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Abstract

Recognition of personally familiar faces is remarkably efficient, effortless and robust. We

asked if feature-based face processing facilitates detection of familiar faces by testing the

effect of face inversion on a visual search task for familiar and unfamiliar faces. Because

face inversion disrupts configural and holistic face processing, we hypothesized that inver-

sion would diminish the familiarity advantage to the extent that it is mediated by such pro-

cessing. Subjects detected personally familiar and stranger target faces in arrays of two,

four, or six face images. Subjects showed significant facilitation of personally familiar face

detection for both upright and inverted faces. The effect of familiarity on target absent trials,

which involved only rejection of unfamiliar face distractors, suggests that familiarity facili-

tates rejection of unfamiliar distractors as well as detection of familiar targets. The preserved

familiarity effect for inverted faces suggests that facilitation of face detection afforded by

familiarity reflects mostly feature-based processes.

Introduction

Humans are thought to be face-experts. We are able to draw important information from faces

such as emotions from facial expressions [1,2], direction of attention from eye gaze and head

position [1,2], and recognition of identity [3], [4]. When focusing on face identity, human per-

formance is dramatically different for familiar and unfamiliar faces. Despite the subjective

impression of efficient or “expert” perception of faces in general, performance accuracy when

discriminating unfamiliar face identities or perceiving that different images are of the same

unfamiliar identity are markedly worse than for familiar faces [3,5–12].

In previous work, we showed that personally familiar faces have a more robust representa-

tion as compared to unfamiliar faces for both early detection and perception of social cues.

Familiar as compared to unfamiliar faces can be detected with reduced attentional resources

and can be processed without conscious awareness [13]. Moreover, social cues, such as eye-

gaze or head orientation, are processed faster when conveyed by familiar faces [14]. With a sac-

cadic reaction paradigm, we found that participants were able to detect and shift their gaze to

familiar faces in 180 ms [15] when the distractors were faces of strangers, a latency shorter
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than the known evoked potentials that differentiate familiar from stranger faces [16]; but see

[17]). Overall, these results highlight a difference in processing between familiar and unfamil-

iar faces and point to a facilitation of familiar face processing that precedes the activation of a

conscious, view-invariant representation [13,15], and that extends to the local features of a

familiar face [12,14].

In order to test the hypothesis that fast and efficient detection of familiar faces relies primar-

ily on feature-based processing, we assessed whether the advantage for familiar face detection

persists for inverted faces. Face inversion has been used to demonstrate face-specific process-

ing and the role of configural processing when faces are presented upright. Inverting a face dis-

rupts configural and holistic processing, thereby increasing reliance on parts-based processing

[18–31]). Faces are characterized by two types of relational/configurational properties: first-

order relational properties (e.g.; eyes above the nose above the mouth) and second-order rela-

tional properties (e.g. spacing between the eyes) [32–34]. Another term used in the face litera-

ture for face processing is “holistic” [35], meaning that all face-parts are processed as a whole

[36]. In the present experiment we hypothesized that if familiar face recognition exploits iden-

tity-specific local facial features, then the advantage for personally familiar faces should be

maintained with face inversion. On the other hand, if familiar face recognition relies on holis-

tic or configural processing, face inversion should eliminate the familiarity advantage. We

used a visual search task for personally familiar and unfamiliar identities with upright and

inverted faces. The results showed that the advantage for familiar faces persists also after inver-

sion. We discuss these findings in terms of parts-based processing for efficient detection of

personally familiar faces.

Methods

Raw data, analysis scripts, and presentation code are available at https://osf.io/p86wb/

Participants

19 subjects (12 male, mean age: 24.79, SD 3.71) from three groups of friends participated in

the experiment. No formal power estimate was computed to determine sample size, but we

aimed for a sample size that was larger than that in a paper by Tong & Nakayama [37] (8–16

subjects) on a visual search task for one’s own face, while recruiting subjects that were highly

familiar with the familiar stimuli. We chose friends that had extensive daily interaction with

each other occurring for at least one year prior to the experiment. They were recruited from

the Dartmouth College graduate and undergraduate community. All had normal or corrected-

to-normal vision. Subjects were reimbursed for their participation; all gave written informed

consent to use their pictures for research and to participate in the experiment in accordance

with the Declaration of Helsinki. The Dartmouth Committee for the Protection of Human

Subjects approved the experiment (Protocol 21200).

Stimuli

For each subject we created three sets of images: target familiar faces (two identities: one male,

one female), target stranger faces (two identities: one male, one female), and distractor stranger

faces (twelve identities: 6 male, 6 female). Prior to the experiment, subjects and their friends

had their pictures taken to be used as stimuli in the experiment. To ensure that all stimuli were

of equal image quality, pictures were taken in a photo studio with standardized lighting, cam-

era placement and camera settings. For each identity we used two different pictures taken in

the same session to reduce image-specific learning. The familiar targets were chosen among

the subject’s friends. The pictures of the 14 stranger individuals (12 distractor identities and 2
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target identities) were taken at the University of Vermont with the same lighting, camera

placement and settings as used for subjects recruited at Dartmouth College. For each subject

the two unfamiliar target identities were chosen randomly. Inverted stimuli were created by

rotating the images 180˚. Images were cropped and converted to grayscale using custom code

written in Python on Mac OS X 10.9.5. The average pixel intensity of each image (ranging

from 0 to 255) was set to 128 with a standard deviation of 40 using the SHINE toolbox (func-

tion lumMatch) [38] in MATLAB (R2014a).

Stimuli for visual search trials consisted of two, four, or six face images positioned on the

vertices of a regular hexagon centered on the fixation point, such that the center of each image

was 7˚ of visual angle from the fixation point. Each image subtended 4˚ x 4˚ of visual angle.

The position of the stimuli always created a shape symmetrical with respect to the fixation

point (see Fig 1). All face images for each block were either upright or inverted.

Experimental setup

The experiment was run on a GNU/Linux workstation (Xubuntu 14.04 with low-latency ker-

nel 3.13, CPU AMD FX-4350 quad-core 4.2 GHz, 8GB RAM, AMD Radeon R9 270 video card

with radeon drivers) and a DELL 2000FP screen, set at a resolution of 1600x1200 pixels with a

60hz refresh rate, using Psychtoolbox (version 3.0.12) in MATLAB (R2014b). Subjects sat at a

distance of approximately 50 cm from the screen (eyes to screen) in a dimly lit room.

Task

The experiment consisted of a brief familiarization phase with the same stimuli used in the

experiment, followed by a visual search session. In a visual search task, an array of stimuli

(here 2, 4, or 6 stimuli) is presented on every trial while measuring participants’ reaction times.

Linear search curves are fitted in order to relate the number of stimuli presented with subjects’

behavior, and to quantify processes that lead to recognition of targets or rejection of distrac-

tors. In our experiment, we quantified how these processes were modulated by the main

Fig 1. Experimental paradigm and example of the stimuli. A. On each trial, a central fixation cross appeared for a jittered period between 800–1000 ms,

followed by a visual search array of two, four, or six faces displayed for a maximum of three seconds. B. Two different images of each identity were shown

throughout the experiment.

https://doi.org/10.1371/journal.pone.0178895.g001
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conditions of interest, namely familiarity (target personally familiar or unfamiliar), target ori-

entation (upright or inverted), and target presence.

During the familiarization phase, subjects were shown the 32 images used in the visual

search task (two familiar and two unfamiliar targets, and 12 distractors, with two images

for each identity, see Fig 1). Images (both upright and inverted) were presented in random

order. Each image was presented for two seconds. After the image disappeared, subjects were

required to press a key to continue to the next image. They were instructed to carefully observe

each face for the entire presentation and to continue at their own pace.

The visual search session consisted of eight blocks, with a short break after the first four

blocks. In each block, subjects were instructed to search for one of the four target identities,

with one upright and one inverted block for each identity. Within each block, all distractor

faces were of the same sex and in the same orientation as the target images. Subjects responded

as quickly and accurately as possible by pressing either the left-arrow key (target present) or

the right arrow-key (target absent). They received feedback (a beep) if they responded incor-

rectly or did not respond within three seconds. No feedback was given for correct answers. Eye

movements were explicitly allowed [37].

The order of blocks was counterbalanced for familiarity and face orientation within each

subject. Familiarity always changed from one block to the next, while inversion changed every

two blocks. Because of software error, the sex of the targets wasn’t counterbalanced across sub-

jects: 12/19 subjects had male targets in the first half of the experiment and female targets in

the second half (and the converse for the remaining 7/19 subjects).

Each block started with 24 practice trials followed immediately by 120 test trials. At the

beginning of each block, subjects were cued with one image of the target identity (upright or

inverted) and pressed a key to start. On each trial, a central fixation cross appeared for a jit-

tered period between 800–1000 ms, followed by a visual search array of two, four, or six faces

displayed for a maximum of three seconds.

Target images appeared in half of the trials. The target was equally likely to appear in the

left or right hemifield to avoid possible lateralization biases. Distractor faces were randomly

chosen from the set of six distractor identities, and all distractors were different from each

other. Stranger target identities never appeared as distractors. Each trial type was repeated 10

times in each block (with distractors randomly sampled every time). Each block thus had 120

trials: 3 (Set Size) x 2 (Target Presence) x 20 (2 different target images x 10 repetitions). The

order of the trials within each block was randomized.

Statistical analyses

The analyses were run in R (version 3.2.3). The code for all the analyses are available on the

Open Science Framework website (https://osf.io/p86wb/) as RMarkdown notebooks.

To assess statistical significance we fitted Generalized Mixed Models using the package

lme4 (version 1.1.11 [39]). Significance of the model parameters was tested using a Type 3

analysis of deviance (Wald’s χ2 test), as implemented in the package car ([40], version 2.1.1).

We also used the following additional packages in our analyses:

• dplyr (version 0.4.3, [41])

• ggplot2 (version 2.1.0, [42])

• foreach (version 1.4.3, [43])

• doParallel (version 1.0.10, [44])

• knitr (version 1.12.3, [45–47])
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• assertthat (version 0.1, [48])

• broom (version 0.4.0, [49])

We analyzed subjects’ accuracies using Logit Mixed Models [50], and reaction times of cor-

rect trials only with Linear Mixed Models. We preferred the use of Generalized Mixed Models

(GMMs) instead of ANOVAs because of the advantages they provide [39,51–54]. Unlike

ANOVAs, GMMs provide a general framework to model data sampled from different distribu-

tions (e.g., accuracies and RTs). Logit Mixed Effect Models can be used to model categorical

data, such as accuracies [50]; Linear Mixed Effect Models can be used to model normally dis-

tributed data, such as log-transformed reaction times. Moreover, one can better model the

data by accounting for the variance generated by the use of specific stimuli; this is accom-

plished by introducing a random-effects term for the “items” (i.e., the stimuli), which is

“crossed” with the random-effects term for the subjects [51]. The inclusion of random effects

is then statistically tested to determine whether they help model the data better, by comparing

the model of interest with a reduced model (in a stepwise fashion, removing one random effect

at a time; see below). The inclusion of random effects modeling the variance generated by both

subjects and stimuli at the same time can improve the model fit and reduce Type 1 error rates

[54].

Following common practices for analyzing data from visual search paradigms [37,55–57],

we fitted separate models for target present and target absent trials to compare search parame-

ters (such as search slopes) for the two target conditions (present/absent) [37,58]. For each

model, we entered Set Size, Familiarity, and Target Orientation as main effects with all their

interactions. The initial random-effect structure contained both subjects and items terms. For

the latter term we entered the combination of stimuli appearing on the screen regardless of

their position. This allowed us to model the variance due to subject and item (specific images)

differences. We also added an extra regressor that indicated the sex of the target, and added

random slopes with respect to this term for both subjects and items. We considered this term

as a covariate, and thus we did not analyze it further.

The initial random-effect structure was tested using a log-likelihood ratio test against

reduced models (created by removing random slopes first). For the linear models on reaction

times in both target present and absent trials, the final structure contained subjects with ran-

dom slopes and intercepts, and items with random intercepts—the model with random slopes

for items failed to converge, thus we used a less complex model. The final logit models on

accuracies in target present trials had subjects with random intercepts only, while in target

absent trials it had subjects with both random intercepts and slopes.

After fitting the models with zero-sum contrasts for the regressors, we tested statistical sig-

nificance of the fixed-effect terms using a Type 3 analysis of deviance (Wald’s χ2 test), as imple-

mented in the package car [40]. For the models on reaction times we log-transformed the

independent variable to account for the skewness of the distribution of reaction times; visually

inspecting the predicted vs. residual plot confirmed that such a transformation provided a bet-

ter fit for the model. The final linear model was refitted using restricted maximum likelihood

estimation (REML). The analyses reported here can be reproduced using the code shared in

the OSF repository, under analyses/acc-models.Rmd for the models on accuracy, and analyses/
rt-models.Rmd for the models on reaction times.

We used a bootstrapping procedure [59] to investigate the direction of the significant effects

found by the models. Trials were always bootstrapped maintaining the structure of the original

dataset. For example, for any bootstrap sample the number of trials within each subject and

condition (Set Size, Target Presence, Target Orientation, Familiarity, and Target Sex) was pre-

served, and trials were sampled with replacement only within the appropriate subject and
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condition. For the next sections, numbers in square brackets represent 95% basic bootstrapped

confidence intervals (CI) after 10,000 replications.

We estimated search slopes and Set Size 1 intercepts to further quantify subjects’ behavior.

We fitted a regression line for each subject and condition separately to obtain a linear predic-

tion of subjects’ reaction times from set size (number of stimuli presented). The slope of such

lines provides an estimate of the speed of processing for each presented stimulus [58,60]; Set

Size 1 intercepts represent interpolations of those lines were subjects presented with only one

stimulus (i.e., regression line computed at Set Size 1). Slopes and Set Size 1 intercepts provide

information about distractor-rejection and target-recognition processes respectively [37]. To

obtain 95% confidence intervals we bootstrapped the trials (in a stratified fashion, i.e., main-

taining the factorial design of the conditions) and ran the regression model again, repeating

this process 10,000 times.

Results

Accuracy

Target present trials. Subject responses were overall highly accurate, with average accu-

racy in target present trials of 93.29% CI: [92.80, 93.78] (see Fig 2). We found a significant

main effect of set size (χ2 (2) = 75.01, p< .001) and of target orientation (χ2 (1) = 19.37, p <

.001). Subjects were more accurate when fewer distractors appeared on the screen (one distrac-

tor 96.09% [95.43, 96.74]; three distractors 93.62% [92.76, 94.41]; and five distractors 90.16%

[89.14, 91.15]), and when faces were presented upright (upright 94.69% [94.06, 95.31]; inverted

91.89% [91.12, 92.63]). S1 File shows the χ2 values for the other main and interaction terms.

Target absent trials. Subject responses were also highly accurate on target absent trials,

with average accuracy of 97.09% [96.78, 97.41]. We found a significant main effect of set size

(χ2 (2) = 25.54, p< .001), familiarity (χ2 (1) = 6.75, p< .01), and target orientation (χ2 (1) =

16.54, p< .001) but no other significant main or interaction effects (see S1 File). Subjects were

more accurate at saying the target was absent when looking for a familiar face (familiar 97.59%

[97.15, 98.00]; stranger 96.60% [96.10, 97.08]) and when faces were presented upright (upright

97.85% [97.43, 98.25]; inverted 96.34% [95.83, 96.82]). Subjects’ accuracy was lower with six

distractors (two distractors 97.93% [97.47, 98.39]; four distractors 97.53% [97.01, 98.03]; and

six distractors 95.82% [95.16, 96.48]).

Reaction times

Target present trials. All main effects of interest were statistically significant: Set Size (χ2

(2) = 1318.93, p< .001), Familiarity (χ2 (1) = 169.61, p< .001), and Target Orientation (χ2 (1) =

400.49, p< .001). We found significant interactions of Set Size x Familiarity (χ2 (2) = 8.59, p<

.05) reflecting faster reaction times for familiar face trials; of Familiarity x Target Orientation

(χ2(1) = 9.16, p< .001) reflecting a larger familiarity effect for upright faces, and Set Size x Famil-

iarity x Target Orientation (χ2(2) = 11.17, p< .001) reflecting mostly a difference in the effect of

familiarity on slopes for upright versus inverted faces (see S1 File).

Subjects were overall faster when searching for a familiar face than a stranger face, and they

were faster with upright faces than inverted faces (see Fig 3). The advantage for familiar faces

was 114 ms [97, 131] in the upright condition, and 75 ms [55, 95] in the inverted condition,

with a difference of 39 ms [13, 65]). Fig 4 shows the effect size of Familiarity at each set size.

These differences were further analyzed by looking at the estimates of Set Size 1 and slopes.

With upright faces, the Set Size 1 estimates were 632 ms [615, 649] for familiar faces, and 683

ms [663, 702] for stranger faces. With inverted faces, they were 699 ms [677, 722] for familiar

and 783 ms [759, 806] for stranger faces. We found a nonsignificant trend towards a greater
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effect of familiarity for inverted faces: 51 ms [26, 77] for upright faces, and 83 ms [50, 116] for

inverted faces (difference 33 ms [–10, 74]).

The significant interaction terms in the linear mixed-effect model reflected differences in

the search slopes. Search slope estimates were significantly lower for familiar faces than for

stranger faces in the upright condition: 87 ms/item [80, 94] vs. 108 ms/item [101, 116], respec-

tively (difference of 22 ms/item [11, 32]). The search slopes for inverted faces were steeper

than those for upright faces, and they did not differ across familiarity (familiar faces 122 ms/

item [112, 130]; stranger faces 116 ms/item [107, 125]; difference -4 ms/item [–17, 8]).

Target absent trials. All main effects of interest were significant: Set Size (χ2 (2) = 8131.39,

p< .001), Familiarity (χ2 (2) = 414.31, p< .001), and Target Orientation (χ2 (2) = 792.64, p<

.001). The two-way interactions were significant, but the three-way interaction was not: Set Size

x Familiarity (χ2(2) = 6.59, p< .05); Set Size x Target Orientation (χ2(2) = 6.20, p< .05); and

Fig 2. Average accuracy according to target orientation (columns) and presence of the target (rows). Subjects were overall highly accurate, with

better performance when faces were presented upright and with fewer distractors. Red: familiar targets; Blue: stranger targets. Error bars show 95%

bootstrapped confidence intervals.

https://doi.org/10.1371/journal.pone.0178895.g002
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Familiarity x Target Orientation (χ2(1) = 6.75 p< .01) (see S1 File). The average effect size for

Familiarity was 122 ms [110, 135] in the upright condition, and 103 ms [87, 118] in the inverted

condition (difference 20 ms [0, 40]). Fig 4 shows the effect size of Familiarity at each set size.

The search slopes in the target absent trials were about two times those in the target present

trials, consistent with a serial self-terminating search [58,60,61]. Interestingly, search slopes

were steeper when subjects were looking for stranger targets, despite the distractors presented

being the same in both familiar and stranger blocks. With upright faces, the search slope was

184 ms/item [178, 189] for familiar targets and 210 ms/item [204, 215] for stranger targets (dif-

ference 26 ms [19, 34]). The search slopes were steeper for inverted targets, but less so in famil-

iar than stranger blocks (familiar: 210 ms/item [203, 216]; stranger: 237 ms/item [230, 243];

difference 27 ms [18, 36]).

Fig 3. Average reaction times according to presence of the target. Subjects were always faster at determining the presence or absence of a familiar

target face compared to a stranger target face. Solid lines show upright condition, dashed lines show inverted condition. Red: familiar targets; Blue: stranger

targets. Error bars show 95% bootstrapped confidence intervals.

https://doi.org/10.1371/journal.pone.0178895.g003
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Discussion

In this study subjects searched for friends’ faces and strangers’ faces in a visual search task. We

found a processing advantage for personally familiar faces that was robust to face inversion.

Subjects’ behavior could be framed in terms of a self-terminating serial search [60,61], with tar-

get-absent search slopes about twice the target-present ones. In target present trials subjects

were highly accurate both with familiar and stranger targets, showing no evidence of a speed-

accuracy trade-off.

Set Size 1 estimates showed that familiar face targets were processed faster than stranger

target faces when presented both upright and inverted. This result adds to the evidence that

personally familiar faces benefit from facilitated processing in a variety of experimental condi-

tions [13–15] and real-life situations [7].

Critically, in this experiment we showed that the advantage of familiar face processing extended

to inverted faces. Evidence suggests that turning a face upside-down reduces holistic perceptual

Fig 4. Average unstandardized effect size of familiarity for upright and inverted faces in target present and absent trials. Error bars show 95%

bootstrapped confidence intervals.

https://doi.org/10.1371/journal.pone.0178895.g004
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processing and favors feature-based processing [18,19,24,25,29]; see also [20,21]. Thus, the faster

detection of personally familiar faces in the inverted condition suggests that more efficient process-

ing of personally familiar faces rests largely on the enhanced processing of local facial features.

Our findings extend the theoretical relevance of the results by Tong and Nakayama [37],

who used subjects’ own faces as familiar identities. By using faces of subjects’ friends instead of

subjects’ own faces, we made the experimental task closer to everyday experience given that we

usually spend more time looking at the faces of other people, especially personally familiar oth-

ers, than at oneself.

We found that the search slopes differed between familiar and stranger conditions for

upright faces on target present trials, and for both upright and inverted faces on target absent

trials, but not for inverted faces on target present trials. These results indicate that subjects

were faster at rejecting a stranger distractor when looking for a familiar face target than when

looking for a stranger face target, even in target absent trials, in which the stimulus arrays were

equivalent for familiar target and unfamiliar target blocks. The increase of the reaction times

based on the number of items in the search array and two-fold greater search slopes for target

absent trials are consistent with a serial self-terminating search [60,61] that was faster when

searching for familiar face targets than for stranger face targets. This indicates that the internal

representation of a familiar face, against which each distractor is compared, is either more

robust and precise or sparser. We propose that familiarity with a face, consolidated through

extensive exposure and personal interactions, may direct processing to specific features that

are diagnostic of a familiar face’s identity, whereas the representation of a stranger’s face does

not include such learned features and is more holistic [62].

The results of our previous experiments support the hypothesis for a streamlined detection of

familiar faces based on diagnostic, identity-specific features. We have shown that changes in eye

gaze, a local feature that serves as a potent social cue, were detected faster when conveyed by per-

sonally familiar faces [14]. We also showed that personally familiar faces were distinguished from

stranger faces in a saccadic reaction time task at a latency of 180ms [15]. The very rapid detection

of familiarity reported in that study was faster than the time required to build a view-invariant

representation of faces the monkey face patch system [63], further corroborating our hypothesis

that rapid familiarity detection may be based on a simpler, perhaps feature-based, process.

The slightly smaller effect of familiarity on reaction times for inverted faces than for upright

faces, as reflected by the significant Familiarity x Orientation interaction, may suggest that

some of the features of familiar face representations that afford more rapid processing are

configural or holistic. However, the greater magnitude of the familiar advantage even for the

inverted faces shows that this facilitation relies mainly on local features. Related work by others

also indicates that configural information is less important for recognition of a familiar iden-

tity (see [12] for a cogent argument).

An open question remains regarding the stage at which the advantage for visual processing

of familiar faces first appears. Previous evidence supported the idea that this advantage can

occur at pre-attentive stages [13], and within 200 ms from stimulus presentation [15] (see also

[17]), suggesting that a more advanced stage of processing, when the participant is aware of the

identity being shown, might not be necessary. In the present study no measure was collected as

to whether participants correctly identified the target face at every trial, thus we were not able to

disambiguate between detection and identification. However, building upon previous evidence,

we refer to the advantage reported here as an advantage for detection of familiar faces. More-

over, such advantage persists after face inversion, and even when the targets are absent. This

suggests that participants could be creating a better search template for familiar faces, but not

unfamiliar ones, based on diagnostic features of the face, that were consolidated through

repeated and extensive interaction, and stable across limited image variations (see Fig 1).
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The experiment reported here was carefully controlled for low-level visual differences that

could confound the results. To this end, we used a relatively limited set of images (32 images for

16 different identities), which could have introduced a learning component in the task. However,

even if such a learning effect was present, familiar faces still showed an advantage. Learning dur-

ing the experimental task would have reduced such an effect. The persistence of this advantage

indicates that robust representations for personally familiar faces cannot be completely explained

by simple visual learning over the time span of an experiment [37]. Building upon controlled

experiments such as the one reported here, future studies should adopt more varied (and thus

more challenging) images, perhaps taken from naturalistic settings, in order to quantify the

advantage for familiar faces with more ecologically valid stimuli [10,12,64].

In summary, the results of our experiment add to the existing evidence that the human

visual system is finely tuned for rapid detection of familiar faces, much more so than of

stranger faces. Participants searched for a familiar or stranger identity among distractors pre-

sented in either an upright or inverted orientation. They responded faster when searching for

familiar faces even in the inverted condition. Our results suggest that robust representations

for familiar faces contain information about idiosyncratic facial features that allow subjects to

detect or reject identities when searching for a friend’s face in a crowd of stranger faces.
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