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A limited number of studies have indicated an association between isoleucyl-tRNA

synthetase 2 (IARS2) and tumorigenesis. We evaluated IARS2 protein expression in lung

tumor tissues and paired non-tumor tissues. We found higher IARS2 expression in the

tumor tissues, which was associated with the late Tumor and Node stages of the Tumor,

Node, Metastasis staging system. Silencing IARS2 inhibited the activity of A549 and

H1299 cells, resulting in G0/G1 stasis of A549 cells and mitochondrial apoptosis. IARS2

silencing was also found to inhibit NSCLC tumor growth in nude mice. Complementary

DNA microarray analysis revealed 742 differentially expressed genes (507 upregulated

and 235 downregulated) in IARS2-silenced A549 cells compared to controls. Ingenuity

Pathway Analysis of the differential expression data suggested that multiple pathways

are associated with IARS2 silencing in NSCLC cells; upstream analysis predicted the

activation or inhibition of transcriptional regulators. Correlation analysis revealed that

AKT and MTOR activities were significantly inhibited in IARS2-silenced cells, but were

partially restored by the AKT-stimulating agent SC79. IARS2 appears to regulate lung

cancer cell proliferation via the AKT/MTOR pathway. Our results help clarify the complex

roles of IARS2 in tumorigenesis and suggest that it may be a novel regulator of lung

cancer development.

Keywords: isoleucyl-tRNA synthetase 2, lung cancer, tumorigenesis, cDNA microarray, ingenuity pathway

analysis, AKT, mammalian target of rapamycin

INTRODUCTION

Lung cancer remains the most malignant tumor with the highest morbidity and mortality
worldwide; for 2018, 2.1 million new lung cancer cases and 1.8 million deaths have been
predicted, representing nearly 1 in 5 (18.4%) cancer deaths (1). Lung cancer is commonly classified
into small cell carcinoma and non-small cell lung carcinoma (NSCLC) (2). In most countries,
patients with adenocarcinoma are more common than those with squamous cell carcinoma (3).
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Active exploration of the pathogenesis of lung cancer has
indicated that the identification of new lung cancer-related
biomarkers may be crucial to improve the treatment and
prognosis of patients with lung cancer.

The aminoacyl-tRNA synthetase (ARSs) class of
evolutionarily ancient enzymes is widely found in organisms.
ARSs are responsible for catalysing the esterification of the
hydroxyl group of tRNAs with the carboxyl group of the
corresponding amino acids to form aminoacyl tRNAs (4).
Mammalian ARSs have evolved many new non-catalytic
domains to perform non-canonical functions (5). ARSs play
important roles in tumor pathogenesis by regulating tumor
cell growth, differentiation, cell cycle, cytokine activity, RNA
splicing, cell adhesion, and angiogenesis (6–8).

Isoleucyl-tRNA synthetase 2, mitochondrial (IARS2) is a
nuclear gene encoding a mitochondrial ARS. The expression
of IARS2 mRNA in human colon cancer tissues is higher than
that in surrounding tissues. Knocking down the IARS2 gene
inhibits the proliferation of colon cancer RKO cells, increases
the proportion of cells in G0/G1 phase, and decreases the
proportion of cells in S phase (9). In gastric cancer AGS cells,
IARS2 knockdown inhibits proliferation and colony formation
and induces cell cycle arrest in the G2/M phase (10). The
expression of IARS2 in short-term survivors of glioblastoma is
higher than that in long-term survivors, suggesting that high
IARS2 expression is a risk factor for glioblastoma (11). These
results suggest that IARS2 may be involved in the development
and progression of tumors. However, the role of IARS2 in the
development of NSCLC and its related molecular mechanisms
are not well defined.

MATERIALS AND METHODS

Tissue Specimens
We enrolled 56 patients with primary NSCLC who underwent
surgery at the Second Hospital of Jilin University fromMay 2017
to August 2018. The patients had not received chemotherapy or
radiation before surgery. All patients were diagnosed according
to the World Health Organization’s lung cancer criteria and
staged according to the Tumor (T), Node (N), Metastasis (M)
staging system for lung cancer (12). This study was approved
by the Ethics Committee of the Second Hospital of Jilin
University (Changchun, China) and all participants provided
written informed consent. Lung cancer and corresponding
tumor-adjacent lung tissue samples were collected during surgery
and stored at −80◦C. All healthy and cancerous tissues were
re-evaluated by pathologists.

Cell Culture and Reagents
Human embryonic kidney 293 (HEK-293) cells and the human
lung cell lines A549 and H1299 were obtained from the Chinese
Academy of Medical Sciences (Beijing, China) and cultured
in Dulbecco’s modified Eagle’s medium or RPMI-1640 (Gibco,
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum
at 37◦C in a humidified atmosphere containing 5% CO2. SC79
(catalog number S1023) was obtained from MedChemExpress
(Monmouth Junction, NJ, USA).

Plasmids, Lentiviral Production, and
Transduction
The IARS2 shRNA (shIARS2) lentiviral gene transfer vector
pGCSIL-GFP, which encodes the enhanced green fluorescent
protein sequence, was constructed by GeneChem (Shanghai,
China). The hairpin sequence of shIARS2-1 was CCGGGTA
CTTGCAGTCATCCATTAATTCAAGAGATTAATGGATGAC
TGCAAGTACTTTTTG and the sequence of shIARS2-2
was CCGGGCTTAGGAATACACTTCGCTTCTCGAGAA
GCGAAGTGTATTCCTAAGCTTTTT (GenBank accession
number: NM_018060). The resulting constructs were verified
by sequencing. A corresponding random shRNA sequence was
used as a control for shIARS2. The vectors were transfected into
HEK-293 cells using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. Cell
culture medium containing lentiviral particles was harvested 48 h
post-transfection and passed through a 0.45-µm filter (Merck
Millipore, Burlington, MA, USA). The resulting lentiviral
particles were stored at −80◦C until use. After transfection with
lentivirus for 48 h, cells were screened in puromycin culture
medium to establish cell lines with a stable knockout of the
IARS2 gene.

Colony Formation Assay
Lentiviral vector-transduced A549 and H1299 cells were seeded
in 6-well plates (400 cells/well). After 14 days, colonies
(>50 cells/colony) were counted and individually imaged after
staining with Giemsa (Beijing Solarbio Science & Technology,
Beijing, China).

Cell Counting Kit-8 Assay
We determined the viability of A549 and H1299 cells using a Cell
Counting Kit-8 (CCK-8) assay (Dojindo, Tokyo, Japan). Cells (2
× 103 cells/well) were seeded in 96-well plates and incubated at
37◦C for 24 h. We added CCK-8 reagent (10 µL) to each well and
incubated the plates for a further 1 h at 37◦C. The optical density
of each well was measured using a microplate reader (Thermo
Fisher Scientific, Waltham, MA, USA) at a test wavelength of
450 nm.

Flow Cytometry Analysis of Cell Cycle and
Apoptosis
For cell cycle analysis, the lentiviral vector-transduced A549
and H1299 cells were labeled with propidium iodide (BD
Biosciences, San Jose, CA, USA) and analyzed using flow
cytometry. For apoptosis analysis, the cells were incubated with

PE-conjugated annexin V and 7-AAD (BD Biosciences, San Jose,
CA, USA), according to the manufacturer’s guidelines, prior to
flow cytometry.

cDNA Microarray Assay and Ingenuity
Pathway Analysis
To profile the expression of IARS2-regulated genes, we first
stably transduced the A549 cells with the lentiviral shIARS2-1 or
control vector. The cells were subjected to RNA isolation. The
RNA was quantified using a NanoDrop 2000 (Thermo Fisher
Scientific, Waltham, MA, USA) and checked for quality with
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an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
CA, USA). Then, the quality-checked RNA samples were labeled

with the GeneChip 3
′

IVT Express Kit (Affymetrix, Santa Clara,
CA, USA) and hybridized to an Affymetrix GeneChip PrimeView
Human Gene Expression Array, according to the manufacturer’s
protocols. The experiments were conducted by GeneChem
(Shanghai, China). The data were analyzed using a GeneChip
Scanner 3000 (Affymetrix). We set the thresholds to determine
gene alterations after IARS2 silencing at a 2.0-fold change in
expression and p < 0.05 (false discovery rate [FDR] <0.05) vs.
the control cells. Ingenuity Pathway Analysis (IPA; Ingenuity
Systems; www.ingenuity.com; Redwood City, CA, USA) is an
online software package used to identify canonical pathways
and gene networks and to categorize specific physiological
processes. The Ingenuity Pathway Knowledge Base was used for
deep analysis of the global molecular network and discovery of
interactions among the differentially expressed genes.

Western Blotting
We obtained cellular proteins by lysing lung tissue with
radioimmunoprecipitation assay buffer supplemented
with protease inhibitors and phosphatase inhibitors. We
determined the protein concentrations using a bicinchoninic
acid protein assay kit (Beyotime, Jiangsu, China) according
to the instructions. Lysis proteins (30 µg) were separated
by electrophoresis on 8–15% sodium dodecyl sulfate–
polyacrylamide gels. We transferred the samples to
polyvinylidene difluoride membranes(#PIVH00010, Merck
Millipore, Burlington, MA, USA). The membranes were
probed with primary antibodies and were then incubated with
horseradish peroxidase-conjugated secondary antibodies. We
purchased the antibodies against AKT (# 4691), phospho-
AKT (S473; # 4060), phospho-AKT (T308; # 13038), BCL-2
(# 2872), BAX (# 5023), cleaved caspase 3 (# 9664), cleaved
PARP (# 5625), caspase 9 (# 9508), mammalian target of
rapamycin (MTOR; # 2983), and phospho-MTOR (Ser2448;

FIGURE 1 | Western blotting of IARS2 protein expression in representative

tissue samples from NSCLC (T) and non-tumor specimens (N). Total protein

was extracted, subjected to western blotting analysis, and quantified using

Image J software. (A) Squamous cell carcinoma tissue. (B) Adenocarcinoma

tissue.

# 5536) from Cell Signaling Technologies (Danvers, MA,
USA). We purchased the antibodies against β-actin (#
60008-1-Ig) and IARS2 (# 17170-1-AP) from Proteintech
(Rosemont, IL, USA). The signals were detected using
an enhanced chemiluminescence detection kit (Merck
Millipore, Burlington, MA, USA). Densitometric analysis
was performed with ImageJ; relative values are displayed under
their respective blots.

Animal Studies
Five-week-old BALB/c nude mice were maintained under
specific-pathogen-free conditions. We subcutaneously injected
A549 cells (5 × 106 cells; 2.5 × 107 cell/mL in 0.2mL
phosphate-buffered saline) that stably expressed shIARS2-1,
shIARS2-2, or the negative control shRNA into the left
flanks of the mice. We measured the tumors with electronic
calipers and calculated the sizes with the formula: volume =

length × width2 × 0.5. Animal experiments were approved
by the Institutional Animal Care and Use Committee of
Jilin University.

Statistical Analysis
Pearson’s Chi-squared test was performed to determine the
association of clinicopathological data with the expression of
IARS2 proteins in NSCLC tissues. Statistical data are expressed
as the mean ± standard deviation. Comparisons among groups
were carried out with Student’s t-test. A p < 0.05 was considered

TABLE 1 | Association of IARS2 with clinicopathological characteristics from 56

lung cancer patients.

Characteristic N (%) IARS2 expression level, N (%) P-value

High expression Low expression

Histological types

Squamous cell 34 (60.71) 22 (64.71) 12 (35.29) 0.53

Adenocarcinoma 22 (39.29) 16 (72.73) 6 (27.27)

Age (years)

≤60 24 (42.86) 18 (75.00) 6 (25.00) 0.322

>60 32 (57.14) 20 (62.50) 12 (37.50)

Gender

Male 41 (73.21) 27 (65.85) 14 (34.15) 0.596

Female 15 (26.79) 11 (73.33) 4 (26.67)

Smoke

NO 30 (53.57) 21 (70.00) 9 (30.00) 0.712

YES 26 (46.43) 17 (65.38) 9 (34.62)

pT status

T1–T2 34 (60.71) 19 (55.88) 15 (44.12) 0.036

T3–T4 22 (39.29) 19 (86.36) 3 (13.64)

pN status

pN– 26 (46.43) 14 (53.85) 10 (32.26) 0.037

pN+ 30 (53.57) 24 (80.00) 8 (32.00)

p-values represent Pearson χ
2 test.

pT status, Tumor; pN status, Node.

Bold values indicate P < 0.05.
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FIGURE 2 | Effects of IARS2 knockdown on cell proliferation, cell cycle progression and apoptosis in NSCLC cells. (A) Cell Counting Kit-8 assay was used to evaluate

A549 and H1299 cell growth after IARS2 knockdown. (B) Colony formation assay was used to evaluate A549 and H1299 cell growth after IARS2 knockdown.

(C) Apoptosis was evaluated using flow cytometry in IARS2 knockdown and control A549 cells. Representative flow-cytograms are shown, and apoptotic rates were

(Continued)
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FIGURE 2 | derived as percentages of Annexin V-PE positive cells. (D) Cell cycle was assessed in A549 cells using flow cytometry after transfection with the indicated

shRNAs. Representative flow-cytograms are shown, as well as diagrams quantifying cell fractions in the G0/G1, S, and G2/M phases. (E) Differential expression of

apoptosis regulatory proteins associated with IARS2 knockdown. Western blotting analysis was performed to compare expression levels of various apoptosis-related

proteins between the IARS2 and control groups. *p < 0.05 compared with the control group.

FIGURE 3 | Heat map of the 2-way hierarchical clustering of genes and samples. Each row represents a gene and each column represents a sample. The gene

clustering tree is shown on the left and the sample clustering tree appears at the top. Red, up-regulated in the IARS2-silenced vs. control cells; green down-regulated

in the IARS2-silenced vs. control cells.

statistically significant. All data were analyzed using SPSS
19.0 software.

RESULTS

IARS2 Expression Was Higher in NSCLC
Tissues Than in Non-cancerous Controls
We measured IARS2 protein expression in 56 pairs of NSCLC
and adjacent normal tissue samples. IARS2 expression was
higher in NSCLC tissues, and the high expression rate of
adenocarcinoma accounted for 72.73%, which was slightly
higher than that of squamous cell carcinoma. Elevated IARS2
protein levels were associated with the T and N stages of
advanced tumors, but not with gender, age, or smoking status
(Figures 1A,B and Table 1).

IARS2 Knockdown Inhibited Lung Cancer
Cell Viability and Colony Formation
We stably silenced IARS2 in A549 and H1299 cells. Compared
with cells in the control group, cell proliferation activity of the
shIARS2-1 and the shIARS2-2 groups decreased significantly
(Figure 2A). Compared with control cells expressing the empty
lentiviral expression vector, the shIARS2-1 and the shIARS2-2
groups had a lower clonogenic activity (Figure 2B).

Effect of IARS2 on Apoptosis and Cell
Cycle
IARS2 silencing inhibited proliferation and promoted apoptosis
of A549 cell (Figure 2C). In addition, compared to control
cells, the proportion of G1 cells increased and that of S cells
decreased (Figure 2D).

Analysis of Mitochondrial Apoptotic
Pathway-Related Proteins in IARS2
Mediated-Apoptosis
To further illustrate the role of mitochondrial apoptosis as a
downstream molecular mechanism of IARS2, we show that the
expression of cleaved caspase 3, cleaved PARP, cleaved caspase 9,
and BAX increased, whereas the expression of BCL-2 decreased,
in IARS2-silenced cells. This suggests that IARS2-mediated
growth suppression, at least in part, occurs via modulation of the
mitochondrial apoptotic pathways (Figure 2E).

IARS2-Regulated Gene Expression
Profiling
An Affymetrix GeneChip PrimeView Human cDNA microarray
analysis was performed to profile the expression of IARS2-
regulated genes in A549 cells (GEO accession number is
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FIGURE 4 | (A) Classical pathway enrichment analysis. The orange label indicates pathway activation (z-score >0), the blue label indicates pathway suppression

(z-score <0), and the shades of orange and blue indicate the degree of activation or inhibition (the absolute value of the z-score). The ratio represents the number of

differentially expressed genes in this signaling pathway and the number of all genes in the pathway. (B) Disease and functional enrichment analysis statistics. This

figure shows the differentially expressed genes in the IARS2-silenced cells that are significantly enriched in disease and function. The abscissa is the name of the path

and the ordinate is the level of significance of the enrichment (the negative logarithm of the base 10).

GSE130007). IARS2 expression regulated the expression of 742
genes in A549 cells, of which 507 were upregulated and 235 were
downregulated upon IARS2 silencing (Figure 3).

Functional Analysis of Differentially
Expressed Genes Relative to Classical
Pathways, Upstream Regulators, and
Disease
Using IPA, we examined the relationships between the
differentially expressed genes and canonical pathways. Our
analysis revealed a highly significant overlap of the differentially
regulated genes with 353 canonical pathways connected
with apoptosis, cancer, cell cycle regulation, cellular immune
responses, cellular growth, proliferation, and development.
Figure 4A shows the 41 signaling pathways with the highest
levels of significance.

IPA identified 259 diseases or functions predicted to be
activated upon IARS2 silencing, of which the top 5 were cell

migration, cell movement, leukocyte migration, homing of cells,
and chemotaxis. Of the 132 diseases or functions that were
predicted to be inhibited, the top 5 were intestinal cancer,
gastrointestinal tract cancer, infection of mammalia, morbidity
or mortality, and organismal death (Figures 4B, 5).

IPA uses the activation z-score algorithm to predict the
activation or suppression of upstream regulators, reduce the
instance of significant predictions resulting from random data,
and analyse the relationships of genes to disease and function.
In this study, 951 molecules (including transcription factors,
cytokines, small RNAs, receptors, kinases, chemical molecules,
and drugs) were predicted to be activators and 483 molecules
were predicted to be inhibitors. Table 2 shows the IPA-predicted
upstream activation or inhibitory molecules acting on the IARS2
gene (top 10).

IARS2-Activated AKT/MTOR Signaling
We found that the levels of AKT phosphorylation at Ser473
and Thr308 and MTOR phosphorylation in IARS2-silenced
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FIGURE 5 | Disease and function heat map. This figure demonstrates the relationships between changes in differentially expressed gene levels and the activation and

inhibition of diseases and functions. Orange indicates that the disease or functional status is activated (z-score >0), blue indicates that the disease or functional status

is suppressed (z-score <0), and gray indicates that the disease or functional status was not determined (z-score cannot be calculated).

TABLE 2 | Comparison of the upstream regulators of IARS2.

Upstream regulator Entrez gene name Predicted state z-score P-value

TNF Tumor necrosis factor Activated 8.273 1.07E-43

Lipopolysaccharide Lipopolysaccharide Activated 8.092 8.72E-33

NFκB (complex) Nuclear factor kappa B Activated 6.869 3.08E-25

IL1B Interleukin 1 Beta Activated 6.768 2.34E-28

Phorbol myristate acetate Phorbol myristate acetate Activated 6.662 7.63E-26

SB203580 SB203580 Inhibited −5.124 1.61E-14

PD98059 PD98059 Inhibited −4.34 1.17E-15

IL1RN Interleukin 1 receptor antagonist Inhibited −3.874 7.48E-15

SP600125 SP600125 Inhibited −3.869 1.33E-11

CBX5 Chromobox 5 Inhibited −3.742 6.92E-06

A549 and H1299 cells were significantly lower than those
in the control group. This indicates that AKT/MTOR
signaling pathway activation is significantly inhibited by
IARS2 knockdown (Figure 6A, Figure S1).

AKT Activator SC79 Partially Restored
AKT/MTOR Signaling
We treated shIARS2-1- and shIARS2-2-expressing A549
cells with the novel AKT activator SC79, which enhances
phosphorylation of all AKT isoforms in a variety of cells. We
performed CCK-8 assays and western blotting for protein
phosphorylation status after exposure to SC79 (5µg/mL; 48 and

1 h, respectively). SC79-induced AKT phosphorylation at Ser473
and Thr308, although the induction was slightly weaker than in
control cells (Figures 6B,C). SC79 partially restored the IARS2
silencing-induced inhibition of lung cancer cell proliferation.
Thus, the loss of IARS2 inhibits, at least in part, growth signaling
cascades mediated by AKT.

IARS2 Regulated the Tumorigenic Capacity
of Lung Cancer Cells
Finally, we assessed the tumorigenicity of IARS2-silenced cells
in nude mice. All nude mice developed xenogenic tumors at
the injection site (Figure 7A). In mice with IARS2-silenced cells,
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FIGURE 6 | Correlation between IARS2 and AKT/MTOR signaling. (A) IARS2 activated AKT/MTOR signaling in A549 and H1299 cells. (B,C) The AKT activator SC79

partially restored AKT/MTOR signaling in A549 cells. CCK-8 assays and western blotting were performed to determine protein phosphorylation status after exposure

to SC79 (5µg/mL; 48 and 1 h, respectively). *,#p < 0.05. (*comparison with the control group; #comparison with the applied sc79 group).

tumor growth was slower than in the control group (Figure 7B).
Similarly, the weights of the excised gene-silenced xenograft
tumors were lower than those of the control tumors (Figure 7C).
Western blotting analyses of protein expression in tumor
tissues (Figure 7D).

DISCUSSION

Recently, a number of studies have shown that ARSs are
associated with multiple tumors and play important roles
in triggering or inhibiting tumors, including those associated
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FIGURE 7 | IARS2 silencing inhibits tumor growth in vivo. (A) Xenografts from mice in each group. (B) Tumor volumes were measured at the indicated times.

(C) Mean weights of tumors obtained from mice. *p < 0.05 compared with the control group. (D)Western blotting analyses of protein expression in tumour tissues.

with stomach, colon, lung, nasopharyngeal, oral, pancreatic,
ovarian, prostate, colorectal, and breast cancers (13–22). The
mitochondrial enzyme encoded by IARS2 (zone 4, band 1,
chromosome 1) is synthesized in the cytoplasm and transported
into the mitochondrion where it catalyses the binding of
isoleucine to specific tRNAs for the completion of mitochondrial
DNA translation. There are few reports on the relationship
between IARS2 and disease; its role in tumor development
remains unclear. In this study, we found that IARS2 is highly
expressed in NSCLC tissues, particularly in adenocarcinoma
patients and in tumor T and N stages. Detection of correlations
between IARS2 expression and other clinical pathology data, such
as gender or age, may require larger studies.

We found that knockdown of IARS2 inhibited the
proliferation and clonal formation of A549 and H1299 cells,
promoted apoptosis, and induced cell cycle arrest in A549 cells
(G0/G1 phase) and H1299 cells (S phase), indicating that it
affects DNA and protein synthesis, proliferation, and division
in lung cancer cells. IARS2 knockdown significantly inhibits the
proliferation and colony formation ability of gastric cancer AGS
cells and induces cycle arrest at G2/M phase (10). Together, these
results suggest that IARS2 may be a drug target for the treatment
of NSCLC.

ARSs play important roles in mitochondrial protein synthesis,
thereby contributing tomitochondrial oxidative phosphorylation
(23). BCL2, BAX, and caspase 9 are important regulators of
mitochondria-dependent apoptosis (24, 25). We found that
IARS2 is involved in the mitochondrial apoptosis pathway.

Apoptosis, cell cycle arrest, and cell proliferation inhibition are
related. Our experimental results consistently indicate that IARS2
plays important roles in the growth, proliferation, and apoptosis
of NSCLC cells.

Our cDNA microarray analysis revealed highly significant
overlap of 353 IARS2-regulated canonical pathways connected
with apoptosis, cancer, cell cycle regulation, and cellular immune
responses, and cellular growth, proliferation, and development.
Our results indicate that IARS2 is involved in the regulation
of a variety of complex biological processes. These data may
provide new clues for the study and treatment of lung cancer
development, but the detailed mechanisms of IARS2 action
require further research.

The AKT/MTOR pathway is a central regulator of cell
proliferation, apoptosis, cell cycle, metabolism, and angiogenesis
(26). Its activation is associated with tumorigenesis, tumor
resistance, invasion, and metastasis. AKT/MTOR signaling
pathway-related proteins are also abnormally expressed in liver,
lung, breast, bladder, prostate, gastrointestinal, and ovarian
cancers (27–33). Aberrant signaling pathway activation is
associated with NSCLC and small cell lung cancer cells and
cisplatin resistance (34, 35).

Mitochondrial stress leads to increased expression, activation,
and nuclear localization of AKT (36). AKT-mediated signaling
suppresses mitochondrial oxidation, inhibits apoptosis, and
increases cancer cell proliferation (37, 38). Leucyl-tRNA
synthetase reportedly initiates mTORC1 activation (39). Both
leucyl-tRNA synthetase and IARS are class I ARSs that
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are presumed to have similar functions in cancer. In this
study, IARS2 knockdown promoted mitochondria-dependent
apoptosis, suggesting that IARS2 may promote lung cancer cell
proliferation and inhibit apoptosis through abnormal activation
of AKT/MTOR signaling.

IARS2 knockdown reduced AKT Ser473 and Thr308 and
MTOR phosphorylation levels in lung cancer A549 and H1299
cells. Recent work suggested that mitochondrial stress leads
to increased expression, activation, and nuclear localization of
AKT. The Luo laboratory recently developed the novel AKT
activator SC79, which enhances the phosphorylation of all AKT
isoforms (40). Using SC79, we demonstrated that AKT activation
moderately restored cell proliferation and decreased apoptosis in
the absence of IARS.

CONCLUSIONS

In summary, our results indicated that IARS2, an ancient
protein synthesis enzyme, may play complex regulatory roles
in lung cancer, which should be studied in depth. This study
preliminarily revealed the important role of IARS2 in lung
cancer pathogenesis and provided a solid hypothetical basis for
considering IARS2 expression in the diagnosis and treatment of
lung cancer.
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