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Mast cells play an effector role in innate immunity, allergy, and inflammation. Antigen-
mediated activation of mast cells initiates signaling events leading to Ca2+ response 
and the release of inflammatory and allergic mediators from granules. Diseases asso-
ciated with deregulated mast cell functions are hard to treat and there is an increasing 
demand for new therapeutic strategies. Miltefosine (hexadecylphosphocholine) is a new 
candidate for treatment of mast cell-driven diseases as it inhibits activation of mast 
cells. It has been proposed that miltefosine acts as a lipid raft modulator through its 
interference with the structural organization of surface receptors in the cell membrane. 
However, molecular mechanisms of its action are not fully understood. Here, we report 
that in antigen-activated bone marrow-derived mast cells (BMMCs), miltefosine inhibits 
degranulation, reorganization of microtubules, as well as antigen-induced chemotaxis. 
While aggregation and tyrosine phosphorylation of IgE receptors were suppressed in 
activated cells pre-treated with miltefosine, overall tyrosine phosphorylation levels of 
Lyn and Syk kinases, and Ca2+ influx were not inhibited. In contrast, lipid raft disruptor 
methyl-β-cyclodextrin attenuated the Ca2+ influx. Tagged-miltefosine rapidly localized 
into the cell interior, and live-cell imaging of BMMCs with labeled intracellular granules 
disclosed that miltefosine inhibited movement of some granules. Immunoprecipitation 
and in vitro kinase assays revealed that miltefosine inhibited Ca2+- and diacylglycerol- 
regulated conventional protein kinase C (cPKC) isoforms that are important for mast cell 
degranulation. Inhibition of cPKCs by specific inhibitor Ly333531 affected activation of 
BMMCs in the same way as miltefosine. Collectively, our data suggest that miltefosine 
modulates mast cells both at the plasma membrane and in the cytosol by inhibition of 
cPKCs. This alters intracellular signaling pathway(s) directed to microtubules, degran-
ulation, and migration.
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Abbreviations: Ab(s), antibody(ies); Ag, antigen; BMMC, bone marrow-derived mast cell; BSA, bovine serum albumin; DNP, 
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immunoreceptor tyrosine-based activation motifs; MβCD, methyl-β-cyclodextrin; mAb, monoclonal antibody; 4-NAG, 
4-nitrophenyl N-acetyl-β-D-glucosaminide; cPKCs, Ca2+- and diacylglycerol-regulated conventional protein kinases; PI3K, 
phosphatidylinositol 3-kinase; SOCE, store-operated Ca2+ entry; WGA, wheat germ agglutinin.
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inTrODUcTiOn

Mast cells play a pivotal role in innate immunity, allergy, and 
inflammation. Diseases associated with deregulated mast cell fun-
ctions are hard to treat, and so the demand for new and better 
treatments targeting mast cell activation pathways increases. Mast  
cells express on their surfaces receptors with a high affinity for IgE 
(FcεRIs). Aggregation of FcεRIs by multivalent antigen (Ag)-IgE 
complexes leads to activation of signaling pathways resulting 
in the release of Ca2+ from the endoplasmic reticulum (ER) and 
sub sequent activation of store-operated Ca2+ entry (SOCE). The 
influx of free Ca2+ is important for replenishment of Ca2+ in ER, but  
also works as a second messenger for further signaling. Acti vation 
events result in the release of preformed granule mediators and 
de novo synthesis and secretion of bioactive compounds, includ-
ing lipid mediators, cytokines, and chemokines (1). Besides that, 
mast cell activation by FcεRI aggregation is accompanied with 
changes in cell morphology, enhanced adhesion, and migration. 
It was reported that activation of mast cells induces increased 
formation of microtubules (2, 3) and their reorganization into 
protrusions containing microtubules (microtubule protrusions) 
(4, 5). Independent of FcεRI aggregation, the activation events 
can be mimicked by non-specific activators, such as protein 
tyrosine phosphatase inhibitor pervanadate, inhibitor of ER 
Ca2+-ATPase pumps thapsigargin (4), or calcium ionophore 
A23187 (6).

A promising candidate for novel therapeutic strategies in mast 
cell-driven diseases is miltefosine (hexadecylphosphocholine), as 
it inhibits activation in human mast cells (7) and reduces disease 
progression in patients with mast cell-derived mastocytosis (8), 
urticaria (9), and atopic dermatitis (10). Moreover, miltefosine is 
used as a treatment of leishmaniasis (11) and free-living amebae 
infections (12).

Miltefosine is a derivative of plasmalogen phospholipids (13), 
which is taken up by cells in a lipid raft-dependent manner (14). 
It has been proposed that miltefosine acts as a lipid raft modula-
tor through its interference with the structural organization 
of surface receptors in the cell membrane (15). Besides that, it 
modulates different signaling pathways. It has been reported 
that miltefosine affects phosphatidylcholine synthesis and 
stress-activated protein kinase/Jun N-terminal kinase apoptotic 
pathway (16), phosphatidylinositol 3-kinase (PI3K)/Akt survival 
pathway (17), as well as the activity of phospholipase Cβ (18), 
phospholipase D (19), and protein kinase C (PKC) (20). Despite 
this knowledge, the molecular mechanisms of miltefosine action 
in mast cells remain poorly understood.

To get deeper insight into the function(s) of miltefosine in  
mast cells we evaluated early stages of cell activation after cross-
linking of FcεRIs, Ca2+ influx, degranulation, microtubule reor-
ganization, and migration in bone marrow-derived mast cells 
(BMMCs) treated with miltefosine. Moreover, we localized milte-
fosine in BMMCs and evaluated its effect on intracellular granule 
movement. Our results indicate that miltefosine does not regulate 
mast cells only through lipid raft modulation, but also by inhibition 
of Ca2+-dependent PKCs affecting cytosolic signaling pathways 
that modulate microtubule organization, degranulation, and 
migration of mast cells.

MaTerials anD MeThODs

reagents
Calcium ionophore A23187, dinitrophenyl-albumin (DNP-
albumin), fibronectin, Ly333531, methyl-β-cyclodextrin (MβCD),  
miltefosine, probenecid, puromycin, thapsigargin, Trypan blue, 
and 4-nitrophenyl N-acetyl-β-D-glucosaminide (4-NAG) were 
from Sigma-Aldrich (St. Louis, MO, USA). Fura-2-acetoxymetyl 
ester (Fura-2-AM) was purchased from Invitrogen (Carlsbad, CA,  
USA). Collagen I was from Advanced BioMatrix (San Diego, CA, 
USA). Protein A Sepharose™ CL-4B was from GE Healthcare 
Life Sciences (Chicago, IL, USA) and SuperSignal WestPico 
Chemiluminescent reagent was from Pierce (Rockford, IL, USA). 
Wheat germ agglutinin (WGA) conjugated with Alexa Fluor 555 
(WGA-AF555) was purchased from Molecular Probes (Eugene, 
OR, USA).

antibodies
Mouse monoclonal antibody (mAb) TUB 2.1 (IgG1) to β-tubulin 
conjugated with indocarbocyanate (Cy3), mouse mAb SPE-7  
(IgE) specific for DNP, and mouse mAb PY-20 (IgG2b) to phos-
photyrosine were from Sigma-Aldrich (St. Louis, MO, USA). 
α-Tubulin was detected with rabbit Ab (GTX15246) from Gene-
tex (Irvine, CA, USA). Rabbit polyclonal Ab to mouse IgE was 
described previously (21) and rabbit mAb to PKCαβγ was from 
Abcam (Cambridge, UK). Mouse mAb SKB1 (IgG) to Akt and 
mouse mAb 4G10 (IgG2b) to phosphotyrosine conjugated with 
horseradish peroxidase (HRP) were from Upstate Laboratories 
(Syracuse, NY, USA). Rabbit polyclonal Abs to Lyn (Lyn44), 
Syk (N-19), and phospho-Akt (Ser473) were from Santa Cruz 
Biotechnology (Dallas, TX, USA). Rabbit Ab to phospho-Akt 
(Thr308) was from Cell Signaling (Danvers, MA, USA). Prepara-
tion of rabbit Ab to LAT and mouse mAb LAT.1D1 (IgG2a) to 
LAT were described previously (22, 23). Mouse mAb TU-32 
(IgG1) to γ-tubulin was described previously (24). Anti-mouse 
and anti-rabbit Abs conjugated with HRP were from Promega 
Biotec (Madison, WI, USA). Anti-mouse Ab conjugated with 
DyLight549 was from Jackson ImmunoResearch Laboratories 
(West Grove, PA, USA).

cell cultures and activation
Primary culture of bone marrow-derived mast cells from BALB/c 
and cells of mouse BMMC lines (25) were prepared and cultured  
as previously described (4). For immunofluorescence experi-
ments, cells were overlaid on fibronectin-coated coverslips (4). 
Cells were only sensitized with DNP-specific IgE (mouse mAb 
SPE-7; 1 µg/ml) for 4 h in culture medium without 10% WEHI-3 
cell supernatant and activated with Ag (DNP-albumin conjugate;  
1  µg/ml; 30–40  mol DNP/mol albumin) for 3  min in culture 
medium with 0.5% FCS and without 10% WEHI-3 cell super-
natant (activation medium) (4). Alternatively, sensitized cells 
were activated by crosslinking of bound IgE with anti-mouse Ab  
conjugated with DyLight549 (1.5 µg/ml) for 20 min at 37°C as 
described previously (26). Cells were also activated for 15 min 
at 37°C in activation medium containing 2 µM thapsigargin or  
pervanadate as described previously (4) or 0.5  µM ionophore 
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A23187. Control human retinal pigment epithelial cells hTERT-
RPE1 (RPE1) (Dr. M. Bonhivers, Université Bordeaux, Bordeaux, 
France) were cultured as described previously (27).

Cells were pre-treated with miltefosine at final concentration 
5–25  µM for 15–60  min at 37°C prior to activation. In some 
cases, cells were incubated with 1–15  µM BODIPY-labeled 
miltefosine (MT-11c-6EtBDPY) (28) for 1–60 min at 37°C. If not 
specified otherwise, cells were pre-treated with miltefosine or 
BODIPY-miltefosine at final concentration of 15 µM for 15 min, 
and compounds were also present in the course of activation. 
Alternatively, cells were incubated under the same conditions 
with 0.015–10 mM MβCD or 0.5–15 µM Ly333531.

Trypan blue exclusion test was used to evaluate the effect of 
miltefosine treatment on viability of BMMCs.

reverse Transcription Pcr
Total RNAs from BMMCs or mouse brain were isolated by 
the RNeasy Mini kit (QIAGEN, Valencia, CA, USA) and 
converted to cDNAs using the SuperScript® VILO cDNA 
Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, 
USA) according to the manufacturer’s protocol. PCRs were 
performed with primers specific for mouse PKCα (Prkca, 
NM_011101.3; forward 5′-GTCTCAGAGCTAATGAAGATG-3′ 
and reverse 5′-TTGGCTTTCTCAAACTTCTG-3′), PKCβ 
(Prkcb, NM_008855.2, and NM_001316672.1; primers anneal 
to all transcript variants; forward 5′-GAATCAGACAAA 
GACAGAAGAC-3′ and reverse 5′-CTTAGTAACTTGAACCA 
GCC-3′), and PKCγ (Prkcg; NM_011102.4, NM_001291434.1; 
primers anneal to all transcript variants; forward 5′-AATGTACC 
GGTGGCCGATGCT-3′; and reverse 5′-AGGCGGTCCGG 
AGTCTGAAA-3′). Mouse actin (Actb; NM_007393; for-
ward 5′-GGACCTGACGGACTACCTCATG-3′ and reverse 
5′-TCTTTGATGTCACGCACGATTT-3′) was used as house-
keeping gene. All primers (Sigma-Aldrich) were tested in silico 
by NCBI BLAST to amplify specific targets. The PCR efficiencies 
for tested PKC isoforms were similar. Quantitative PCRs were 
performed in the LightCycler 480 System (Roche, Mannheim, 
Germany) as described previously (29). Amplified fragments 
were separated on 2% agarose gel and stained by GelRed Nucleic 
Acid Gel Stain (Biotium, Fremont, CA, USA).

Determination of intracellular ca2+ 
concentrations
Changes in the level of free intracellular Ca2+ were measured 
using Fura-2-AM as a cell permeant calcium reporter following 
protocol for sample handling as described in Ref. (4). Intracel-
lular free Ca2+ was measured in microplate reader Infinite M200 
(Tecan, Männedorf, Switzerland) as a ratio of Fura emissions at 
510 nm after excitation with 340 and 380 nm (340/380) lasers at 
the indicated time points. After measurement of the Ca2+ basic 
level, activation was triggered by addition of Ag, thapsigargin, or 
ionophore A23187.

Degranulation assay
The degree of degranulation was quantified as the release of 
β-hexosaminidase from Ag-, thapsigargin-, pervanadate-, or 

ionophore-activated cells, using 4-NAG as substrate (2). The extent  
of degranulation was calculated as follows: absorbance of culture 
supernatant × 100/absorbance of total cell lysate and normalized 
to control cells.

immunoprecipitations, Kinase assay,  
and immunoblotting
For immunoprecipitation experiments, BMMCs (1  ×  107 cells 
per reaction) were activated with Ag or thapsigargin. Immu-
noprecipitation was performed as previously described (30). Cell 
extracts were incubated with protein A beads saturated with  
(i) Ab to IgE; (ii) Ab to PKCαβγ; (iii) Ab to Lyn; (iv) Ab to Syk;  
(v) Ab to LAT; or (vi) immobilized protein A alone. In vitro kinase  
assay was essentially performed as described and the 32P-labeled 
proteins were detected by autoradiography using the Amersham 
Typhoon scanner (GE Healthcare Europe GmbH, Freiburg, 
Germany). Whole cell extract preparation, gel electrophoresis, and 
immunoblotting were described elsewhere (4). Abs to γ-tubulin  
(in the form of spent culture supernatant) and PKCαβγ were 
diluted 1:2 and 1:3,000, respectively. Abs to Lyn, Syk, LAT (mAb  
LAT1.D1), Akt, phospho-Akt (Thr308), and phospho-Akt (Ser473) 
were diluted 1:2,000, 1:2,000, 1:2,000, 1:2,000, 1:500, and 
1:1,000, respectively. Phosphotyrosine was detected by anti- 
phosphotyrosine mAb 4G10 conjugated with HRP (dilution 
1:2,000) or by mAb PY-20 (dilution 1:2,000). Bound primary 
antibodies were detected after incubation of the blots with HRP- 
conjugated secondary Abs diluted 1:10,000. HRP signal was 
detected with chemiluminescent reagents and the LAS 3000 
imaging system (Fujifilm, Düsseldorf, Germany). AIDA image 
analyzer (ver.4) software (Raytest, Straubenhardt, Germany) 
was used for quantification of signals from autoradiographs and 
immunoblots.

chemotaxis and cell Migration assay
Chemotaxis and cell migration assays were performed in μ-Slide 
Chemotaxis3D chambers according to the protocols described 
elsewhere (31). In the case of chemotaxis assay, BMMCs were 
sensitized prior to seeding and one reservoir of each chamber 
was supplied with Ag at concentration 100 ng/ml. In miltefos-
ine-, MβCD-, or Ly333531-treated cells, the drug was added to 
collagen I gel and to reservoirs and was present during the gel 
polymerization and imaging.

immunofluorescence Microscopy
Immunofluorescence microscopy was performed with cells 
atta ched to fibronectin-coated coverslips fixed as described (32).  
TUB 2.1 mAb conjugated with Cy3 was diluted 1:600. DyLight549-
conjugated anti-mouse Ab was diluted 1:500. To visualize FcεRI 
aggregation, cells were fixed without Triton X-100 extraction to 
preserve intact cell membranes. The preparations were examined 
with an Olympus A70 Provis microscope (Olympus, Hamburg, 
Germany) or in the Delta Vision Core system (Applied Precision, 
Issaquah, WA, USA). The conjugated secondary Ab did not give 
any detectable staining. Live cell imaging of BMMCs labeled 
with 15  µM BODIPY-miltefosine was performed in the Delta 
Vision Core system. Images were deconvolved by integrated 
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FigUre 1 | Miltefosine and methyl-β-cyclodextrin (MβCD) inhibit degranulation in activated bone marrow-derived mast cells (BMMCs). BMMCs pre-incubated with 
different concentrations of miltefosine (5–25 µM) (a–c) or MβCD (1–10 mM) (D) were activated and degranulation was measured by β-hexosaminidase release. 
(a,D) IgE-sensitized cells were activated by high affinity IgE receptor aggregation with Ag. (B) Cells activated with thapsigargin. (c) Cells activated with pervanadate. 
Values represent mean ± SD (n = 3); **p < 0.01 and ***p < 0.001.
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deconvolution software. Determination of the number of cells 
that responded to activation events by generation of microtubule 
protrusions was done as described previously. Three experi-
ments were performed, and in each experiment 300–500 cells 
were examined (4).

Time-lapse imaging
For chemotaxis and cell migration assay, cells were imaged with 
a Leica DMI6000 inverted microscope at 37°C and 5% CO2. 
Time-lapse sequences of bright-field images were taken for 7 
(chemotaxis) or 3 h (cell migration), at 1 min intervals with the 
intensity of 71 and exposure time 6 ms. To evaluate the intracel-
lular granule movement, cells were incubated with WGA-AF555 
(5 µg/ml) for 10 min and time-lapse sequences were acquired in 
the Delta Vision Core System.

image analysis
For analysis of the granule movement, time-lapses were regis tered 
by StackReg in ImageJ and processed using ImageJ Kymo graph 
plugin. Fluorescence intensity of FcεRI aggregation was quanti-
fied using ImageJ based on the mean pixel intensity of each cell.

Chemotactic response and cell migration were analyzed from 
time-lapse movies as described previously (31). Cells were tracked 
in the MetaMorph program using the Track Object application. 
The data were processed by Chemotaxis and Migration Tool in 
ImageJ. Analysis was performed for 7 and 3 h imaging.

statistical analysis
All data are presented as mean  ±  SD or SE, as indicated. For 
statistical analysis, the two-tailed, unpaired Student’s t-test was 
applied.

resUlTs

Degranulation in activated BMMcs is 
inhibited by Miltefosine
Miltefosine is known to inhibit mediator release in human mast 
cells (7). To test whether the same holds true for mouse BMMCs,  
the degree of degranulation in miltefosine pre-treated and acti-
vated BMMCs was determined. Cells were incubated with dif-
ferent concentrations of miltefosine in the range of 5–25  µM 
for 15 min. The release of β-hexosaminidase in cells activated 
by FcεRI aggregation (Figure 1A) decreased in a miltefosine- 
dose-dependent manner. Alternatively, BMMCs were activated 
by thapsigargin. Miltefosine decreased the level of degranulation 
in a dose-dependent manner as well (Figure 1B). A less promi-
nent inhibitory effect was observed after stimulation of BMMCs 
by pervanadate (Figure 1C). The least effect (~21% inhibition at 
miltefosine concentration 25  µM) was detected when the cells 
were activated by calcium ionophore A23187 (data not shown). 
As miltefosine was proposed to act as a lipid raft modulator (15), 
we treated BMMCs with MβCD, a typical lipid raft disruptor. 
MβCD inhibited β-hexosaminidase release in cells activated by 
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FcεRI aggregation (Figure  1D) at substantially higher concen-
trations. The maximal inhibitory effect (~60% inhibition) was 
observed at MβCD concentration of 10 mM.

To evaluate whether inhibitory effect of miltefosine is due to 
changes in cell viability, we performed Trypan blue exclusion 
test. Viability of BMMCs treated with 15 µM miltefosine for 15, 
30, and 60  min in activation medium was 94.7  ±  7; 94.6  ±  7, 
and 95.0 ± 7% (mean ± SD; n = 3), respectively. As viability of 
BMMCs treated with 25 µM miltefosine fell to ~50%, miltefosine 
was used at a maximal concentration of 15 µM in the following 
experiments.

Taken collectively, miltefosine inhibits degranulation in 
mouse BMMCs activated either specifically by FcεRI aggrega-
tion, or unspecifically by thapsigargin, pervanadate, or calcium 
ionophore.

Miltefosine Modulates Microtubule 
Organization and cell Migration in BMMcs
Generation of protrusions containing microtubules is a charac-
teristic feature of activated BMMCs attached to fibronectin (4). 
To evaluate the effect of miltefosine on generation of such protru-
sions, cells were pre-treated for 15 min with 15 µM miltefosine, 
and thereafter activated by Ag, thapsigargin, calcium ionophore, 
or pervanadate in the presence of miltefosine. Control cells acti-
vated by FcεRI aggregation using Ag (Figure 2Aa), thapsigargin 
(Figure 2Ac), calcium ionophore (Figure 2Ae), or pervanadate 
(data not shown) formed typical microtubule protrusions. On the 
other hand, cells activated in the presence of miltefosine by FcεRI 
aggregation using Ag (Figure 2Ab), thapsigargin (Figure 2Ad), 
calcium ionophore (Figure 2Af), or pervanadate (data not shown) 
were not capable to form microtubule protrusions. Statistical 
evaluation revealed a dose-dependent inhibitory effect of milte-
fosine on the formation of microtubule protrusions (Figure 2B). 
Activation of cells with Ag, thapsigargin, calcium ionophore, or 
pervanadate showed a similar response to miltefosine treatment, 
and already 5  µM miltefosine significantly inhibited formation 
of microtubule protrusions. Higher concentrations of miltefosine 
resulted in changes of cell morphology; cells were more spherical. 
Generation of microtubule protrusions was not affected when 
cells were activated by Ag in the presence of 15 µM MβCD. When 
cells were activated by Ag in the presence of 5 mM MβCD, the 
generation of protrusions reached 43 ± 14% (mean ± SD; n = 2) 
of the control, and in the presence of 10 mM MβCD, 3.4 ± 3% 
(mean ± SD; n = 2) of the control. Therefore, MβCD has to be 
used at substantially higher concentration to get a similar effect 
as miltefosine.

The activation with Ag, thapsigargin, or pervanadate was 
also performed in primary culture of BMMCs from BALB/c 
mice. Similarly as in the BMMC cell line, miltefosine inhibited 
generation of microtubule protrusions in these cells (data not 
shown). Miltefosine at concentration 5  µM did not distinctly 
affect microtubules in adherent RPE1 cells (Figure  2Ca,b). At 
higher miltefosine concentration (15 µM), cells started to round 
up (Figure 2Cc). These data document that miltefosine, even at 
low concentrations, strongly affects microtubule organization 
after cell activation both in BMMCs in the form of primary 
culture or cell line. On the other hand, 5 µM miltefosine did not 

affect microtubules in RPE1 or osteosarcoma U2OS cells (data 
not shown).

Ag-induced chemotactic response is essential for local accu-
mulation of mast cells in the body, where they might perform 
their physiological roles. To study the effect of miltefosine on the 
migration of BMMCs to Ag, chemotaxis assays were performed. 
As shown in a representative experiment, miltefosine inhibited 
chemotaxis toward Ag. Moreover, tracks in miltefosine-treated 
cells were substantially shorter when compared to control cells 
(Figure 2D). The cell migration assay without chemoattractant 
revealed that both mean cell velocity (Figure 2E, left panel) and 
mean accumulated distance (Figure 2E, right panel) of all mov-
ing cells decreased in cells treated with 15 µM miltefosine. On the 
other hand, cell motility was not affected by 1 mM MβCD, and 
an inhibitory effect was observed only at 10 mM concentration 
of MβCD (data not shown). These data suggest that inhibition of 
Ag-induced chemotaxis by miltefosine is due to suppression of 
cell motility.

Miltefosine affects Tyrosine 
Phosphorylation and aggregation of  
Fcεri receptors in activated BMMcs
It has been reported that miltefosine, as a lipid raft modulator, 
could interfere with the structural organization of FcεRI recep-
tors in activated mast cells and thus inhibit downstream signaling 
events (15). Because protein tyrosine phosphorylation plays an 
essential role in propagation of signals in BMMCs activated by 
FcεRI aggregation, we evaluated the overall protein tyrosine 
phosphorylation level (P-Tyr) in control and miltefosine pre-
treated cells activated by Ag-mediated FcεRI aggregation. While 
the P-Tyr level increased in Ag-activated cells when compared 
to non-activated cell controls (Figure 3A, lane 3), it decreased 
in cells treated with miltefosine (Figure  3A, lane 4). It is well 
established that BMMC activation by Ag proceeds through 
tyrosine phosphorylation of immunoreceptor tyrosine-based 
activation motifs (ITAMs) located on the cytoplasmic tails of 
FcεRI β and γ subunits (33). We found that BMMCs activated 
with Ag showed a significantly increased level of P-Tyr on FcεRI 
(Figure  3B, lane 6) when compared with non-activated cells 
(Figure  3B, lanes 4–5). Phosphorylation of FcεRI in activated 
cells clearly decreased in the presence of miltefosine (Figure 3B, 
lane 7). Quantification of overall P-Tyr levels and FcεRI receptor 
P-Tyr levels in activated and miltefosine-treated cells is shown in 
Figures S1A,B in Supplementary Material. These findings were 
corroborated by immunofluorescence staining of IgE bound to 
FcεRI receptors. BMMCs sensitized with IgE and activated with 
Ag showed clear aggregation of the bound IgE (Figure 3Ca). The 
same results were obtained when the bound IgE was aggregated 
with anti-Ig Ab (Figure 3Cc). However, when the cells were pre-
treated with miltefosine, aggregation with either Ag (Figure 3Cb) 
or anti-Ig Ab (Figure 3Cd) was substantially suppressed. Image 
analysis revealed that the staining intensity of miltefosine-treated 
cells activated by crosslinking of bound IgE by Ag or by anti-
mouse Ig Ab was significantly lower when compared to control 
cells (Figure 3D). These data directly demonstrate that miltefo-
sine inhibits aggregation and tyrosine phosphorylation of FcεRI 
receptors at the plasma membrane in activated BMMCs.
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FigUre 2 | Microtubule organization in activated bone marrow-derived mast cells (BMMCs) and Ag-induced chemotaxis are affected by miltefosine. (a) Microtubule 
organization. BMMCs incubated in the absence (a,c,e) or presence (b,d,f) of 15 µM miltefosine were activated by high affinity IgE receptor (FcεRI) aggregation (a,b; 
antigen), thapsigargin (c,d) or calcium ionophore (e,f). Cells were fixed and stained for β-tubulin. Scale bars 10 µm (a,b), (c,d), and (e,f). (B) Quantitative analysis of  
the frequency of microtubule protrusions. BMMCs incubated with various concentrations of miltefosine (5–15 µM) and BMMC controls were activated by FcεRI 
aggregation (antigen), thapsigargin, or calcium ionophore. Values indicate mean ± SD (n = 3); **p < 0.01 and ***p < 0.001. (c) Effect of miltefosine on the morphology 
of RPE1 cells. Cells incubated in the absence (a) or presence of 5 (b) and 15 µM miltefosine (c) were fixed and stained for β-tubulin. Scale bars 10 µm. (D) Chemotaxis 
assay. Migration tracks in control cells and cells treated with 15 µM miltefosine. Tracks from a representative experiment were aligned with their starting points at the 
coordinate position [0, 0]. Black tracks indicate individual cells with net migration toward the left chamber that contained Ag (100 ng/ml), red tracks indicate cells 
migrating in the opposite direction. Yellow crosses represent the average of endpoints. Representative experiments out of four repetitions are shown. (e) Cell 
migration. Migration velocities and accumulated distances of cells treated with 15 µM miltefosine relative to the control cells. Data are mean ± SD (n = 5); *p < 0.05.
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We also evaluated whether miltefosine affects overall P-Tyr 
levels of Lyn and Syk kinases and LAT adaptor protein that 
are known to be involved in early stages of FcεRI-mediated  

activation (1). P-Tyr levels were compared after immunoprecipita-
tions from control and Ag-activated cells in the absence or pre-
sence of miltefosine. P-Tyr levels of Lyn kinase were comparable  
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FigUre 3 | Miltefosine affects tyrosine phosphorylation and aggregation of high affinity IgE receptors (FcεRIs) in activated bone marrow-derived mast cells 
(BMMCs). (a) Comparison of protein tyrosine phosphorylation level (P-Tyr) in control cells and cells activated by FcεRI aggregation (+Ag) in the absence (lanes 1 and 
3) or presence (lanes 2 and 4) of miltefosine. γ-Tubulin (γ-Tb) served as a loading control. Representative image out of three repetitions is shown. Numbers under  
the blot indicate relative amounts of P-Tyr normalized to control cells and to the amount of γ-tubulin in individual samples (fold). (B) Comparison of FcεRI receptor 
phosphorylation (P-Tyr) in the absence (lanes 1, 3–6, and 8) or presence (lanes 2 and 7) of miltefosine. Cells sensitized with mouse IgE to Ag were incubated with or 
without miltefosine, activated or not by Ag (DNP), and extracts were precipitated with anti-IgE Ab immobilized on protein A beads. In the control, protein A without 
Ab was incubated with the cell extract (lane 8, Con.). Note the difference in signal intensities in the positions of co-precipitated FcεRI receptors when cells were 
incubated without (lane 6) or with (lane 7) miltefosine. Representative image out of three repetitions is shown. Numbers under the blot indicate relative amounts of 
P-Tyr normalized to sensitized cells (fold). (a,B) Bars on the left indicate positions of molecular weight markers in kDa. (c) Comparison of FcεRI aggregation in the 
absence or presence of miltefosine. Cells sensitized with mouse IgE to Ag were incubated without (a,c) or with (b,d) miltefosine and activated by crosslinking of 
bound IgE with Ag (a,b; aggregation by Ag) or with anti-mouse Ig Ab conjugated with DY549 (c,d; aggregation by anti-Ig Ab). Cells were fixed with formaldehyde, 
and in the case of Ag-activated cells (a,b), stained with anti-mouse Ab conjugated with DY549. Images (a,b) and (c,d) were collected and processed under identical 
conditions. Scale bars, 10 µm (a,b); 5 µm (c,d). (D) Analysis of fluorescence intensity of FcεRI aggregation in the absence or presence of miltefosine. BMMCs were 
activated by crosslinking of bound IgE with Ag (Ag) or with anti-mouse Ig Ab (anti-Ig Ab). Values indicate mean ± SD (Ag, n = 30; anti-Ig Ab, n = 5); ***p < 0.001.
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both in non-activated and Ag-activated cells (Figure S2A in  
Sup plementary Material, IP: Lyn, lanes 2–3), as reported previ-
ously (34), and were not affected by miltefosine (Figure S2A in 
Supplementary Material, IP: Lyn, lane 4). Ag-activation increased 
comparably the P-Tyr levels of Syk kinase both in the presence or 
absence of miltefosine (Figure S2A in Supplementary Material, 
IP: Syk, lanes 3–4). Finally, the P-Tyr level of LAT increased in 
Ag-activated cells and was slightly attenuated in miltefosine-
treated cells (Figure S2A in Supplementary Material, IP: LAT, 
lanes 3–4). These data suggest that inhibition of aggregation and 

tyrosine phosphorylation of FcεRI receptors by miltefosine does 
not substantially affect consecutive stages of signal transduction.

Miltefosine Does not inhibit ca2+ influx  
in activated BMMcs but localizes  
to the cellular Membranes and cytosol
We have reported that reorganization of microtubules in later 
stages of BMMC activation depends on Ca2+ influx (4). To test 
whether miltefosine affects the Ca2+ influx, we measured the 
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FigUre 4 | Miltefosine does not inhibit Ca2+ influx in activated bone marrow-derived mast cells (BMMCs), but localizes to cellular membranes and inhibits the 
granule movement. (a) Effect of miltefosine (a,b) and methyl-β-cyclodextrin (MβCD) (c) on intracellular Ca2+ level during cell activation. Sensitized cells were loaded 
with Fura-2-acetoxymethyl ester and pre-treated with or without (Control) miltefosine or MβCD. IgE-sensitized cells were activated by high affinity IgE receptor 
aggregation with Ag (a,c) or with thapsigargin (b). Arrows indicate addition of Ag or thapsigargin. Data represent mean ± SE [n = 3 for (a,b); n = 4 for (c)] from 
independent experiments performed in duplicates; *p < 0.05 and **p < 0.01. (B) BODIPY-miltefosine localizes to the cellular membranes and cytosol. Live-cell 
imaging of cells incubated with BODIPY-miltefosine. Scale bar, 10 µm. (c) BODIPY-miltefosine inhibits microtubule reorganization in activated cells. BMMCs treated 
or untreated (control) with BODIPY-miltefosine were activated by thapsigargin, fixed and stained for α-tubulin (a,c). Staining of BODIPY (b,d). Images (b,d) were 
collected and processed under identical conditions. Scale bar, 5 µm (a–d). (D) Time-lapse imaging of wheat germ agglutinin-stained intracellular granules in control 
and miltefosine-treated BMMCs. First frames from 180s time-lapse imaging and kymographs of stained granules are shown. The same track length (14.8 µm) was 
used for analysis in both cases. The tracked granules are marked by asterisks, cross, and diagonal cross.
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level of intracellular Ca2+ after BMMC activation in control and 
miltefosine-treated cells (Figure 4A). Miltefosine did not inhibit 
the release of Ca2+ from the ER (data not shown) nor the influx 
of extracellular Ca2+ in cells activated with FcεRI aggregation 

using Ag (Figure  4Aa). Miltefosine slightly increased the Ca2+ 
influx in thapsigargin-activated cells (Figure 4Ab), and this trend 
was also observed in cells activated by calcium ionophore (data 
not shown). In contrast, treatment with 10 mM MβCD inhibited 
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Ca2+ influx in Ag-activated BMMCs (Figure 4Ac). This points to 
the fact that these compounds, at concentrations causing similar 
inhibition of degranulation and formation of microtubule protru-
sions, have different effect on the signaling pathway leading to the 
Ca2+ influx in activated cells.

To evaluate the distribution of miltefosine in BMMCs we 
applied BODIPY-labeled miltefosine (28). Using this tool we 
localized it on the plasma membrane, intracellular membranous 
structures, as well as in the cytosol (Figure 4B). Internalization 
of BODIPY-miltefosine was rapid, as intracellular structures were 
decorated already after 1 min incubation with 15 µM BODIPY-
miltefosine. When the cells were incubated with 1 µM BODIPY-
miltefosine for 15–60 min, the intensity of staining increased in 
a time-dependent manner. BODIPY-miltefosine worked in the 
same way as the untagged miltefosine, as BODIPY-miltefosine 
inhibited generation of microtubule protrusions in cells activated 
with thapsigargin (Figure  4Cc,d; BODIPY-miltefosine), in 
contrast to control cells not treated with BODIPY-miltefosine 
(Figure 4Ca,b; control).

Secretory granules in living mast cells can be visualized by 
tagged WGA (5). Time-lapse imaging of BMMCs pre-treated 
with WGA-AF555 followed by kymograph analysis revealed that 
in comparison to control cells, 15 µM miltefosine inhibited move-
ments of some granules (Figure 4D). On the other hand, 10 mM 
MβCD did not affect the granule movement (data not shown).

These data show that although miltefosine inhibits aggrega-
tion and phosphorylation of FcεRIs on the plasma membrane 
in activated cells, it does not inhibit the Ca2+ influx in activated 
cells. Moreover, miltefosine could affect signaling pathways in the 
cytosol as it rapidly localizes into the cell interior of BMMCs and 
influences granule movements.

Miltefosine inhibits ca2+-Dependent  
PKcs in BMMcs
It is well established that Ca2+ and diacylglycerol-regulated con-
ventional PKCs (cPKCs) are important for mast cell degranula-
tion (35). As miltefosine was reported to inhibit PKC in mouse 
NIH/3T3 cells (20), we evaluated the possibility that miltefosine 
could affect the activity of cPKCs in BMMCs. There are four iso-
forms of cPKCs, specifically, PKCα, PKCβI, PKCβII, and PKCγ 
(36). The expression of cPKCs in BMMCs was determined by a  
gel-based RT-PCR analysis using mouse brain as a positive control.  
We found that PKCβ isoforms were the most prominent, while 
PKCγ was under the detection limit (Figure 5A).

In vitro kinase assay revealed that miltefosine can inhibit 
the activities of cPKCs immunoprecipitated from BMMCs 
(Figure  5B left panel, lane 3). As a positive control we used 
Ly333531 inhibitor, which efficiently inhibited autophosphoryla-
tion of cPKCs immunoprecipitated from BMMCs (Figure 5B left 
panel, lane 4). Quantification of cPKC phosphorylation levels is 
shown in Figure 5B right panel. Ly333531 preferentially inhibits 
PKCβ isoforms. The IC50 values for PKCβI and PKCβII are 4.7 
and 5.9 nM, respectively, while for PKCη, -δ, -γ, -α, -ε, and -ζ are 
0.052, 0.25, 0.30, 0.36, 0.6, and >100 μM, respectively (37). As 
PKCβ isoforms were the most abundant in BMMCs, we examined 
the effect of Ly333531 on degranulation, generation of microtu-
bule protrusions, Ca2+ influx, and cell migration.

Ly333531, similarly as miltefosine, significantly inhibited β- 
hexosaminidase release in a dose-dependent manner in cells acti-
vated by FcεRI aggregation (Figure  5C, antigen), thapsigargin 
(Figure 5C), or pervanadate (data not shown). Generation of micro-
tubule protrusions was attenuated by Ly333531 treatment in 
BMMCs activated by Ag or thapsigargin (Figure 5D). Statistical 
evaluation of this effect is shown in Figure 5E. While Ly333531 did 
not affect the Ca2+ influx (Figure 5F), cell motility was inhibited 
by its treatment (Figure 5G). Collectively, these data demonstrate 
that cPKC inhibitor Ly333531 modulates mast cell functions in 
the same way as miltefosine. This suggests that miltefosine might 
regulate these processes through the inhibition of cPKC activity.

DiscUssiOn

Mast cell activation by crosslinking of FcεRIs triggers the signaling 
pathways resulting in Ca2+ influx, degranulation, and synthesis 
of new mediators. Pharmaceutical agents that modulate integrity 
of the membrane environment or affect mast cell signaling events 
might be potentially used as treatments for mast cell-driven 
diseases. A promising candidate is the lipid raft modulator milte-
fosine (15). The obvious advantages of miltefosine are known side 
effects, which are relatively safe, dose-dependent, and reversible 
(38). Clinical application has been limited to topical and oral 
treatments, and among major known side effects belong loss of 
appetite, vomiting, nausea, and diarrhea after long oral treat-
ment of high daily dosages (150 mg and higher) (39). Although 
miltefosine was approved for the treatment of various diseases 
(40), the molecular mechanism of its action in mast cells remains 
poorly understood.

In human skin mast cells, it has been suggested that miltefo-
sine affects organization of FcεRIs in the plasma membrane, which 
then leads to modulation of subsequent activation steps (7, 15). 
Here we used murine BMMCs as they are well responsive to both 
allergic and non-allergic stimuli and they are generally used for 
in vitro studies, as they can be easily produced in large amounts 
(41). Different murine mast cell types, specifically connective tis-
sue mast cells (CTMCs), mucosal tissue mast cells (MMCs), and 
BMMCs, all express c-kit and FcεRIs on their surfaces, and can 
degranulate upon Ag-activation (42). CTMCs and BMMCs dif-
fer in TLR (toll-like receptor)-induced cytokine and chemokine 
pro duction, expression of STAT proteins, and response to IL- 
18 (42, 43). However, such differences should not have effect 
on early signaling events after FcεRI aggregation in these cells. 
Molecular mechanisms of miltefosine action in early stages of Ag- 
activation could be, therefore, similar both in BMMCs and CTMCs  
(e.g., human skin mast cells).

Our results demonstrate that BMMCs have similar sensitivity 
to miltefosine as human mast cells (7) and that 15 µM miltefosine 
does not change cell viability. Degranulation was attenuated in 
miltefosine-treated cells in a dose-dependent manner after cell 
activation by FcεRI aggregation, thapsigargin, pervanadate, or  
calcium ionophore. Obtained data were comparable to the medi-
ator release of miltefosine-treated human primary mast cells 
activated by Ag (7). We have previously shown that activation of 
BMMCs leads to rapid cytoskeleton rearrangement and genera-
tion of microtubule protrusions (4). Here, we demonstrate that 
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in activated BMMCs, miltefosine suppresses formation of these 
protrusions and affects cell morphology more effectively than 
in other tested cell types. As miltefosine inhibited formation of  
protrusions containing microtubules more effectively than deg-
ranulation, we suppose that physical integration of miltefosine 
into the plasma membrane contributes to this effect. Moreover, 
miltefosine also inhibits chemotaxis to Ag and cell motility, 
which points to a limited capability of miltefosine-treated cells 
to accumulate in the site of disease manifestation. These data 

indicate that miltefosine could modulate physiology of mast cells 
at different levels.

To get deeper insight into the effect(s) of miltefosine in mast 
cells, we evaluated early steps of cell activation after aggregation 
of FcεRIs by Ag. Miltefosine inhibited both the overall tyrosine 
phosphorylation level and the aggregation and tyrosine phospho-
rylation of FcεRIs. Diminished FcεRIs phosphorylation could be 
due to the changes in plasma membrane properties that inhibit 
formation of large FcεRI aggregates. Protein tyrosine kinase Lyn 

FigUre 5 | Continued
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FigUre 5 | Miltefosine inhibits conventional protein kinase C (cPKC) activity in bone marrow-derived mast cells (BMMCs), and specific cPKC inhibitor Ly333531 
affects degranulation, generation of microtubule protrusions, Ca2+-influx, and cell motility in a similar way as miltefosine. (a) Expression profile of cPKCs in BMMCs. 
Gel-based RT-PCR analysis of mouse PKCα (Prkca), PKCβ (Prkcb), and PKCγ (Prkcg). Mouse brain served as positive control. (B) The kinase activity in PKCαβγ 
immunocomplexes is inhibited by miltefosine. BMMC lysates were precipitated with anti-PKCαβγ Ab bound to protein A carrier. Immunocomplexes were subjected 
to in vitro kinase assay, electrophoretically separated, and detected by autoradiography (32P). The presence of PKCαβγ in immunocomplexes was confirmed by 
immunoblotting with anti-PKCαβγ Ab. (Left panel) Precipitation from resting cells (lane 2), cells pre-treated with 15 µM miltefosine (lane 3), and cells pre-treated with 
10 µM Ly333531 (lane 4). Controls contained protein A with Ab (lane 1) and protein A without Ab incubated with the cell extract (lane 5). Bars on the left indicate 
positions of molecular weight markers in kDa. Representative image out of three repetitions is shown. Numbers under the blot indicate relative amounts of 
phosphorylated cPKCs normalized to control cells and to the amount of precipitated cPKCs in individual samples (fold). (Right panel) Quantification of 
autoradiographs by densitometry. Control untreated cells or cells pre-treated with 15 µM miltefosine (+miltefosine) or 10 µM Ly333531 (+Ly333531). Relative 
intensities of phosphorylated cPKCs normalized to control cells and to the amount of precipitated cPKCs in individual samples. Data represent mean ± SD (n = 3); 
**p < 0.01 and ***p < 0.001. (c) cPKCs are essential for BMMC degranulation. BMMCs pre-incubated with different concentrations of Ly333531 (0.5–15 µM) were 
activated by Ag or thapsigargin and degranulation was measured by β-hexosaminidase release. Values represent mean ± SD (n = 4); **p < 0.01 and ***p < 0.001. 
(D) cPKCs regulate microtubule organization. BMMCs incubated in the absence (a,c) or presence (b,d) of 10 µM Ly333531 were activated by high affinity IgE 
receptor (FcεRI) aggregation (a–b; antigen) or thapsigargin (c–d). Cells were fixed and stained for β-tubulin. Scale bar 10 µm (a–d). (e) Quantitative analysis of the 
frequency of microtubule protrusions. BMMCs incubated with 10 µM Ly333531 and BMMC controls were activated by FcεRI aggregation (antigen) or thapsigargin. 
Values indicate mean ± SD (n = 3); ***p < 0.001. (F) cPKCs do not inhibit Ca2+ influx in activated BMMCs. Sensitized cells were loaded with Fura-2-acetoxymethyl 
ester, pre-treated without (control) or with 10 µM Ly333531, and activated by Ag or thapsigargin. Arrows indicate addition of Ag or thapsigargin. Data represent 
mean ± SE (n = 2 for Ag; n = 3 for thapsigargin) of independent experiments performed in duplicates. (g) Cell migration depends on cPKCs. Migration velocities 
and accumulated distances of cells treated with 10 µM Ly333531 relative to the control cells. Data are mean ± SD (n = 3); ***p < 0.001.
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can, therefore, only partially phosphorylate both ITAMs, located 
on the cytoplasmic tails of FcεRI β and γ subunits (33). Our data 
thus support the previous suggestion that miltefosine attenuates 
FcεRI-mediated signaling events at the plasma membrane (7, 15).

Miltefosine treatment, however, did not affect overall P-Tyr 
levels of Lyn and Syk kinases and only slightly diminished P-Tyr 
level of adaptor protein LAT in Ag-activated cells. Moreover, 
miltefosine did not inhibit the release of Ca2+ from ER nor the 
extracellular Ca2+ influx. This indicates that the low level of FcεRI 
phosphorylation observed after cell activation in the presence 
of miltefosine is sufficient to activate the subsequent signaling 
cascade. It was reported previously that the formation of large 
FcεRI aggregates is not necessary for triggering the signaling 
responses, and that Ag-activated mast cells propagate signals 
from small signaling domains formed around dimerized FcεRIs 
(44). Moreover, it is well established that cholesterol-dependent 
ordered lipids regulate the Ca2+ channel (Orai1), and polyun-
saturated fatty acids with phosphoinositides regulate coupling 
of Orai1 to ER Ca2+ sensor (STIM1) in SOCE (45). Our results 
suggest that although miltefosine affects the membrane composi-
tion and aggregation of FcεRI receptors, this is not reflected in the 
inhibition of the Ca2+ influx level through SOCE.

Calcium mobilization has a critical impact on activation of 
many signal-transducing proteins that are involved in the regula-
tion of mast cell degranulation. We observed differential miltefosine 
inhibitory effects on degranulation in BMMCs activated by Ag, 
thapsigargin, pervanadate, or calcium ionophore. This probably 
reflects the specificity and site(s) of action of the used activators. 
When miltefosine was compared with MβCD, a typical lipid raft 
disruptor, MβCD had to be used at ~1,000-fold higher concentra-
tions to inhibit degranulation, microtubule rearrangement, and cell 
motility to the levels observed in miltefosine-treated cells. Moreover, 
MβCD effectively inhibited Ca2+ influx in activated BMMCs. The 
fact that miltefosine does not inhibit the Ca2+ influx indicates that 
it could attenuate degranulation by affecting the cytosolic signaling 
pathway(s) after SOCE. It is well established that Ca2+-dependent 
PKCs are important for mast cell degranulation (35). In BMMCs, 

we detected PKCα and PKCβ isoforms, and their activities were 
inhibited by miltefosine. Similarly as miltefosine, cPKC inhibitor 
Ly333531 inhibited mast cell degranulation, generation of micro-
tubule protrusions and cell migration, while Ca2+ influx was not 
affected. At present, there is a search for new compounds that 
inhibit PKCs. It has been proposed that drugs modulating the 
activity of PKCs could have a major impact on the treatment of 
immune disorders (46). Deciphering the exact mechanism of PKC 
inhibition by miltefosine warrants further investigation.

In BMMCs, miltefosine localized to the plasma membrane, 
cytosol, and intracellular membranous structures including gran-
ules. Staining of intracellular structures with BODIPY-miltefosine 
was previously shown in Leishmania donovani at 7 µM concentra-
tion for 4 h (28). Here, we show that internalization of BODIPY-
miltefosine in BMMCs is fast and even at 1  µM concentration 
it incorporates to intracellular membranous structures within 
15 min. Moreover, cytosolic miltefosine attenuated movement of 
some intracellular BMMC granules.

It was reported that miltefosine inhibits PI3K/Akt survival 
pathway in tumor (17) and skeletal muscle cells (47). As PI3K/Akt 
pathway is important for survival, growth, and differentiation in 
activated mast cells (48), miltefosine might affect also these activi-
ties. It is known that Akt is partially activated by phosphorylation 
at Thr308 through PI3K/PDK1 (3-phosphoinositide-dependent 
protein kinase 1) pathway and fully activated by additional 
phosphorylation at Ser473 through PI3K/mTORC2 (mechanistic 
target of rapamycin complex 2) pathway (49). We have found that 
miltefosine in Ag-activated BMMCs inhibited phosphorylation 
on both Thr308 and Ser473 (Figure S2B in Supplementary Material, 
lanes 2–3). As miltefosine enters to cytosol, it could affect Akt-
dependent cellular activities that will manifest in later stages of 
mast cell activation.

Effective treatments of mast cell-derived mastocytosis (8), urti-
caria (9), and atopic dermatitis (10) were after topical application  
of miltefosine. On the other hand, miltefosine side effects in gas-
trointestinal tract were observed after oral use in cancer patients. 
We do not assume that these side effects could be explained 
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by inhibition of degranulation by miltefosine, as vomiting and 
diarrhea are connected with increased number of degranulating 
mast cells in digestive tract (50). PKCs are central kinases and 
their inhibition by miltefosine could also affect other cell types. 
However, sensitivity of cells to miltefosine can substantially differ 
as we documented on changes in microtubule organization in 
BMMCs or RPE1 and U2OS cells.

Based on the published data and findings in this report, we sug-
gest that miltefosine might affect mast cell activation by different 
mechanisms. First, incorporation of miltefosine into the plasma 
membrane influences its properties. This results in morphological 
changes, inhibition of FcεRI aggregation by Ag, chemotaxis, and 
generation of microtubule protrusions in the course of specific 
(Ag) or unspecific (thapsigargin, pervanadate, and calcium iono-
phore) activation. Second, as miltefosine does not inhibit Ca2+ 
response and rapidly enters into the cytosol, it is able to modulate 
the intracellular signaling pathways important for degranulation. 
Upon cell activation, Ca2+ and PKCs act to reverse the inhibitory 
mechanisms of granule fusion and activate proteins and cellular 
events to promote the granule fusion (51). Because miltefosine 
inhibits Ca2+-dependent cPKCs, it could interfere with this pathway. 
Third, miltefosine attenuates movements of intracellular granules. 
It could, therefore, affect the function of microtubule motors that 
are important for transport of secretory granules in mast cells (5).

In conclusion, our data suggest that miltefosine modulates 
BMMCs both at the plasma membrane and in the cytosol by an 
inhibition of Ca2+-dependent PKCs. This leads to substantial mor-
phological changes, inhibition of chemotaxis and degranulation. 
Effective treatment of mast cell-derived diseases by miltefosine 
could be, therefore, based on its action at multiple sites in the cells.
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