 100 frames per
second and can imaging without blood flush [130]. All these results showcase the great
potential of clinical translation of IVPA imaging to detect vulnerable plaques and therefore
guide PCI.

3.3. Non-Invasive PA Imaging for Cardiovascular Applications

As PA imaging is very sensitive to different types of hemoglobin, it can be a non-
invasive and cost-effective imaging method for the detection of vulnerable plaques with
intraplaque hemorrhages and for extra cardiovascular hemodynamic measurement (such
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as blood flow and oxygen saturation, etc.) to facilitate accurate diagnosis and prevention
of CVDs.

Arabul et al. presented the first PA images of intraplaque hemorrhages from human
carotid plaques based on a diode-based handheld PA imaging system with limited optical
wavelengths (one or two) [131]. Recently, with the updated version of the PA imaging
system, Muller et al. reported the first in vivo clinical results, i.e., intra-operative PA
imaging of intraplaque hemorrhages in carotid artery plaques [132]. This unique intra-
operative study can facilitate a more comprehensive understanding of the properties of the
PA signals generated from intraplaque hemorrhages. In this study, strong PA response were
related to the presence of the intraplaque hemorrhages (Figure 9), and a diffused signal
pattern was observed in the hemorrhage lesion, probably caused by the heterogeneity in
the composition of the plaque [132].

Figure 9. In vivo PA and US image of a human carotid artery with intraplaque hemorrhage; (A) US
image; (B) overlaid PA/US image (808 nm, dynamic range 23 dB); (C) photo of the carotid plaque
during the CEA surgery; (D) Masson’s trichrome staining of the artery. The area indicated in green is
a lipid core filled with a large hemorrhage. The highlighted boxes show two regions of hemorrhages
found in the plaque. Reprinted from [132] with permission.

Another advanced and handheld-based multispectral optoacoustic tomography sys-
tem (MSOT) was developed and implemented by the research group from the Technical
University of Munich, Germany. The MSOT system typically uses a single-pulse-per-frame
(SPPF) acquisition scheme to minimize motion artifacts, and it typically operates in the “op-
tical window” of 680–980 nm for a deeper imaging depth for soft biomedical tissues [133].
The MSOT system has been applied in various CVD applications in vivo both in animal
and in human [134–139]. Figure 10 is an example of non-invasive PA imaging of the carotid
artery to estimate the oxygenation in vivo. Please note that the MSOT systems have been
given clinical approval, which may enable more opportunities of (pre)clinical studies for a
wide range of diagnostic imaging applications in general. Specifically, promising results
have been reported recently and demonstrated the great potential of MSOT to visualize
vulnerable plaque in carotid artery in patient [140,141], which may accelerate the clinical
translation of PA imaging in cardiology.
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Figure 10. PA image of the common carotid artery based on the MSOT system. (a) PA image at
800 nm shows increased vascularization of the skin, strap and sternocleidomastoid muscles, allowing
for a clear identification of the common carotid artery and internal jugular vein. (b) US image
revealing the common carotid artery and jugular vein as echo-free structures. (c) Map of the unmixed
distribution of oxygenated hemoglobin (HbO2). (d) The corresponding map of the deoxygenated
hemoglobin (Hb). CCA: common carotid artery; STM: sternocleidomastoid muscle; SM: strap muscle;
IJV: internal jugular vein; L: thyroid lobe. Reprinted from [134] with permission.

Another study by Kang [142,143] introduced a new concept of a non-invasive PA-
based indicator dilution measurement, and developed an advanced method to measure
the cardiac output, which is an important hemodynamic parameter for assessment of
cardiac function, and is especially helpful for monitoring and optimizing the fluid status in
high-risk surgical and critically ill patients.

3.4. PA Imaging of Cardiac Arrhythmia

Atrial fibrillation (AF) is a common and persistent cardiac arrhythmia with high
morbidity and mortality rates [144] and is associated with a high risk of stroke and heart
failure. Currently, catheter-based radiofrequency (RF) ablation to interrupt the aberrant
conduction paths in the heart is an effective treatment of AF. However, many complications
such as the control of the catheter and pulmonary vein reconnection are typically present
during the RF ablation, making it a long-lasting and low success rate procedure (the success
rate is generally 60–80% even including secondary ablations). To overcome the challenges
related to ablation, accurate real-time feedback on the lesion formation during ablation, as
well as post-treatment lesion assessment is necessary.

Multispectral photoacoustic imaging is powerful for tissue characterization, and many
studies have explored the possibility of multispectral photoacoustic imaging to visualize
the underlying structures and lesion gaps during RF ablation [121,145–148], showing very
promising results. Figure 11 is an example of PA -based differentiation between the ablated
and non-ablated regions. It was found that PA spectral differences were clearly observed
between non-ablated and ablated regions, and that these spectral differences can be related
to changes in the hemichrome, methmyoglobin, and protein denaturalization content of
the tissue [146].
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Figure 11. Three-dimensional rendering (A) of TCM volume with clipping plane corresponding to
tissue bisection (B). Matching top- (C) and side-view (D) gross pathology photographs with axes and
FOVs indicated by arrows and boxes, respectively. Reprinted from [147] with permission.

To move towards the clinical application of PA imaging guided RF ablation, Iskander-
Rikz introduced a new design of intracardiac ablation imaging, and explored the possibility
of two wavelength (790 nm and 930 nm) PA imaging to characterize ablation, and suc-
cessfully validated the method ex vivo. The results shown in Figure 12 demonstrated that
the dual wavelength photoacoustics can provide real-time monitoring of intra-atrial RF
ablation procedures in a blood-filled beating heart. Real-time visualization of ablation
lesion formation and lesion gaps was achieved with a modified clinical device consisting
of a custom ablation catheter (modified for illumination) and intracardiac echography
(ICE) for signal acquisition. This setup provides a good solution for the clinical translation
of PA imaging to guide RF ablation. Another study from Li et al. [149] proposed a new
strategy to enhance the internal illumination based on the designed graded-scattering
fiber diffuser, which may be applied to improve the optical illumination for PA imaging of
ablation progression.

Moreover, a new study by Ozsoy et al. [150] recently proposed a sparse PA sensing
(SOS) technique for ultrafast four-dimensional imaging of cardiac mechanical wave prop-
agation. This dedicated system can characterize the cardiac mechanical waves at high
contrast, high spatial resolution (around 115 µm) and sub-millisecond temporal resolution
in murine models, which can further enhance the understanding of the cardiac function
in arrhythmia.

3.5. Application of DL in PA Imaging in Cardiology

Although PA imaging is still a relatively new imaging modality and is at an early
phase along its revolution path, increased attention is devoted to DL techniques in the
PA imaging field, and the relevant studies are booming, especially in the last few years.
However, unlike US imaging, which has been widely applied in clinics in cardiology, PA
imaging is still at the pre-clinical phase so far. Moreover, DL techniques have not been
spread in PA imaging for cardiology as largely as in the case of US imaging. There are
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many recent studies to comprehensively review the applications of DL in PA imaging in
general [151–153]. Here, in this section, we only briefly introduce the DL-based applications
related to PA imaging in cardiology, which can be simply summarized as the application of
DL in PA image reconstruction, PA imaging quantification, and tissue segmentation [151].

Figure 12. Ablation monitoring in a beating heart. (a) 2λPA images before, during and after ablation,
available as Movie 2. (b) I790 equivalents. 2λPA data confirm lesion formation. (c) Photograph of
lesion made. (d) Video endoscopy frame confirming a lesion was made. (e) Sketch of instruments
positions . Round inset: ICE-C and RFPA-C relative to the valve, oriented as in the images in
(a,b). ICE catheter (ICE-C); PA-enabled ablation catheter (RFPA-C). Mitral valve (MV). Cyan arrows
indicate indentation formed by ablation. Reprinted from [146] with permission.

Among the three applications mentioned above, DL-based PA image reconstruction
is the most popular topic [17,18,154–159]. Due to the broad-band nature of PA signal and
non-ideal data acquisition, the conventional PA image reconstruction method, such as
delay and sum, usually results in the degradation of image quality due to information
loss and high artifacts and noise. DL-based image reconstruction, which can be mainly
summarized into the learning-based post-processing reconstruction and the model-based
learning reconstruction methods, can reduce the artifacts and background noise in PA
images and then improve overall imaging quality [157]. A recent study from Lan et al. [159]
demonstrated the application of DL in PA imaging reconstruction for in vivo imaging of
the human palm with great success.

Moreover, DL techniques also play an essential role in PA quantification imaging.
For instance, DL can help to estimate oxygenation saturation, which is an important
physiological parameter to assess metabolic function in clinics. Cai et al. [160] employed a
ResU-net (a U-net with residual blocks) on 2D multi-wavelength PA images to estimate the
oxygen saturation and the absolute concentration of indocyanine green. The experimental
results demonstrated the high accuracy of the proposed method and its robustness to the
optical property variations. Moreover, DL techniques have also been applied for automated
segmentation of vascular structure in PA images [161,162]. Chlis et al. [161] used a sparse
U-net model to identify the most important illumination wavelengths while segmenting
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the blood vessels (arteries and veins) in clinical multispectral PA (MSOT) images. The
experimental results on a dataset with 33 images showed a performance comparable with
a standard U-net. More recently, the study from Gröhl et al. [163] has demonstrated the
feasibility of using DL for fully automatic multi-label tissue annotation in multispectral
PA images in humans. The combination of these DL-based vascular segmentation and
oxygen saturation measurements could potentially be useful for assessing cardiac functions
in clinics.

4. Discussion and Future Opportunities

Since the first application of US imaging in cardiology, we have witnessed many
advancements in US imaging, which has been widely used in clinics to diagnose various
CVDs. In recent years, with the introduction of DL techniques, which can provide good
performance as well as fast and real-time solution, learning-based advanced US imaging
has gained considerable attention for different cardiology applications. In this paper, we
reviewed some typical work of these learning-based US image analysis methods ranging
from selecting a view, performing the required segmentation, and finally, the application
in point of care ultrasound imaging. We discussed some of the most effective DL-based
segmentation methods on US images. Current learning-based US segmentation methods
are mainly based on CNN models. Some research studies focused on improving the feature
learning capabilities of CNNs by optimizing the network architecture and including shape
constraint-based loss. Others used a hybrid framework by combining CNNs with other
DL or traditional machine learning methods to include additional information, such as
temporal dependency between consecutive US slices, to further enhance US cardiac image
segmentation performance. However, based on current results from the literature, more
efforts are required to translate these segmentation methods to clinical practice. DL-
based segmentation methods require large and high-quality annotated datasets to perform
and generalize well. This requirement, however, has been rarely satisfied, especially
in the field of medical imaging, where data collection and annotating are challenging
and expensive procedures. To tackle this problem, data augmentation techniques have
been commonly used. Effective data augmentation, however, needs domain knowledge.
Furthermore, augmented data might not necessarily present all possible variants of clinical
data. Thus, developing task-specific augmentation methods from existing data using
generative models such as GANs and adversarial example generation is crucial and needs
to be more investigated in future research.

Another area where DL-based models are making an impact is POCUS imaging.
POCUS imaging would also be an important trend in future clinical applications due
to its great flexibility. The development of cost-effective and easily integrable hardware
combined with lightweight networks will also benefit POCUS imaging.

Contrary to US imaging, PA imaging is currently still in the research and pre-clinical
phase. However, due to its hybrid nature, PA imaging could be a perfect imaging modality
next to US imaging and can provide complementary information such as tissue compo-
sitions. These features make PA imaging especially useful for the characterization of
vulnerable plaques in cardiology. As reviewed in this paper, research efforts are ongoing
to move PA imaging forward along its clinical translation path. For instance, a Dutch
start-up company has further developed the IVPA techniques for potential eventual use
in patients since 2020. Moreover, various studies have been done using DL to improve
PA image reconstruction and image processing tasks. The application of DL techniques to
improve the PA reconstruction based on the co-registered US information as in the study
proposed by yang et al. [164] would be interesting to explore in the future. Despite a lot of
ongoing efforts, the application of DL on PA data in CVD is not mature enough. The efforts
have been limited to several studies on blood vessel segmentation [161] and estimating
the oxygenation saturation so far. The major challenge that restricts the application of DL
on PA data is the lack of high-quality labeled experimental data. To tackle this issue, most
research studies have mainly focused on using simulated data for training DL models,
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but it leads to a drop in performance when tested on the experimental data due to the
different data distribution used in the training and inference phases. Domain adaptation
methods [165,166] could help in reducing the gap between the distribution of simulated
data and real-PA data.

Recent studies have established that atherosclerotic plaque composition is a crucial
and informative factor for identifying patients at risk of fatal cardiovascular events [3].
IVUS has been recently used for the identification of calcified plaque-type [88]. However,
it is not a suitable imaging modality for the characterization of all plaque components.
In contrast, PA imaging is considered to be a promising modality for identifying plaque
components using multiple wavelengths, and, to this end, and many different PA spectral
unmixing techniques have been developed [167–170]. To further improve the capability
of PA characterization of plaque compositions, more effort should be put in the direction
of application of DL techniques for plaque decomposition in PA images acquired from
human plaque lesions.

In general, the current state-of-the-art DL methods for CVD applications consider
pixel-value information of images to diagnose and assess the disease. However, in practice,
accurate non-imaging data based on the clinical records enable cardiologists to interpret
imaging findings appropriately, leading to more accurate diagnosis, disease assessment,
and decision-making. Thus, the integration of imaging data with clinical records needs to
be more studied in the context of DL.

Another key aspect is that most published studies for DL in cardiovascular US/PA
imaging are in the context of exploratory and preliminary applications. Thus, they suffer
from the lack of validation on the large cohort, multi-center datasets. Therefore, there is no
guarantee of the generalization performance of these studies. To better diagnose CVDs, a
multi-modality imaging method combined with DL techniques would be a good future
option. For instance, the combination of IVUS/IVPA and cardiac US imaging may allow
both a global and local visualization of cardiovascular lesions. However, the registration
between different imaging modalities at different length scales, imaging positions, and
time frames is required, and these challenging image registration problems may be solved
with the help of the data-driven DL methods.
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