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Abstract
Purpose Diffusion-weighted imaging (DWI) plays an important role in the preoperative assessment of gliomas; however, the
diagnostic performance of histogram-derived parameters from mono-, bi-, and stretched-exponential DWI models in the grading
of gliomas has not been fully investigated. Therefore, we compared these models’ ability to differentiate between high-grade and
low-grade gliomas.
Methods This retrospective study included 22 patients with diffuse gliomas (age, 23–74 years; 12 males; 11 high-grade and 11
low-grade gliomas) who underwent preoperative 3 T-magnetic resonance imaging from October 2014 to August 2019. The
apparent diffusion coefficient was calculated from the mono-exponential model. Using 13 b-values, the true-diffusion coefficient,
pseudo-diffusion coefficient, and perfusion fraction were obtained from the bi-exponential model, and the distributed-diffusion
coefficient and heterogeneity index were obtained from the stretched-exponential model. Region-of-interests were drawn on each
imaging parameter map for subsequent histogram analyses.
Results The skewness of the apparent diffusion, true-diffusion, and distributed-diffusion coefficients was significantly
higher in high-grade than in low-grade gliomas (0.67 ± 0.67 vs. − 0.18 ± 0.63, 0.68 ± 0.74 vs. − 0.08 ± 0.66, 0.63 ±
0.72 vs. − 0.15 ± 0.73; P = 0.0066, 0.0192, and 0.0128, respectively). The 10th percentile of the heterogeneity index
was significantly lower (0.77 ± 0.08 vs. 0.88 ± 0.04; P = 0.0004), and the 90th percentile of the perfusion fraction was
significantly higher (12.64 ± 3.44 vs. 7.14 ± 1.70%: P < 0.0001), in high-grade than in low-grade gliomas. The com-
bination of the 10th percentile of the true-diffusion coefficient and 90th percentile of the perfusion fraction showed
the best area under the receiver operating characteristic curve (0.96).
Conclusion The bi-exponential model exhibited the best diagnostic performance for differentiating high-grade from low-grade
gliomas.
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Introduction

Gliomas are the most common primary intracranial neoplasms
and have various histological grades that reflect malignancy or
aggressiveness, according to the World Health Organization
(WHO) classification [1]. Distinguishing high-grade gliomas
(HGGs; grades III and IV) from low-grade gliomas (LGGs;
grades I and II) is important, as their prognoses and therapeu-
tic strategies differ. HGGs are usually treated surgically,
followed by concurrent radiation and chemotherapy [2].
HGGs misdiagnosed as LGGs are treated less aggressively
than necessary, and vice versa. Therefore, differentiating gli-
oma types before initiating treatment is desirable.

Diffusion-weighted imaging (DWI) provides useful imag-
ing biomarkers for grading gliomas, enabling the quantitative
assessment of tumor characteristics without tracer injections.
The apparent diffusion coefficient (ADC), which is a useful
biomarker reflecting cellular density, is conventionally calcu-
lated using two b-values (0 and 1000 s/mm2) [3]. It has good
diagnostic performance in differentiating HGGs from LGGs
[3], but there is substantial overlap [4, 5]. Using the ADC in
the differential diagnosis may be an oversimplification; it as-
sumes that the only underlying mechanism of observed signal
decay is the diffusive motion of water molecules.

Le Bihan et al. [6] proposed using the intravoxel incoherent
motion (IVIM) to simultaneously measure perfusion and dif-
fusion. At low b-values, the intravoxel motion of water mol-
ecules in in vivo tissues is greatly influenced by the microcir-
culation of blood capillaries (perfusion), whereas at high b-
values, true diffusive motion predominates, resulting in bi-
exponential signal decay. The bi-exponential model for
IVIM imaging is useful for differentiating HGGs and LGGs
in adults and children [7–9]. Additionally, Bennett et al. intro-
duced the stretched-exponential model [10] to incorporate
multicomponent intravoxel diffusion, which leads to non-
exponential signal decay. This model enables the measure-
ment of the water diffusion heterogeneity index α, which
ranges from 0 to 1 (a value of 1 indicates water diffusion).
Accumulating evidence suggests that stretched-exponential
DWI is useful for assessing gliomas [11–16] and other tumors,
including breast [17], pancreatic [18], hepatic [19], prostate
[20], bladder [21], and renal cancers [22].

Histogram analysis is a quantitative technique that has
been used for grading gliomas [23, 24]. Kang et al. sug-
gested that histogram-derived ADC values of the whole
tumor volume were useful for grading gliomas, while a
single ADC value of the regional region-of-interest (ROI)
might not effectively reflect the heterogeneous nature of
gliomas [24]. To date, two studies [13, 14] have compared
the diagnostic performance of mono-, bi-, and stretched-
exponential DWI for grading gliomas, using mean ROI
values. To the best of our knowledge, a histogram analy-
sis has not been applied to this particular problem.

Therefore, the purpose of this study was to compare the
imaging parameters obtained from mono-, bi-, and
stretched-exponential DWI models for differentiating
HGGs from LGGs.

Methods

This retrospective study was approved by our Institutional
Review Board, and the requirement for informed consent
was waived.

Patients

The initial population of 66 patients (55 HGGs and 11 LGGs)
met the following inclusion criteria: (1) consecutive patients
with histopathologically proven gliomas between October
2014 and August 2019; (2) MRI scans that had been per-
formed within 2 weeks before surgery; (3) patients who had
not undergone surgical treatment at the time of the first MRI;
and (4) patients for whom the 13 b-values of diffusion imag-
ing were acquired. Of the 66 patients, 44 were excluded to
create a cohort of equal numbers of consecutive HGG and
LGG patients (for statistical simplicity as well as preventing
bias from overrepresentation of HGGs; all data [N = 55 HGG
patients] is shown in Online Resources 4 and 5). In total, 22
patients, including 11 consecutive patients with HGGs (range,
median age; 31–71, 65 years; 4 males and 7 females) treated
from June 2018 to October 2018, and 11 with LGGs (23–74,
median age; 45 years; 8 males and 3 females), were enrolled
from October 2014 to August 2019. The inclusion and exclu-
sion criteria are summarized in Online Resource 1. The period
of enrollment differed between patients with HGGs and
LGGs, since we included the most recent 11 consecutive pa-
tients with HGGs.

Histopathologic diagnosis

The patients’ demographics and pathological diagnoses,
based on the 2016 WHO classification [1], are as follows:
the 11 HGGs included 7 glioblastomas (isocitrate dehydroge-
nase (IDH)-wild type; WHO grade IV; age, 48–71 years; 3
males and 4 females); 1 diffuse midline glioma (H3 K27M-
mutant type; WHO grade III; age, 31 years; female); 2 ana-
plastic astrocytomas (IDH-mutant type; WHO grade III; age,
32 and 71 years; 1 male and 1 female); and 1 anaplastic
oligodendroglioma (IDH-mutant type; WHO grade III; age,
47 years; female). The 11 LGGs included 5 diffuse astrocyto-
mas (IDH-mutant type; WHO grade II; age, 23–45 years; 4
males and 1 female); 4 diffuse astrocytomas (IDH-wild type;
WHO grade II; age, 29–74 years; 3 males and 1 female); and 2
oligodendrogliomas (IDH-mutant type, WHO grade II; age,
49 and 73 years; 1 male and 1 female).
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MRI

MRI was performed as previously described [9] using 3 TMR
scanners (Achieva 3.0 T TX or Ingenia 3.0 T CX; Philips
Healthcare, Best, The Netherlands) with 8- or 15-channel head
coils. DWI was obtained in the axial plane using a two-
dimensional single-shot spin-echo echo-planar imaging diffu-
sion sequence. We used 13 b-values (0, 10, 20, 30, 50, 80,
100, 200, 300, 400, 600, 800, and 1000 s/mm2) in three or-
thogonal directions. At our institution, preoperative imaging
of patients with brain tumors routinely uses the same 13 b-
values. The other MRI parameters were as follows: repetition
time/echo time, 2500/70 ms; matrix, 128 × 126 (reconstructed
to 256 × 256); number of excitations, 1; section thickness/gap,
5/1 mm; FOV, 230 × 230 mm2; number of sections, 11; sen-
sitivity encoding factor, 1.5; and total scan time, 2 m 7 s.
Standard MR sequences (T1-, and T2-weighted images, fluid
attenuated inversion recovery, and contrast-enhanced T1-
weighted images) were obtained for diagnostic purposes.
DWI was acquired before contrast agent injection. Imaging
data were used for mono-, bi-, and stretched-exponential
DWI models for subsequent image analysis. No denoising or
co-registration for the DWI data were performed before
analysis.

Image analysis

From the acquired images, model fitting was performed using
image analyzer software (diffusion analysis software,
EXPRESS 2.0; Philips Healthcare) [25]. The mono-
exponential DWI provides the ADC values using the formula:

SI1000
SI0

¼ exp −b� ADCð Þ ð1Þ

where SI0 corresponds to the signal intensity without diffusion
weighting (b = 0 s/mm2) and SI1000 is the signal intensity at
b = 1000 s/mm2. For bi-exponential DWI data analysis, the bi-
exponential model was defined by the following equation:

SIb
SI0

¼ f � exp −b� D*� �þ 1− fð Þ � exp −b� Dð Þ ð2Þ

where SIb is the signal intensity acquired with different b-
values, f is the perfusion fraction, D* is the pseudo-diffusion
coefficient, and D is the true-diffusion coefficient. The bi-
exponential DWImodel is based on the fit of three parameters.
First, the D was determined from data with higher b-values
(b = 300, 400, 600, 800, and 1000 s/mm2). When high b-
values were used and the IVIM component was negligible,
the following least-squares curve fit was used:

SIb
SI0

¼ exp −b� Dð Þ ð3Þ

Second, the segmented method was used to calculate f ac-
cording to the following equation:

f ¼ SI0−SIinterð Þ=SI0 ð4Þ

Here, SIinter is the intersection point of the y-axis and line
through ln SI300 and ln SI1000. Third,D* was derived from the
mono-exponential fit to Eq. (2).

The stretched-exponential DWI model is defined as fol-
lows:

SIb
SI0

¼ exp − b� DDCð Þαgf ð5Þ

where DDC is the distributed-diffusion coefficient, and α is
the heterogeneity index. All 13 b-values were used to provide
the best-fit parameter values for DDC and α simultaneously.

Two radiologists carefully evaluated each image on con-
sensus, identified the T2-prolonged region where tumors
existed, and drew ROIs on each tumor map for subsequent
analysis. We used the single maximum section of each tumor
for the ROI analysis. When placing the ROIs for eachmap, we
carefully avoided cortical gray matter, which affects the f val-
ue. ROIs were copied on each parameter map to obtain pixel-
by-pixel values for histogram analyses. The 10th, 25th, 50th
(median), 75th, and 90th percentiles, as well as the mean,
skewness, and kurtosis, of each parameter were recorded from
the histograms. Note that our definition of an ROImay include
edematous or necrotic regions within the tumor.

Statistical analysis

The percentiles, as well as the mean, skewness, and kurtosis of
each parameter (i.e., ADC, D, D*, f, DDC, and α), were com-
pared between HGGs and LGGs using the Mann-Whitney U
test. The diagnostic performance of eachmodel parameter was
evaluated by receiver operating characteristic (ROC) curve
analysis. Combinations of two parameters from bi- and
stretched-exponential DWI models were also assessed. Two
independent areas under the curves (AUCs) were compared
using the method developed by Delong et al. [26]. All statis-
tical analyses were performed using commercial software pro-
grams (JMP, version 14.0.0; SAS Institute, Cary, NC, USA;
Prism 7.0, GraphPad Software, La Jolla, CA, USA). P values
< .05 were considered statistically significant.

Results

Histogram analysis

Figure 1 shows the normalized histograms of each parameter
over all pixels in tumor ROIs. The ADC,D, DDC, and α from
HGGs all exhibited a slight leftward shift (“+” skewness)
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relative to those from LGGs, while the f fromHGGs showed a
slight rightward shift (“−” skewness) relative to that from
LGGs. No significant difference in D* between the two types
of gliomas was observed.

Differentiation of HGGs and LGGs using parameter
measurements

Table 1 shows the parameter measurements in the HGGs and
LGGs. The 10th, 25th, 50th, 75th, and 90th percentiles of each
parameter, as well as skewness and kurtosis, were all recorded
from the histograms; the most useful values of each parameter
are shown in Table 1. The entire set of our results can be found
in Online Resource 2. For diffusion-related parameters, the
skewness of ADC (ADCskw), Dskw, and DDCskw were signif-
icantly higher in HGGs than in LGGs (0.67 ± 0.67 vs. − 0.18
± 0.63, 0.68 ± 0.74 vs. − 0.08 ± 0.66, 0.63 ± 0.72 vs. − 0.15 ±
0.73; P = 0.007, 0.002, and 0.01, respectively). The 10th per-
centile of α (α10) was significantly lower in HGGs than in
LGGs (0.77 ± 0.08 vs. 0.88 ± 0.04; P < 0.001). The 90th per-
centile of the perfusion fraction (f90) was significantly higher
in HGGs than that in LGGs (12.64 ± 3.44 vs. 7.14 ± 1.70%;
P < 0.001). There was no significant difference in D* for dif-
ferentiating between the two groups of gliomas (P = 0.30 in
the kurtosis of D*).

ROC analysis

Table 2 shows the diagnostic performance and most use-
ful values of the investigated parameters in differentiat-
ing HGGs and LGGs. The entire set of our results can
be found in Online Resource 3. In the single-parameter
analysis, the f90 showed one of the highest diagnostic
performances (AUC = 0.96), with an optimal diagnosis

Table 1 Comparison of parameters between high- and low-grade dif-
fuse gliomas

Parameters High-grade glioma Low-grade glioma P value

ADCskw 0.67 (0.22–1.12) − 0.18 (− 0.60–0.24) 0.007a

Dskw 0.68 (0.18–1.18) − 0.08 (− 0.52–0.37) 0.02a

DDCskw 0.63 (0.15–1.12) − 0.15 (− 0.64–0.33) 0.01a

α10 0.77 (0.72–0.83) 0.88 (0.86–0.91) < 0.001a

D*kur 12.85 (− 1.69–27.40) 13.13 (− 5.09–31.35) 0.30a

f90 (%) 12.64 (10.33–14.95) 7.14 (6.00–8.28) < 0.001a

Data are expressed as mean values and 95% confidence intervals

α heterogeneity index, ADC apparent diffusion coefficient, D true-
diffusion coefficient,D* pseudo-diffusion,DDC distributed-diffusion co-
efficient, f perfusion fraction, kur kurtosis, skw skewness
aMann-Whitney U test

Fig. 1 Normalized histograms of each parameter Diffusion-related pa-
rameters (ADC, D, and DDC) and the heterogeneity index α from
HGGs exhibit a slight leftward shift (“+” skewness) relative to those from
LGGs, while the f from HGGs shows a slight rightward shift (“−” skew-
ness) relative to that fromLGGs. There is no difference in theD* between

the two types of gliomas. α heterogeneity index, ADC apparent diffusion
coefficient, D true-diffusion coefficient, DDC distributed diffusion coef-
ficient, D* pseudo-diffusion coefficient, f perfusion fraction, HGG high-
grade diffuse glioma, LGG low-grade diffuse glioma
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cutoff value of 9.1%. The α10 also showed good diag-
nostic performance (AUC = 0.91, cutoff value 0.85).

In the combined-parameters analysis, the combination of
the D10 and f90 from the bi-exponential DWI model also
showed one of the highest diagnostic performances (AUC=
0.96, cutoff values 0.87 × 10−3 mm2/s and 9.1% for D10 and
f90, respectively). The combination of the DDCskw and α10
from the stretched-exponential DWI model exhibited good
diagnostic performance (AUC = 0.93, cutoff values − 0.64
and 0.76 for DDCskw and α10, respectively); however, no
significant differences were detected between these combina-
tions (D10 + f90, DDCskw +α10) and f90 (P = 1.000, 0.2059,
respectively) or α10 (P = 0.2894, 0.6603, respectively).

Figures 2 and 3 show representative images from patients
with grades IV (glioblastoma) and II (oligodendroglioma) gli-
omas, respectively.

Discussion

We examined histogram-based parameters from mono-, bi-,
and stretched-exponential DWI models to compare their diag-
nostic performance in distinguishing HGGs from LGGs. The
ADCskw, Dskw, and DDCskw were found to be useful diffusion
parameters, providing good sensitivity and moderate specific-
ity. Previous reports revealed that the ADC correlates well
with cell density [27, 28]. Dense cells provide greater restric-
tion of water movement, presumably due to increased cell
membranes and intracellular space fraction. Accordingly,
ADC measurements have been utilized to assess cell density
in various tumors. The ADC calculated from two b-values (0
and 1000 s/mm2) decreases with glioma grade based on their
histological features, including cell proliferation [29–31]. In
the bi-exponential model, D was fitted only using high b-
values, while the ADC and DDC were not. Therefore, D

reflects cell density more effectively than ADC and DDC by
eliminating the effect of perfusion. The fast blood flow of the
microcirculation observed at low b-values would yield slightly
higher ADC and DDC values relative to the D value, as seen in
our results. Furthermore, skewness represents a measure of
asymmetry of the probability distribution. If a histogram has an
elongated tail on the left side of themean, it is negatively skewed;
conversely, if a histogram has an elongated tail on the right side
of the mean, it is positively skewed. In the present study,
diffusion-related parameters from HGGs exhibited a slight left-
ward shift, meaning they were positively skewed. Therefore,
HGGs had a greater frequency of pixels with lower diffusion-
related parameters than the mean, compared with LGGs. While
various components, such as edematous and necrotic tissues,
exist within the HGGs, the result indicates the presence of more
regions of higher density cells (i.e., tumor cells), showing the
asymmetric leftward shift of the histograms. King et al. [32]
revealed that there is a significant intra-treatment decrease in
skewness in patients with head and neck squamous cell carcino-
mas. Our diffusion parameter results are consistent with those of
previous studies [8, 9, 32].

The D* was not helpful in glioma grading, as reported
previously [8, 9, 33]. The D* is a parameter of the fast com-
ponent of the bi-exponential model and is sensitive to glioma
microcirculation. Its poor reproducibility could be due to car-
diac motion [34]. Cardiac-gating techniques may improve D*
assessment in tumors [35].

Our results indicated that a high percentile of f (i.e., f90)
from the bi-exponential model is a powerful imaging bio-
marker for differentiating HGGs from LGGs. One aspect of
glioma malignancy is angiogenesis, a key feature of the his-
topathological assessment in the WHO grading system. In the
bi-exponential model, the fast component at low b-values is
assumed to reflect the blood flow of the microcirculation,
while the slow component at high b-values is governed by

Table 2 Diagnostic performance
of parameters in differentiating
between high- and low-grade dif-
fuse gliomas

Parameters Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Positive
predictive
value (%)

Negative
predictive
value (%)

Cutoff
value

AUC

ADCskw 72.7 90.9 81.8 88.9 76.9 > 0.38 0.83

Dskw 63.6 90.9 77.3 87.5 71.4 > 0.66 0.79

D*skw 81.8 54.6 68.2 64.3 75.0 > 1.50 0.62

f90 (%) 100 90.9 95.5 91.7 100 > 9.1 0.96

DDCskw 63.6 90.9 77.3 87.5 71.4 > 0.48 0.81

α10 81.8 90.9 86.4 90.0 83.3 ≤ 0.85 0.91

D10 + f90 100 90.9 95.5 91.7 100 ≤ 0.87,
> 9.1

0.96

DDCskw +α10 81.8 90.9 86.4 90.0 83.3 ≤ − 0.64,
≤ 0.76

0.93

α heterogeneity index, ADC apparent diffusion coefficient, AUC area under the curve, D true-diffusion coeffi-
cient, D* pseudo-diffusion coefficient, DDC distributed-diffusion coefficient, f perfusion fraction
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the pure diffusive motion of water molecules. The f90 of
HGGs was significantly higher than that of LGGs, in agree-
ment with previous studies [7–9, 36]. However, Bai et al.
reported that the f was significantly lower in HGGs than in
LGGs [13], which contradicts our results. Further investiga-
tions are needed to resolve this issue.

A low percentile of the heterogeneity index α (i.e., α10)
from the stretched-exponential model is also useful for differ-
entiating HGGs from LGGs. The α measures how much the
signal decay deviates from the mono-exponential decay with-
in a voxel. A value of α close to one indicates high homoge-
neity in apparent diffusion. Lower values of α indicate high
heterogeneity, namely, the multiple-component decay from
multiple-apparent diffusion of water molecules. In the WHO
glioma grading system, HGGs require the presence of histo-
pathological features such as anaplasia of glial cells, mitotic
activity, and microvascular proliferation and/or necrosis,
while LGGs require at most cytological atypia alone [1].
Therefore, HGGs would include more distinct structural

components within the voxel and are microscopically more
heterogeneous than are LGGs, providing lower values of α.
Few studies have applied the α to brain tumors. Kwee et al.
demonstrated that the α of HGGs is significantly different
from that of normal brain structures [11]. Other studies
showed that the α of HGGs is significantly lower than that
of LGGs [13, 14, 16], consistent with our findings.

In the combined-parameters analysis, the combination of
the D10 and f90 showed the best diagnostic performance of all
the parameters investigated in our study. In combination, these
two parameters can be used to evaluate different pathologic
features, vascularity, and cell density in gliomas. Some glio-
blastomas exhibit high vascularity and low cell density due to
intratumoral necrosis. Thus, the bi-exponential DWI model is
particularly useful in such cases because it can simultaneously
evaluate both, as well as perfusion parameters, in the same
anatomical space, which provides an advantage over the
single-parameter analysis of the mono-exponential model.
Although the AUC value for the combined DDCskw and

Fig. 2 Images from a 70-year-old woman with histologically proven
glioblastoma, IDH-wild type (WHO grade IV). Diffusion-related coeffi-
cient maps show heterogeneous masses of low values (a ADC map; b D
map; c DDC map; 0.79, 0.63, 0.60 × 10−3 mm2/s, respectively) in the
right parietal lobe and centrum semiovale (arrows). There is a substantial
restricted diffusion in the right frontal deep white matter (arrowheads). d

The T2-weighted image shows heterogeneously hyperintense foci in the
mass. e The fmap shows a high value (15.6%) in the lesion. f The αmap
shows a low value (0.65) in the lesion. α heterogeneity index, ADC
apparent diffusion coefficient, D true-diffusion coefficient, DDC distrib-
uted diffusion coefficient, f perfusion fraction, IDH isocitrate dehydroge-
nase, WHO World Health Organization
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α10 was lower than that for the combined D10 and f90, it
achieved a good diagnostic performance. The stretched-
exponential model enables the simultaneous measurement of
diffusion and heterogeneity. Other tumors with different his-
tological features would show different patterns of diffusion,
vascularity, and heterogeneity. It would be useful to assess
which model is most effective for differentiating tumor
malignancies.

This study has some limitations. First, the number of pa-
tients was small. Moreover, we matched the number of pa-
tients with HGGs and LGGs for statistical simplicity in this
pilot study based on preliminary data. It would be desirable to
proceed with a subsequent study with a larger number of pa-
tients. Second, the study design was retrospective in nature;
thus, a patient selection bias could not be completely elimi-
nated. Third, we did not evaluate b-values > 1000 s/mm2 in
the measurements, which is unlike previous studies; however,
an optimal upper b-value limit for brain tumors has not been
determined. Fourth, we did not include the whole tumor vol-
ume in the histogram analysis. Instead, we used the maximum

section of the glioma, with its boundary defined by
hyperintensity on T2-weighted images. However, in a previ-
ous study, whole-volume histogram analysis did not yield
more accurate results than single-slice methods and took lon-
ger to complete [37]. In the ROI analysis, edematous or ne-
crotic regions were included. However, identifying these re-
gions would be a subjective process. Instead, we employed a
histogram analysis with ROIs of all T2-prolonged areas of
each tumor, which we believe is a more objective method, in
the current study.

Conclusions

The mono-, bi-, and stretched-exponential DWI models
provided useful imaging biomarkers related to essential
histological features for the differentiation of gliomas
using histogram analysis. In particular, the bi-
exponential model exhibited the best diagnostic perfor-
mance for differentiating HGGs from LGGs either by

Fig. 3 Images from a 49-year-old woman with histologically proven
oligodendroglioma, IDH-mutant type (WHO grade II). Diffusion-
related coefficient maps show a heterogeneous mass of high values (a
ADCmap, b Dmap, c DDCmap; 1.04, 1.00, 1.05 × 10−3 mm2/s, respec-
tively) in the right frontal lobe (arrows). d The T2-weighted image shows

heterogeneously hyperintense mass. e The f map shows a low value
(6.2%) in the lesion. f α map shows a high value (0.89) in the lesion. α
heterogeneity index, ADC apparent diffusion coefficient,D true-diffusion
coefficient, DDC distributed diffusion coefficient, f perfusion fraction,
IDH isocitrate dehydrogenase, WHO World Health Organization

821Neuroradiology (2020) 62:815–823



evaluation of the perfusion parameter or both the diffu-
sion and perfusion parameters simultaneously, thereby
providing a helpful noninvasive diagnostic method for
grading gliomas.
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