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Abstract

Coastal sharks with small body sizes may be among the most productive species of chon-

drichthyans. The Australian sharpnose shark (Rhizoprionodon taylori) is one of the most

productive members of this group based on work in northern and eastern Australia. How-

ever, life history information throughout the remainder of its range is lacking. To address this

knowledge gap, the age, growth and maturity of R. taylori caught in the Gulf of Papua prawn

trawl fishery in Papua New Guinea, were studied. One hundred and eighty six individuals,

comprising 131 females (31–66 cm TL) and 55 males (31–53 cm TL) were aged using verte-

bral analysis and growth was modelled using a multi-model approach. The lack of small indi-

viduals close to the size at birth made fitting of growth curves more difficult, two methods

(fixed length at birth and additional zero aged individuals) accounting for this were trialled.

The von Bertalanffy growth model provided the best fit to the data when used with a fixed

length-at-birth (L0 = 26 cm TL). Males (L1 = 46 cm TL, k = 3.69 yr-1, L50 = 41.7 cm TL and

A50 = 0.5 years) grew at a faster rate and matured at smaller sizes and younger ages than

females (L1 = 58 cm TL, k = 1.98 yr-1, L5o = 47.0 cm TL and A50 = 0.93 years). However,

none of the methods to account for the lack of small individuals fully accounted for this phe-

nomenon, and hence the results remain uncertain. Despite this, the results reaffirm the

rapid growth of this species and suggest that the Gulf of Papua population may grow at a

faster rate than Australian populations. Rhizoprionodon taylori is possibly well placed to

withstand current fishing pressure despite being a common bycatch species in the Gulf of

Papua prawn trawl fishery. However, further research needs to be undertaken to estimate

other key life history parameters to fully assess the population status of this exploited shark

species and its vulnerability to fishing in the Gulf of Papua.

PLOS ONE | https://doi.org/10.1371/journal.pone.0206581 October 31, 2018 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Baje L, Smart JJ, Chin A, White WT,

Simpfendorfer CA (2018) Age, growth and maturity

of the Australian sharpnose shark Rhizoprionodon

taylori from the Gulf of Papua. PLoS ONE 13(10):

e0206581. https://doi.org/10.1371/journal.

pone.0206581

Editor: George Tserpes, Hellenic Centre for Marine

Research, GREECE

Received: January 8, 2018

Accepted: October 16, 2018

Published: October 31, 2018

Copyright: © 2018 Baje et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work was funded by the National

Fisheries Authority of Papua New Guinea, the

Australian Centre for International Agricultural

Research (ACIAR; project FIS/2012/102) and

CSIRO Oceans and Atmosphere. The lead author

was supported by the ACIAR John Allwright

Fellowship and the Schlumberger Foundation.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-6280-1132
https://doi.org/10.1371/journal.pone.0206581
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206581&domain=pdf&date_stamp=2018-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206581&domain=pdf&date_stamp=2018-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206581&domain=pdf&date_stamp=2018-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206581&domain=pdf&date_stamp=2018-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206581&domain=pdf&date_stamp=2018-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206581&domain=pdf&date_stamp=2018-10-31
https://doi.org/10.1371/journal.pone.0206581
https://doi.org/10.1371/journal.pone.0206581
http://creativecommons.org/licenses/by/4.0/


Introduction

A general view on the life history characteristics of sharks assumes slow growth, late maturity,

and a low number of offspring resulting in populations that have low intrinsic rates of popula-

tion growth and are highly vulnerable to overfishing [1, 2]. However, not all shark species

share these characteristics. In particular, small-bodied carcharhinids such as the milk shark

Rhizoprionodon acutus and the sliteye shark Loxodon macrorhinus are characterised by rela-

tively rapid growth and early maturity resulting in higher population turnover rates [3, 4]. Fast

population turnover rates for these species make them potentially more resilient to fishing [5],

although sustainable shark catch is mostly associated with the development of science-based

fisheries management in countries [6].

The Australian sharpnose shark Rhizoprionodon taylori is a small carcharhinid species

known to have one of the fastest growth rates of all shark species [7, 8]. Initial studies suggested

it grows rapidly in the first year of life, on average increasing to 140% of its length-at-birth,

and attains a maximum length of only 67 and 97 cm TL respectively in different locations in

Australia [8, 9]. Maturity is reached after only one year with a litter of 1–10 pups produced

every year following maturity [8, 10]. Rhizoprionodon taylori is also one of the few elasmo-

branch species that can halt embryonic development (diapause), possibly to facilitate increased

litter sizes [10, 11]. Occurring only in southern New Guinea and tropical and sub-tropical

nearshore waters of Australia from Carnarvon in Western Australia to Moreton Bay in south-

ern Queensland, it is a locally abundant species often incidentally caught in trawl and gillnet

fisheries [12, 13].

All known biological information about R. taylori has been established from populations in

Australia [8–10, 14–16]. Recent trawl fisheries data from Papua New Guinea (PNG) confirm

that R. taylori is also frequently caught as bycatch in the Gulf of Papua (GOP) (NFA unpub-

lished data). Prawn trawling has occurred in the area since the late 1960’s and bycatch levels

can comprise up to 85% of the total catch [17]. However, the effect of trawling on the sustain-

ability of bycatch populations cannot be properly assessed without determining species com-

positions and locally relevant biological parameters.

Life history traits can differ for populations in separate localities [18, 19]. The Gulf of Papua

(GOP) is in close proximity to the northern coast of Australia. However, R. taylori has been

observed to maintain residency in embayments and nearshore habitats, travelling short dis-

tances and rarely moving greater than 100 km within 6 months to one year [20]. These limited

movements mean that there may be differences in the life history of this species between the

GOP and other regions. These differences need to be investigated since variations in size at

birth and length-at-maturity could affect fisheries risk assessments, and have already been doc-

umented between different locations in Australia [9, 10, 15].

Age and growth studies provide essential information for wider population analyses

such as stock assessments [21]. Growth parameters for R. taylori were determined by [8]

prior to the development and use of multiple growth models within an information theo-

retic framework, which is now the recommended approach for age and growth studies [5,

22]. This study used the more contemporary multi-model approach to determine growth

and maturity parameters for R. taylori in the GOP. The specific aims were: (1) to deter-

mine the age, growth and maturity of R. taylori; (2) compare life history parameters to

previous work to determine if the use of the multiple model approach substantially

changed the outcomes; and (3) examine spatial variation in life history of this species.

This study also contributes new knowledge from a data poor region that can be used to

inform fisheries management and conservation in PNG.
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Materials and methods

Sample collection

This work is a collaboration with the National Fisheries Authority (NFA), the government

agency responsible for managing commercial fisheries and implementing fisheries research in

PNG. Fishery observers were stationed on board prawn trawlers and collected sharks that were

caught as bycatch and discarded. The sharks collected for this study had already suffered mor-

tality in the process of fishing and no sharks were intentionally sacrificed for the study. All

sampling procedures were allowed by the NFA and in line with James Cook University, Ani-

mal Ethics approval A2310 obtained prior to the commencement of the study. Sampling did

not involve endangered or protected species. No further permits were required by relevant

authorities.

Commercial trawling in the GOP occurs between Parama Island in the West, just south of

the mouth of the Fly River, and the border of the Central and Gulf Provinces in the East (Fig

1). Trawl fishing is permitted all year round throughout the GOP except in a section of the

Gulf between Iokea and Cape Blackwood which is closed to fishing between the 1st of Decem-

ber and the 31st of March, a measure put in place to protect the growth and survival of prawn

recruits [23]. Samples of R. taylori were collected on commercial vessels from June 2014 to

August 2015. Whole samples were kept frozen and brought ashore at the end of each trip for

confirmation of identification and processing. In a laboratory samples were defrosted, total

Fig 1. The Gulf of Papua is situated along the southern coast of Papua New Guinea. The insert shows the distribution of Rhizoprionodon taylori in Australia.

https://doi.org/10.1371/journal.pone.0206581.g001
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length (TL) measured, and sex recorded. For each individual, maturity was also determined

using an index modified from [24]. Reproductive organs were examined and categorised

according to the developmental stage of the ovaries and uteri in females, and claspers in males.

Females were categorised into one of five stages and males into one of three stages (Table 1). A

section of the vertebral column from beneath the first dorsal fin was retained and stored frozen

for subsequent age determination [5, 25].

Vertebrae preparation

Vertebrae processing and aging followed protocols described by [26]. Frozen vertebrae were

thawed and any excess tissue was removed using a scalpel. Vertebrae were separated into individ-

ual centra and immersed in 4% sodium hypochlorite solution for 3–5 minutes to clean remaining

soft tissue from the small sized vertebrae. The centra were then rinsed using water and dried in an

oven at 60˚C for 24 hours. A single centrum was selected from each individual and mounted on a

microscope slide using Crystal bond adhesive (SPI supplies, Pennsylvania, USA). To achieve the

desired thickness of< 400 μm the vertebrae was sanded towards the centre of the centrum using

400–1200 grit wet and dry abrasive paper. After one side was complete the centrum was

remounted and sanded again on the other side until the desired thickness was achieved [8].

Age determination

To estimate the age of each individual, mounted sections of vertebrae were observed using a

dissecting microscope. Growth increments appeared as a pair of alternating wide opaque band

and a narrow translucent band, referred to as a band pair [5, 26]. The birthmark was identified

where there was an obvious change in angle along the corpus calcareum. Subsequent band

pairs that spanned from one side of the corpus calcareum to the other side were interpreted to

represent annual growth [5, 25]. The age of each individual was estimated as the number of

band pairs present after the birthmark. The annual deposition of bands for this species has

been validated using marginal increment analysis and size frequency data by [8].

Precision and bias

Visual estimation of age from vertebrae is an approach which may include some level of bias

[25]. To minimise bias two readers estimated ages separately. The first reader conducted an

Table 1. The maturity of male and female samples were determined by the state of the uteri and ovaries in

females, and claspers in males. Maturity stages were assigned a binary category for statistical analysis.

Female

stage

Description Binary

category

1 Immature Uteri very thin, ovaries small and without yolked eggs. 0

2 Maturing Uteri slightly becoming enlarged at one end, ovaries becoming larger

and small yolked eggs developing.

0

3 Mature Uteri large along entire length, ovaries containing some large yolked

eggs.

1

4 Pregnant Uteri containing embryos or large eggs. 1

5 Post-partum Uteri very large but without embryos. 1

Male stage

NC Not Calcified Clasper very short not extending past the pelvic fin tip. 0

PC Partially

Calcified

Claspers longer, extending past the pelvic fin tip, not entirely hard,

still flexible.

0

FC Fully Calcified Claspers long, hard along almost the entire length. 1

https://doi.org/10.1371/journal.pone.0206581.t001
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initial read of all vertebrae followed by a second experienced reader. Both readers had no prior

knowledge of the sex or size of individuals. Final ages were the result of a consensus process

between the readers–where counts were different readers examined the section and agreed on

a final age. Where differences could not be resolved, those centra were removed from the anal-

yses. To assess the precision of counts the average percent error (APE) [27], Chang’s coeffi-

cient of variation (CV) [28] and percent agreement (PA ± 1 year) [25] were used. Bowker’s test

of symmetry was used to estimate bias between readers [29]. Analyses were carried out using

‘FSA’ package version 0.8.11 in the R program environment version 3.2.2 [30].

Partial ages

For a species that reproduces seasonally, and the period of parturition is known, it is possible

to assign partial ages and therefore improve age estimation [31]. The pupping season for R.

taylori was observed in January in Queensland [8]. In this study the largest embryo (22 cm TL)

was caught in the month of December, confirming a similar timing in the GOP. Partial ages

were calculated by choosing a birth date of 15th of January and determining the total number

of days between this date and the date of capture which was then divided by the number of

days in a year. This value was added to the number of full annual band pairs for each individual

to give the final age. For example, samples aged at 1 year caught on the 17th of June and 30th

of August, respectively, were given partial ages of 1.39 and 1.62 years.

Growth model fitting

The growth of R. taylori was modelled using a multi-model approach. This method incorpo-

rated the Akaike Information Criterion (AIC) [32] which selected the best model fit based on

the lowest AIC value [33]. Preference for the use of multiple growth models over an a priori
approach, using only the von Bertalanffy growth model (VBGM) is standard methodology in

elasmobranch growth literature [22]. The multi-model approach is considered to provide bet-

ter growth estimates as it avoids model mis-specification and biases compared to the use of a

single model [22, 26, 34]. The lack of small juveniles in the sample, and their likely very rapid

growth required a variety of approaches to determine the most suitable growth parameters.

Three candidate models were used: VBGM, logistic model, and Gompertz model (Table 2).

However, because of the limited data from very young individuals three approaches to fitting

the models was used: (1) standard three-parameter growth models, (2) versions of the growth

models with a fixed length-at-birth (which ensured that models accounted for the rapid early

growth; two-parameter version) [35], and (3) three-parameter models with four hypothetical

aged zero individuals (L0 = 26 cm TL) added to the sample in order to provide a reference

point for the model given that aged zero individuals were absent from the sample [31]. Sepa-

rate growth models were constructed for males, females, and combined sexes.

The three-parameter models estimated length-at-birth (L0), asymptotic length (L1) and the

different growth coefficients for each respective model; k indicates the relative growth rate of

the VBGM model while g(log) and g(gom) represent alternative sigmoidal growth of the Gom-

pertz and logistic models [36]. The two-parameter models incorporated a fixed known value

Table 2. Equations of the three growth functions used in the multi model approach.

Model Growth function

von Bertalanffy (t) = L0 + (L1 − L0)(1 − e(−kt))

Logistic L tð Þ ¼ L1L0ðgðlogÞ tÞ

L1þðL0 e
ðgðlogÞ t� 1Þ

Þ

Gompertz LðtÞ ¼ L1 eð� L0 e
ð� gðgomÞ tÞ

Þ

https://doi.org/10.1371/journal.pone.0206581.t002
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for length-at-birth and thus the models only estimated the asymptotic length and the growth

coefficients. Umbilical scars were not recorded in this study which meant that a length-at-

birth for R. taylori in the GOP was not identified, but could be estimated using other data

available from the sample as well as published information. In this study the smallest free

swimming individuals were 31 cm (TL) and largest embryos were 22 cm (TL) observed in

December (a month prior to pupping). The literature estimates of length-at-birth are 25–30

cm [15] from northern Australia and 22–26 cm in north eastern Australia [8]. A possible esti-

mate for the length-at-birth would therefore be 22–30 cm, however in the GOP R. taylori are

still embryos at 22 cm and are possibly born at a larger size. The midpoint between 22 and 30

cm (26 cm) was chosen because this value was within the length-at-birth range suggested by

both previous studies and was biologically plausible given embryo sizes in the GOP. Growth

models were fit using the ‘nls’ function, multi-model analysis was conducted using the

‘MuMIn’ package version 1.15.6 [37] and bootstrapped confidence intervals were produced

using the ‘nlstools’ package version 1.0–2 [38] in the R program environment version 3.2.2

[30].

As the sample size was less than 200, the AICC, a size adjusted bias correction, was used

[39]:

AICC ¼ AIC þ
2kðkþ 1Þ

n � k � 1

where AIC = nlog(σ2) + 2k, k is the total number of parameters + 1 for variance σ2 and n is the

sample size. The model that has the lowest AICC value (AICmin) was chosen as the best fit for

the data. The AIC difference (Δ) was calculated for each model (i = 1–3) and used to rank the

remaining models as follows:

Di ¼ AICCi � AICmin

Models were ranked according to the value of Δ. Values from 0–2 were considered to have

the strongest support, less support was given to values between 2–10 and the least support for

Δ values > 10 [40]. The AIC weights were calculated by the expression:

wi ¼
eð�

Di
2 Þ

ð
P3

j¼1
eð

Di
2 ÞÞ

To test if there were differences in the growth curves for males and females, a likelihood

ratio test was carried out [41]. This was conducted on the model with the best fit based on the

AICC results for the sexes combined. The method used to carry out the likelihood ratio test

was described by [42] and incorporated into the R program environment version 3.2.2 [30] for

this analysis.

Maturity

The maturity stage data was converted to a binary maturity category (immature = 0 or

mature = 1) for statistical analyses (Table 1). The length-at-maturity was estimated for both

males and females using logistic regression [24]:

PðlÞ ¼ Pmax 1þ e
� lnð19Þ

l� l50
l95� l50

� � !� 1

where P (l) is the proportion mature at TL, l and Pmax is the maximum proportion of mature
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individuals. The lengths of which 50 and 95% of the population are mature (l50 and l95) were

estimated using a generalised linear model (GLM) with a binomial error structure and a logit-

link function using the ‘psyphy’ package version 0.1–9 [43] and the ‘FSA’ package version

0.0.11 [44] in the R program environment version 3.2.2 [30]. Age-at-maturity was determined

by substituting length with age. A50 and A95 were the ages at which 50 and 95% of the popula-

tion reached maturity.

Results

Age determination

In total 186 individuals were collected: 131 females and 55 males. Males ranged in size from

31–53 cm (TL) and females from 31–66 cm (TL). The majority of sharks were aged between 0

and 1 years (i.e. birthmark was present but no fully formed 1st band pair) (Fig 2). Final partial

ages ranged from 0.2 to 4.6 years. The oldest female was 64 cm (TL) and aged at 4.6 years. The

oldest male was 51 cm (TL) and aged at 3.6 years.

The measures of variability around the determination of ages were high compared to other

elasmobranch aging studies [3, 45, 46]. The Average Percent Error (APE), Chang’s CV and

PA ± 1 year were 29.1%, 42.4% and 62.4%, respectively. Higher variability will be experienced

when aging short lived species as small differences in band pair counts can produce inflated

Fig 2. Frequency histogram of samples for each age class.

https://doi.org/10.1371/journal.pone.0206581.g002

Biology of the Australian sharpnose shark Rhizoprionodon taylori from the Gulf of Papua

PLOS ONE | https://doi.org/10.1371/journal.pone.0206581 October 31, 2018 7 / 17

https://doi.org/10.1371/journal.pone.0206581.g002
https://doi.org/10.1371/journal.pone.0206581


error estimates in comparison to longer lived species [8]. Bowker’s test for symmetry (df = 8,

x2 = 16.4, P = 0.037) indicated some systematic bias between readers. The age bias plot (Fig 3)

showed that this bias was associated with reader 1 estimating younger counts of band pairs at 3

and 4 years relative to reader 2. The use of consensus counts to produce final ages overcame

this ageing bias.

Growth model fitting

Without data from small new born animals three-parameter models were unsuitable as the

projected length-at-birth values were too high and biologically unreasonable for R. taylori (37–

38 cm) (Table 3). The three-parameter models with the four added size at birth individuals

had similar AIC weights for combined and individual sexes (Table 4). All three candidate

models had similar weights in the three-parameter models. Neither of the three-parameter

approaches accurately represented the early growth of R. taylori, over-estimating the size at

birth. Amongst the two-parameter models the VBGM performed best as neither logistic and

Gompertz models had Δ values < 2, although there was some weak support for the Gompertz

model for males (w = 0.24) (Table 5). The two-parameter models projected much higher

growth completion rates (k, g(log), g(gom)) than three-parameter models however, the fixed

Fig 3. Age bias plot showing agreement between two independent readers. The PA ± 1 year was 62.4%, APE was 29.1

and Chang’s coefficient of variation (CV) was 42.4%.

https://doi.org/10.1371/journal.pone.0206581.g003
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length-at-birth value were more realistic. Thus, it is likely that none of the fitting approaches

produced accurate estimates of all three parameters. However, the two-parameter VBGM is

recommended to describe the growth of R. taylori in the GOP (Fig 4), with a growth estimate

(k) of 1.27 for both sexes combined (Table 5). A likelihood ratio test showed significant differ-

ence (df = 3, x2 = 23.3, P = 3.5) in the VBGM fit between males and females which demon-

strated that sexes should be modelled separately. The error estimates for the male VBGM

parameters were much higher than for females, indicating much greater level of uncertainty,

probably because of the smaller sample size.

Maturity

Maturity estimates for male and female R. taylori differed slightly. Females grew larger than

males, and males matured earlier in terms of both length and age (Fig 5). The smallest mature

female was 42 cm (TL) and lengths at maturity L50 and L95 were 47.0 cm (TL) ± 0.68 S.E. and

Table 3. Summary of results from the multi model approach incorporating Akaike’s information Criterion (AIC) using three-parameter versions of models.

Sex Model n AICC Δ W (%) L0(±SE) L1(±SE) k(±SE) g(log)(±SE) g(gom)(±SE) RSE

Combined VB3 186 1129.06 0.53 0.29 37.89±1.27 74.34±12.98 0.25±0.14 4.96

Logistic 186 1128.53 0 0.38 38.17±1.11 66.92±6.0 0.50±0.14 4.96

Gompertz 186 1128.78 0.25 0.33 38.03±1.18 69.65±8.21 0.38±0.14 4.96

Male VB3 55 306.3 0.17 0.32 38.48±1.50 58.89±15.72 0.31±0.37 3.72

Logistic 55 306.13 0 0.35 38.51±0.76 55.71±8.90 0.51±0.20 3.71

Gompertz 55 306.22 0.09 0.33 38.50±1.44 57.00±11.41 0.41±0.37 3.72

Female VB3 131 801.08 0.29 0.31 38.03±1.90 71.08±10.55 0.31±0.17 5.04

Logistic 131 800.8 0 0.36 38.53±1.35 66.30±5.79 0.55±0.15 5.04

Gompertz 131 800.93 0.13 0.33 38.30±1.74 68.17±7.46 0.43±0.17 5.04

n is the sample size, AICC is the small-sample bias adjusted from the Akaike’s Information Criteria, Δ is the difference in AICC values between models, w (%) are the

AICC weights, L0 and L1 are the length-at-birth and asymptotic length in cm respectively, k is the growth completion rate in (year-1) for the VB3, g(log) and g(gom) are

the growth parameters for Logistic and Gompertz functions respectively, SE is the standard error of each growth parameter and RSE is the residual standard error for

the models.

https://doi.org/10.1371/journal.pone.0206581.t003

Table 4. Summary of results from the multi model approach incorporating Akaike’s information Criterion (AIC) using three-parameter versions of models with

four hypothetical aged zero individuals.

Sex Model n AICC Δ W (%) L0(±SE) L1(±SE) k(±SE) g(log)(±SE) g(gom)(±SE) RSE

Combined VB3 190 1166.85 0 0.45 35.12±1.32 63.88±4.03 0.48±0.14 5.15

Logistic 190 1168.21 1.96 0.23 35.98±1.14 61.75±2.87 0.73±0.15 5.16

Gompertz 190 1167.59 0.73 0.32 35.59±1.22 62.65±3.33 0.60±0.14 5.16

Male VB3 57 330.66 0 0.39 34.55±1.87 50.42±2.57 1.01±0.43 4.19

Logistic 57 331.28 0.62 0.28 35.28±0.92 50.41±2.47 1.17±0.25 4.21

Gompertz 57 331.01 0.35 0.33 34.96±1.76 50.44±2.53 1.08±0.44 4.2

Female VB3 133 819.85 0 0.44 34.91±1.96 63.77±3.92 0.53±0.17 5.17

Logistic 133 821.06 1.21 0.24 36.22±1.38 62.27±3.04 0.77±0.15 5.20

Gompertz 133 820.51 0.66 0.32 35.64±1.8 62.92±3.41 0.65±0.18 5.19

n is the sample size, AICC is the small-sample bias adjusted from the Akaike’s Information Criteria, Δ is the difference in AICC values between models, w (%) are the

AICC weights, L0 and L1 are the length-at-birth and asymptotic length in cm respectively, k is the growth completion rate in (year-1) for the VB3, g(log) and g(gom) are

the growth parameters for Logistic and Gompertz functions respectively, SE is the standard error of each growth parameter and RSE is the residual standard error for

the models.

https://doi.org/10.1371/journal.pone.0206581.t004
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53.5 cm TL ± 1.2 S.E. The A50 and A95 were 0.93 years ± 0.1 S.E. and 2.95 years ± 0.4 S.E.,

respectively for females. The smallest mature male was 39 cm (TL). The L50 and L95 for males

were 41.7 cm (TL) ± 0.8 S.E. and 47.2 cm (TL) ± 1.5 S.E while the ages at maturity A50 and A95

were 0.5 years ± 0.2 S.E. and 2.2 years ± 0.6 S.E.

Discussion

The results of this study reaffirm the very rapid growth and maturity of R. taylori in compari-

son to the majority of chondrichthyan species. For sharks, von Bertalanffy growth completion

rates (k)>1, as seen in R. taylori are rare and indicate very rapid growth compared to other

species, most of which reach much larger maximum sizes. For example Isurus oxyrinchus
(k = 0.052 year-1) and Carcharhinus plumbeus (k = 0.040 year-1) [47, 48] both have much lower

growth completion rates and as a result take many years before they reach maturity. Small bod-

ied coastal shark species such as Rhizoprionodon terraenovae (k = 0.5 year-1) and Rhizopriono-
don acutus (k = 0.63 year-1 for females, k = 0.94 year-1 for males) [4, 49] generally exhibit more

rapid growth. Rhizoprionodon taylori has the fastest known growth completion rate for a shark

species gaining more than 100% of its body size in the first year of life [8].

The growth completion rate of female R. taylori from the two-parameter model fitting

(k = 1.165 year-1) in the GOP is similar to that previously found in Australia (k = 1.013) [8].

The elevated growth completion rate (k = 3.69 y-1) for males predicted by the model had a

high level of error and so remains to be resolved by further research. The two-parameter

VBGM produced reduced L1 estimates for both males and females. While the three parameter

VBGMs estimated reasonable values for L1 for both sexes, the L0 projected by the model was

well beyond the size at birth previously reported for this species and outside the ranges

expected from the GOP data. The addition of hypothetical zero aged animals provided little

improvement in the value of L0 for R. taylori despite its utility in other species [31]. Given the

linkage between the parameters in growth models the true values of growth completion

parameters lie between those estimated by the two and three parameter models. Based on the

biological implausibility of size at birth projected by the three-parameter VBGM it cannot be

considered to model the growth of R. taylori in the GOP. Similarly the two-parameter VBGM

has its drawbacks however does provide growth estimates that are within reason particularly

for females, but further investigation is warranted given the large confidence intervals around

Table 5. Summary of results from the multi model approach incorporating Akaike’s information Criterion (AIC) using two parameter versions of growth models

with a fixed length-at-birth for Rhizopriondon taylori from the Gulf of Papua.

Sex Model n AICC Δ W (%) L1(±SE) k(±SE) g(log)(±SE) g(gom)(±SE) RSE

Combined VB2 186 1193.71 0 0.99 55.95±0.95 1.27±0.11 5.54

Logistic 186 1213.08 19.38 0 54.41±0.75 2.12±0.14 5.83

Gompertz 186 1203.61 9.9 0.01 55.07±0.82 1.67±0.13 5.68

Male VB2 55 336.13 0 0.64 46.11±0.9 3.69±0.68 4.44

Logistic 55 339.47 3.34 0.12 45.08±0.77 6.73±1.23 4.57

Gompertz 55 338.1 1.97 0.24 45.52±0.82 5.04±0.92 4.52

Female VB2 131 830.37 0 0.96 57.78±1.12 1.17±0.12 5.40

Logistic 131 842.88 12.52 0.00 56.08±0.84 1.98±0.15 5.66

Gompertz 131 836.6 6.23 0.04 56.8±0.94 1.55±0.13 5.53

n is the sample size, AICC is the small-sample bias adjusted from the Akaike’s Information Criteria, Δ is the difference in AICC values between models, w (%) are the

AICC weights, L1 is the asymptotic length in cm, k is the growth completion rate in (year-1) for the VB2, g(log) and g(gom) are the growth parameters for logistic and

Gompertz functions respectively, SE is the standard error of each growth parameter and RSE is the residual standard error for the models.

https://doi.org/10.1371/journal.pone.0206581.t005
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k for males and the large differences between males and females. Factors that may have influ-

enced this outcome are; methodological differences between this study and [8] who fitted

growth curves by eye, the relatively small number of males in the sample and the model being

constrained by fixing the length-at-birth. Fixing models by selecting a single length-at-birth

value has been discouraged because of variations in the actual birth size [50].

Two-parameter models are recommended under stringent conditions where: there is lim-

ited data for smaller juveniles, low sample sizes, and where the length-at-birth cannot be esti-

mated from the study population but can be deduced from a representative population in the

same geographic region [34]. The lack of data from younger R. taylori close to the length-at-

birth posed a problem that is usually solved by back calculation [31]. However, this could not

be done because much of the growth of R. taylori occurs prior to the first year of life and there

are no growth bands deposited during this period that can be used to track their growth. In

addition, although the AIC values indicated that the three-parameter models provided a better

fit the projected length-at-birth values that were not biologically realistic. For these reasons,

the use of two-parameter models in this study was considered to provide the best way to ensure

that biologically plausible parameters were produced.

Fig 4. Two (VB2) and three parameter (VB3) length-at-age curves for female and male Rhizoprionodon taylori from the Gulf of Papua fitted

with 95% bootstrapped confidence intervals.

https://doi.org/10.1371/journal.pone.0206581.g004
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The rapid growth of juvenile R. taylori is relatively unique and alternative methods to

improve model fitting could be explored beyond the scope of this study. The information theo-

retic approach has a limited capacity to include variations in individual growth since only a

single value of L0 was used. Bayesian modelling on the other hand is less sensitive to missing

data and can account for variation in individual growth [51, 52]. Bayesian frameworks have

been used to set informative priors of L0 rather than fixing a specific value [51, 53]. Alterna-

tively, since early growth of R. taylori is somewhat linear but levels off after maturity a biphasic

Lester model could be suitable as a surrogate approach to approximate growth parameters in

the different stages of growth [54].

The maturity estimates for R. taylori in the GOP showed that males matured within 6

months of birth while females reached maturity as they approached 12 months of age. The

only other age-at-maturity estimates for R. taylori were observed by [8] and although the

female age-at-maturity observed in the GOP corresponds to this study, the males in the GOP

appear to reach maturity within half the time noted in Queensland. Length-at-maturity esti-

mates for the GOP showed that males also matured at smaller sizes then females. The length at

which both 50% of males and females in the GOP reached maturity resembled data from north

and western Australia recorded by [15] which were smaller than that observed by [8] and [9].

These findings highlight latitudinal variation for this species suggesting length-at-maturity

increases with higher latitudes. The underlying reasons for latitudinal variation in life history

traits have been attributed to differences in water temperature [18, 55].

It is important to correctly determine age in sharks as errors can lead to inaccurate projec-

tions of parameters such as age-at-maturity which can have a sizable impact on population

models [49], and stock assessments. Achieving accuracy and precision in vertebral aging relies

Fig 5. Age and length-at-maturity ogives for female and male Rhizoporionodon taylori from the Gulf of Papua.

The large points on the curve represent the length and age at which 50% of population reaches maturity. 95%

bootstrapped confidence intervals are indicated with shaded areas.

https://doi.org/10.1371/journal.pone.0206581.g005
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on the clarity of growth markings and the ability of the readers to identify and differentiate

growth bands. Several studies focused on small shark species have noted difficulties in detect-

ing the correct number of growth bands particularly on the edge of the vertebrae, where bands

are deposited very close to each other and as a consequence maximum age may be underesti-

mated [3, 49]. Furthermore as temperate seasonality may influence the deposition of growth

bands [5], they appear more pronounced in temperate sharks as opposed to tropical sharks

where seasonality is limited. For instance the appearance of check marks in the GOP vertebrae

were not as pronounced as that observed by [8].

Assumptions on annual growth band deposition for R. taylori were made in this study

because validation was not possible due to logistic constraints. The annual periodicity of band

formation for R. taylori in northern Queensland was verified by [8] based on marginal incre-

ment analysis and length frequency data. This assumption has strong support given the geo-

graphic proximity of this study, and annual band formation being the typical pattern observed

in carcharhinid sharks [56, 57].

Partial ages were calculated to improve the estimation of age and overall growth model pro-

jections. This method is suited to sharks with seasonal patterns of reproduction where mating

and parturition occur at specific times of the year, rather than asynchronous species. Rhizo-
prionodon taylori undergoes a seven month period of diapause where embryonic development

at the blastodermic disc stage is suspended [10]. Regardless of this, the reproductive cycle of R.

taylori appears to be seasonal as mating occurs only once a year from late January to early Feb-

ruary [10]. The fertilised eggs then enter a state of diapause until September, after which active

growth of the embryos recommences until parturition in January [10, 11].

The rapid growth and early onset of maturity in small-bodied sharks has been hypothesised

to be a survival strategy to counter high levels of predation experienced by a species [58]. Small

bodied sharks are an important intermediate link in the food chain as they are often preyed

upon by larger predators [59]. A study on R. acutus by [4] also noted that high natural mortal-

ity experienced by a species may be balanced by early maturity. Certainly in the GOP R. taylori
may experience high natural mortality as their small size and slower swimming capacity would

render them a common prey for larger predators [58]. Furthermore, the high level of bycatch

from the Gulf of Papua trawl fishery [17] places some level of fishing mortality on the R. taylori
population. High levels of natural and fishing mortality may account for their very young age-

at-maturity.

Commercial trawling has taken place in the GOP for over forty years. At the onset of this

fishery, as many as 30 vessels were licensed. The total number of vessels and fishing effort has

fluctuated over the years peaking at 95 000 trawl hours in 1989 before decreasing when effort

control measures were introduced [60]. Currently only six vessels are actively trawling in the

GOP. Rapid growth and early maturity are biological characteristics associated with the ability

of a species to withstand fishing pressure [2], therefore it is probable that R. taylori in the GOP

are better placed to withstand current fishing levels than other shark species.

The foundations of managing fish stocks and attaining sustainable fisheries rely upon accu-

rate biological data of fish populations [25, 61]. Until recently, information for sharks in PNG

has been scarce [33, 62–64]. This study is one of the first attempts to determine biological

parameters of a small-bodied, commonly caught carcharhinid species in PNG. However, fur-

ther work is needed to provide critical biological data for population assessments as well as to

understand the ecological functions of shark species in order to fine tune management and

conservation measures to suit the PNG context. Advancement in elasmobranch research in

PNG will also address important data gaps for the Indo-Australasian region which supports

the highest diversity of sharks globally [65].

Biology of the Australian sharpnose shark Rhizoprionodon taylori from the Gulf of Papua

PLOS ONE | https://doi.org/10.1371/journal.pone.0206581 October 31, 2018 13 / 17

https://doi.org/10.1371/journal.pone.0206581


Acknowledgments

This research was funded by National Fisheries Authority of Papua New Guinea, the Austra-

lian Centre for International Agricultural Research (ACIAR; project FIS/2012/102) and

CSIRO Oceans & Atmosphere. The authors would like to thank Drs Chris Barlow, Ann Flem-

ing and Jes Sammut for their support. In addition, the authors also thank Ludwig Kumoru,

Leban Gisawa, Luanah Yaman, Brian Kumasi, Thomas Usu and Benthly Sabub of the NFA.

Special thanks is also accorded to Fishery Observers, Baera Nawia, Siwen Ohuesaho, Ronald

Wala, Sarea Tova and Ian Tony; and to Dr Ralph Mana at the University of PNG for providing

laboratory space for processing specimens. The lead author was funded by the John Allwright

Fellowship Award administered by ACIAR and the Schlumberger Foundation Faculty for the

Fellowship program.

Author Contributions

Conceptualization: William T. White, Colin A. Simpfendorfer.

Data curation: Leontine Baje, Jonathan J. Smart, William T. White.

Formal analysis: Leontine Baje.

Funding acquisition: William T. White.

Methodology: Leontine Baje, Jonathan J. Smart, William T. White, Colin A. Simpfendorfer.

Project administration: Leontine Baje, Andrew Chin, William T. White.

Software: Jonathan J. Smart.

Supervision: Andrew Chin, William T. White, Colin A. Simpfendorfer.

Writing – original draft: Leontine Baje.

Writing – review & editing: Jonathan J. Smart, Andrew Chin, William T. White, Colin A.

Simpfendorfer.

References
1. Stevens JD, Bonfil R, Dulvy NK, Walker PA. The effects of fishing on sharks, rays, and chimaeras

(chondrichthyans), and the implications for marine ecosystems. ICES J Mar Sci. 2000; 57(3):476–94.

https://doi.org/10.1006/jmsc.2000.0724

2. Smith SE, Au DW, Show C. Intrinsic rebound potentials of 26 species of Pacific sharks. Mar Freshw

Res. 1998; 49(7):663–78. https://doi.org/10.1071/MF97135

3. Gutteridge AN, Huveneers C, Marshall LJ, Tibbetts IR, Bennett MB. Life-history traits of a small-bodied

coastal shark. Mar Freshw Res. 2013; 64(1):54–65. https://doi.org/10.1071/MF12140

4. Harry AV, Simpfendorfer CA, Tobin AJ. Improving age, growth, and maturity estimates for aseasonally

reproducing chondrichthyans. Fisheries Research. 2010; 106(3):393–403. https://doi.org/10.1016/j.

fishres.2010.09.010

5. Goldman KJ, Cailliet GM, Andrews AH, Natanson LJ. Assessing the age and growth of chondrichthyan

fishes. In: Carrier JC, Musick J. A, Heithaus M. R., editor. Biology of Sharks and their Relatives. Boca

Raton: CRC Press; 2012. p. 423–52.

6. Simpfendorfer CA, Dulvy NK. Bright spots of sustainable shark fishing. Current Biology. 2017; 27(3):

R97–R8. https://doi.org/10.1016/j.cub.2016.12.017 PMID: 28171764

7. Cortés E. Life history patterns, demography, and population dynamics. In: Carrier JC, Musick J. A.,

Heithaus M. R., editor. Biology of sharks and their relatives Boca Raton, Florida: CRC Press; 2004. p.

449–69.

8. Simpfendorfer CA. Age and growth of the Australian sharpnose shark, Rhizoprionodon taylori, from

north Queensland, Australia. Environmental Biology of Fishes. 1993; 36(3):233–41. https://doi.org/10.

1007/bf00001718

Biology of the Australian sharpnose shark Rhizoprionodon taylori from the Gulf of Papua

PLOS ONE | https://doi.org/10.1371/journal.pone.0206581 October 31, 2018 14 / 17

https://doi.org/10.1006/jmsc.2000.0724
https://doi.org/10.1071/MF97135
https://doi.org/10.1071/MF12140
https://doi.org/10.1016/j.fishres.2010.09.010
https://doi.org/10.1016/j.fishres.2010.09.010
https://doi.org/10.1016/j.cub.2016.12.017
http://www.ncbi.nlm.nih.gov/pubmed/28171764
https://doi.org/10.1007/bf00001718
https://doi.org/10.1007/bf00001718
https://doi.org/10.1371/journal.pone.0206581


9. Taylor SM, Harry AV, Bennett MB. Living on the edge: latitudinal variations in the reproductive biology

of two coastal species of sharks. Journal of Fish Biology. 2016; 89(5):2399–418. https://doi.org/10.

1111/jfb.13126 PMID: 27633581

10. Simpfendorfer CA. Reproductive strategy of the Australian sharpnose shark, Rhizoprionodon taylori

(Elasmobranchii, Carcharhinidae), from Cleaveland Bay, northern Queensland. Australian Journal of

Marine and Freshwater Research. 1992; 43(1):67–75. https://doi.org/10.1071/MF9920067

11. Waltrick D, Awruch C, Simpfendorfer C. Embryonic diapause in the elasmobranchs. Reviews in Fish

Biology and Fisheries. 2012; 22(4):849–59. https://doi.org/10.1007/s11160-012-9267-5

12. Harry AV, Tobin AJ, Simpfendorfer CA, Welch DJ, Mapleston A, White J, et al. Evaluating catch and

mitigating risk in a multispecies, tropical, inshore shark fishery within the Great Barrier Reef World Heri-

tage Area. Mar Freshw Res. 2011; 62(6):710–21.

13. Last PR, Stevens JD. Sharks and rays of Australia: CSIRO Publishing; 2009.

14. Simpfendorfer CA. Mortality estimates and demographic analysis for the Australian sharpnose shark,

Rhizoprionodon taylori, from northern Australia. Fishery Bulletin. 1999; 97(4):978–86.

15. Stevens JD, McLoughlin KJ. Distribution, size and sex composition, reproductive biology and diet of

sharks from northern Australia. Australian Journal of Marine and Freshwater Research. 1991; 42

(2):151–99. https://doi.org/10.1071/MF9910151

16. Simpfendorfer CA. Diet of the Australian sharpnose shark, Rhizoprionodon taylori, from northern

Queensland. Mar Freshw Res. 1998; 49(7):757–61. https://doi.org/10.1071/mf97044

17. Matsuoka T, Kan TT. Passive exclusion of finfish by trawl efficiency device (TED) in prawn trawling in

Gulf-of-Papua, Papua-New-Guinea. Nippon Suisan Gakkaishi. 1991; 57(7):1321–9.

18. Lombardi-Carlson LA, Cortes E, Parsons GR, Manire CA. Latitudinal variation in life-history traits of

bonnethead sharks, Sphyrna tiburo, (Carcharhiniformes: Sphyrnidae) from the eastern Gulf of Mexico.

Mar Freshw Res. 2003; 54(7):875–83. https://doi.org/10.1071/mf03023

19. White WT. Catch composition and reproductive biology of whaler sharks (Carcharhiniformes: Carchar-

hinidae) caught by fisheries in Indonesia. Journal of Fish Biology. 2007; 71(5):1512–40. https://doi.org/

10.1111/j.1095-8649.2007.01623.x

20. Munroe SEM, Heupel MR, Fisk AT, Logan M, Simpfendorfer CA. Regional movement patterns of a

small-bodied shark revealed by stable-isotope analysis. Journal of Fish Biology. 2015; 86(5):1567–86.

https://doi.org/10.1111/jfb.12660 PMID: 25846994

21. Cortés E, Brooks EN, Gedamke T. Population dynamics, demography, and stock assessment. In: Car-

rier JC, Musick JA, Heithaus MR, editors. Biology of sharks and their relatives. 2nd ed. Boca Raton,

FL, USA: CRC Press; 2012. p. 453–85.

22. Smart JJ, Chin A, Tobin AJ, Simpfendorfer CA. Multimodel approaches in shark and ray growth studies:

strengths, weaknesses and the future. Fish and Fisheries. 2016; 17(4):955–71. https://doi.org/10.1111/

faf.12154

23. Evans CR, Opnai LJ, Kare BD. Fishery ecology and oceanography of the prawn Penaeus merguiensis

(de Man) in the Gulf of Papua: Estimation of maximum sustainable yield and modelling of yield, effort

and rainfall. Mar Freshw Res. 1997; 48(3):219–28. https://doi.org/10.1071/mf94222

24. Walker T. Reproduction in fisheries science. In: Hamlett WC, editor. Reproductive Biology and Phylop-

geny of Chondrichthyans: Sharks, Batoids, and Chimaeras: Science Publishers: Enfield, NH; 2005. p.

81–127.

25. Cailliet GM, Goldman KJ. Age determination and validation in chondrichthyan fishes. In: Carrier JC,

Musick JA, Heithaus MR, editors. Biology of sharks and their relatives. Boca Raton, FL, USA: CRC

Press; 2004. p. 339–447.

26. Cailliet G, Smith W, Mollet H, Goldman K. Age and growth studies of chondrichthyan fishes: the need

for consistency in terminology, verification, validation, and growth function fitting. Environmental Biology

of Fishes. 2006; 77(3–4):211–28. https://doi.org/10.1007/s10641-006-9105-5

27. Beamish RJ, Fournier DA. A method for comparing the precision of a set of age determinations. Cana-

dian Journal of Fisheries and Aquatic Sciences. 1981; 38(8):982–3. https://doi.org/10.1139/f81-132

28. Chang WY. A statistical method for evaluating the reproducibility of age determination. Canadian Jour-

nal of Fisheries and Aquatic Sciences. 1982; 39(8):1208–10. https://doi.org/10.1139/f82-158

29. Bowker AH. A test for symmetry in contingency tables. Journal of the American Statistical Association.

1948; 43(244):572–4. PMID: 18123073

30. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing 2015. Available from: https://www.R-project.org/

Biology of the Australian sharpnose shark Rhizoprionodon taylori from the Gulf of Papua

PLOS ONE | https://doi.org/10.1371/journal.pone.0206581 October 31, 2018 15 / 17

https://doi.org/10.1111/jfb.13126
https://doi.org/10.1111/jfb.13126
http://www.ncbi.nlm.nih.gov/pubmed/27633581
https://doi.org/10.1071/MF9920067
https://doi.org/10.1007/s11160-012-9267-5
https://doi.org/10.1071/MF9910151
https://doi.org/10.1071/mf97044
https://doi.org/10.1071/mf03023
https://doi.org/10.1111/j.1095-8649.2007.01623.x
https://doi.org/10.1111/j.1095-8649.2007.01623.x
https://doi.org/10.1111/jfb.12660
http://www.ncbi.nlm.nih.gov/pubmed/25846994
https://doi.org/10.1111/faf.12154
https://doi.org/10.1111/faf.12154
https://doi.org/10.1071/mf94222
https://doi.org/10.1007/s10641-006-9105-5
https://doi.org/10.1139/f81-132
https://doi.org/10.1139/f82-158
http://www.ncbi.nlm.nih.gov/pubmed/18123073
https://www.R-project.org/
https://doi.org/10.1371/journal.pone.0206581


31. Smart JJ, Harry AV, Tobin AJ, Simpfendorfer CA. Overcoming the constraints of low sample sizes to

produce age and growth data for rare or threatened sharks. Aquatic Conservation: Marine and Fresh-

water Ecosystems. 2013; 23(1):124–34. https://doi.org/10.1002/aqc.2274

32. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrow BN,

Czaki F, editors. Second International Symposium on Information Theory; Budapest: Akademinai

Kiado; 1973. p. 267–81.

33. Smart JJ, Chin A, Baje L, Green ME, Appleyard SA, Tobin AJ, et al. Effects of including misidentified

sharks in life history analyses: A case study on the grey reef shark Carcharhinus amblyrhynchos from

Papua New Guinea. PloS one. 2016; 11(4):e0153116. https://doi.org/10.1371/journal.pone.0153116

PMID: 27058734

34. Thorson JT, Simpfendorfer CA. Gear selectivity and sample size effects on growth curve selection in

shark age and growth studies. Fisheries Research. 2009; 98(1–3):75–84. https://doi.org/10.1016/j.

fishres.2009.03.016

35. Harry A, Macbeth W, Gutteridge A, Simpfendorfer C. The life histories of endangered hammerhead

sharks (Carcharhiniformes, Sphyrnidae) from the east coast of Australia. Journal of Fish Biology. 2011;

78(7):2026–51. https://doi.org/10.1111/j.1095-8649.2011.02992.x PMID: 21651548

36. Katsanevakis S, Maravelias CD. Modelling fish growth: multi-model inference as a better alternative to

a priori using von Bertalanffy equation. Fish and Fisheries. 2008; 9(2):178–87. https://doi.org/10.1111/j.

1467-2979.2008.00279.x

37. Package Barton K. “MuMIn”: Multi-Model Inference. R package, Version 1.15. 6.2016. Available

38. Baty F, Ritz C, Charles S, Brutsche M, Flandrois J-P, Delignette-Muller M-L. A toolbox for nonlinear

regression in R: the package nlstools. Journal of Statistical Software. 2015; 66(5):1–21. https://doi.org/

10.18637/jss.v066.i05

39. Zhu L, Li L, Liang Z. Comparison of six statistical approaches in the selection of appropriate fish growth

models. Chinese Journal of Oceanology and Limnology. 2009; 27:457–67. https://doi.org/10.1007/

s00343-009-9236-6

40. Anderson DR, Burnham KP. Avoiding pitfalls when using information-theoretic methods. Journal of

Wildlife Management. 2002; 66(3):912–8. https://doi.org/10.2307/3803155

41. Kimura DK. Likelihood methods for the von Bertalanffy growth curve. Fishery Bulletin. 1980; 77(4):765–

76.

42. Haddon M. Modeling and quantitative measures in fisheries. London: Chapman & Hall / CRC; 2001.

43. Knoblauch K. psyphy: Functions for analyzing psychophysical data in R R package version 0.1–9.

2014. Available from: http://CRAN.R-project.org/package=psyphy

44. Ogle DH. FSA: Fisheries Stock Analysis. R package version 0.8.11. 2016. Available from: https://cran.r-

project.org/package=FSA

45. Accuracy Campana S., precision and quality control in age determination, including a review of the use

and abuse of age validation methods. Journal of Fish Biology. 2001; 59(2):197–242. https://doi.org/10.

1111/j.1095-8649.2001.tb00127.x

46. Natanson LJ, Sulikowski JA, Kneebone JR, Tsang PC. Age and growth estimates for the smooth skate,

Malacoraja senta, in the Gulf of Maine. Environmental Biology of Fishes. 2007; 80(2–3):293–308.

https://doi.org/10.1007/s10641-007-9220-y

47. Bishop SDH, Francis MP, Duffy C, Montgomery JC. Age, growth, maturity, longevity and natural mortal-

ity of the shortfin mako shark (Isurus oxyrinchus) in New Zealand waters. Mar Freshw Res. 2006; 57

(2):143–54. https://doi.org/10.1071/MF05077

48. McAuley RB, Simpfendorfer CA, Hyndes GA, Allison RR, Chidlow JA, Newman SJ, et al. Validated age

and growth of the sandbar shark, Carcharhinus plumbeus (Nardo 1827) in the waters off Western Aus-

tralia. Environmental Biology of Fishes. 2006; 77(3):385–400. https://doi.org/10.1007/s10641-006-

9126-0

49. Loefer JK, Sedberry GR. Life history of the Atlantic sharpnose shark (Rhizoprionodon terraenovae)

(Richardson, 1836) off the southeastern United States. Fishery Bulletin. 2003; 101(1):75–88.

50. Pardo SA, Cooper AB, Dulvy NK. Avoiding fishy growth curves. Methods in Ecology and Evolution.

2013; 4(4):353–60. https://doi.org/10.1111/2041-210x.12020

51. Siegfried KI, Sanso B. Two Bayesian methods for estimating parameters of the von Bertalanffy growth

equation. Environmental Biology of Fishes. 2006; 77(3–4):301–8. https://doi.org/10.1007/s10641-006-

9112-6

52. Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA. Collapse and conservation of shark

populations in the Northwest Atlantic. Science. 2003; 299(5605):389–92. https://doi.org/10.1126/

science.1079777 PMID: 12532016

Biology of the Australian sharpnose shark Rhizoprionodon taylori from the Gulf of Papua

PLOS ONE | https://doi.org/10.1371/journal.pone.0206581 October 31, 2018 16 / 17

https://doi.org/10.1002/aqc.2274
https://doi.org/10.1371/journal.pone.0153116
http://www.ncbi.nlm.nih.gov/pubmed/27058734
https://doi.org/10.1016/j.fishres.2009.03.016
https://doi.org/10.1016/j.fishres.2009.03.016
https://doi.org/10.1111/j.1095-8649.2011.02992.x
http://www.ncbi.nlm.nih.gov/pubmed/21651548
https://doi.org/10.1111/j.1467-2979.2008.00279.x
https://doi.org/10.1111/j.1467-2979.2008.00279.x
https://doi.org/10.18637/jss.v066.i05
https://doi.org/10.18637/jss.v066.i05
https://doi.org/10.1007/s00343-009-9236-6
https://doi.org/10.1007/s00343-009-9236-6
https://doi.org/10.2307/3803155
http://CRAN.R-project.org/package=psyphy
https://cran.r-project.org/package=FSA
https://cran.r-project.org/package=FSA
https://doi.org/10.1111/j.1095-8649.2001.tb00127.x
https://doi.org/10.1111/j.1095-8649.2001.tb00127.x
https://doi.org/10.1007/s10641-007-9220-y
https://doi.org/10.1071/MF05077
https://doi.org/10.1007/s10641-006-9126-0
https://doi.org/10.1007/s10641-006-9126-0
https://doi.org/10.1111/2041-210x.12020
https://doi.org/10.1007/s10641-006-9112-6
https://doi.org/10.1007/s10641-006-9112-6
https://doi.org/10.1126/science.1079777
https://doi.org/10.1126/science.1079777
http://www.ncbi.nlm.nih.gov/pubmed/12532016
https://doi.org/10.1371/journal.pone.0206581


53. Pardo SA, Kindsvater HK, Cuevas-Zimbrón E, Sosa-Nishizaki O, Pérez-Jiménez JC, Dulvy NK.
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