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The development of electrochemical multisensor systems is driven by the need for

fast, miniature, inexpensive, analytical devices, and advanced interdisciplinary based

on both chemometric and (nano)material approaches. A multicomponent analysis of

complexmixtures in environmental and technological monitoring, biological samples, and

cell culture requires chip-based multisensor systems with high-stability sensors. In this

paper, we describe the development, characterization, and applications of chip-based

nanoelectrochemical sensor arrays prepared by the directed electrochemical nanowire

assembly (DENA) of noble metals and metal alloys to analyze aqueous solutions. A

synergic action of the electrode transducer function and electrocatalytic activity of the

nanostructured surface toward analytes is achieved in the assembled metal nanowire

(NW) sensors. Various sensor nanomaterials (Pd, Ni, Au, and their multicomponent

compositions) can be electrochemically assembled on a single chip without employing

multiple cycles of photolithography process to realize multi-analyte sensing applications

as well as spatial resolution of sensor analysis by this single-chip multisensor system.

For multi-analyte electrochemical sensing, individual amperometric signals of two or more

nanowires can be acquired, making use of the specific electrocatalytic surface properties

of the individual nanowire sensors of the array toward analytes. To demonstrate the

application of a new electrochemical multisensor platform, Pd-Au, Pd-Ni, Pd, and Au

NW electrode arrays on a single chip were employed for the non-enzymatic analysis of

hydrogen peroxide, glucose, and ethanol. The analytes are determined at low absolute

values of the detection potentials with linear concentration ranges of 1.0 × 10−6 − 1.0

× 10−3 M (H2O2), 1.5 × 10−7 − 2.0 × 10−3 M (glucose), and 0.7 × 10−3 − 3.0 ×

10−2 M (ethanol), detection limits of 2 × 10−7 M (H2O2), 4 × 10−8 M (glucose), and

5.2 × 10−4 M (ethanol), and sensitivities of 18 µA M−1 (H2O2), 178 µA M−1 (glucose),

and 28 µA M−1 (ethanol), respectively. The sensors demonstrate a high level of stability

due to the non-enzymatic detection mode. Based on the DENA-assembled nanowire

electrodes of a compositional diversity, we propose a novel single-chip electrochemical

multisensor platform, which is promising for acquiring complex analytical signals for

advanced data processing with chemometric techniques aimed at the development

of electronic tongue-type multisensor systems for flexible multi-analyte monitoring and

healthcare applications.

Keywords: electrochemical sensor, sensor array, metal nanowire assembly, multisensor system, non-enzymatic,

glucose, ethanol, hydrogen peroxide
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INTRODUCTION

Electrochemical sensors and biosensors are widely used in
clinical and pharmaceutical analysis, biomedical investigations,
food quality assessments, as well as technological and
environmental process monitoring due to their accuracy,
selectivity, short response time, cost-effectiveness, applicability
for multiparametric analysis, real-time in situ and in vivo
measurements, and high spatial resolution achievable by
miniaturization. Ongoing research in the field of electrochemical
sensors and their operation principles leads to the development
of new types of sensors and extends the range of possible
applications. In particular, the need for flexible multi-analyte
determinations in analyses of gas and liquid media has
driven the research and development of new sensor materials,
electrochemical mutisensor arrays, electronic nose- and
electronic tongue-type systems (Persaud and Dodd, 1982; Di
Natale et al., 1995; Vlasov et al., 1999, 2005, 2010; Maistrenko
et al., 2011; Kirsanov et al., 2013; Peris and Escuder-Gilabert,
2013; Voitechovič et al., 2018).

For the multicomponent analysis of complex mixtures,
electrochemical multisensor systems can be composed of sensors
selective to individual analytes. In this case, individual sensors
do not affect the accuracy of the determinations of other
sensors of the multisensor system. The development of such
multisensor arrays is required for miniaturization, lower costs,
more reliable sensor analysis, and spatial resolution. In many
cases, redox processes in amperometric and voltamperometric
sensor applications on unmodified bare electrodes are hindered
by the slow electrode kinetics and high overpotentials that must
be applied for electrochemical conversion. As a consequence,
the co-oxidation or reduction of many electroactive species
present in natural samples can occur, causing unwanted
interferences during detection which are difficult to distinguish.
A wide range of materials and compounds with selective
binding and/or electrocatalytic properties, which favor the
thermodynamics and kinetics of specific redox processes, have
been used to lower the absolute value of the response potential
and improve the sensitivity and selectivity of these types of
sensors (Yogeswaran and Chen, 2008; Budnikov et al., 2012;
Thiyagarajan et al., 2014; Komkova et al., 2017). These include
enzymes as biocatalysts (Heller and Feldman, 2008; Koposova
et al., 2014, 2015; Nikolaev et al., 2015; Rocchitta et al., 2016;
Quesada-González and Merkoçi, 2017; Bandodkar et al., 2018).
However, there are some general problems associated with highly
selective electrochemical sensors, where selectivity is achieved
by enzymes such as the low stability of biosensors, restricted
measurement conditions, the use of onerous immobilization
procedures, and mediators, as well as poor compatibility with
nanotechnology processing. Non-enzymatic sensors, which
are proposed as an alternative to enzyme biosensors (Park
et al., 2006; Toghill and Compton, 2010), often suffer from
slow electrode kinetics, high overpotentials, and insufficient
selectivity. The latter problem might possibly be resolved
through the use of multisensor systems in combination
with chemometric techniques. In this case, a multisensor
system may include less selective or non-selective sensors

with non-linear and multiparametric dependencies of the
sensor signals on the component concentrations. A complex
multiparametric signal of a multisensor system needs to be
processed with chemometric techniques to obtain multiple
analytical signals or non-parametric and non-quantitative
information, as in the case of electronic nose and electronic
tongue multisensor systems (Di Natale et al., 1995; Vlasov
et al., 1999, 2010; Maistrenko et al., 2011; Panchuk et al.,
2016). There are also some general problems with respect
to electrochemical (bio) sensor analysis such as the need
for new sensor materials and high-resolution sensor arrays.
Therefore, multicomponent sensor analysis is advanced
interdisciplinary based on chemometric and (nano)material
approaches.

Electrochemical sensors based on metallic, carbonaceous, and
composite nanomaterials help to advance the concept of non-
enzymatic miniaturized electrochemical sensors (Chen et al.,
2013, 2014; Guascito et al., 2013; Wang et al., 2016; Tee
et al., 2017; Nikolaev et al., 2018) due to the electrocatalytic
effects of surfaces and signal amplification techniques and
could replace enzyme-based biosensors in various analytical
applications. This leads to the improvement of sensor stability
in fabrication and long-term use, cost-effectiveness, compatibility
with nanotechnology, and could extend applications of sensors
and multisensor systems. The development of electrochemical
non-enzymatic sensors based on nanomaterials has been
reviewed in a series of recent publications (Park et al., 2006; Chen
et al., 2014; Jie et al., 2015; Zhang and Lieber, 2016; Gnana Kumar
et al., 2017; Power et al., 2018).

Metal nanowires have become essential building blocks
for the development of advanced, miniaturized non-enzymatic
electrochemical sensors (Shaidarova and Budnikov, 2011; Chen
et al., 2013, 2014; Koposova et al., 2013, 2015; Suib, 2013;
Chen and Ostrom, 2015; Muratova et al., 2016). The improved
electrocatalytic properties of the sensor metal nanomaterials in
comparison with bulk materials are related to their high surface
areas and energy, the preferential orientation of crystallographic
planes, lattice defects at the surfaces, and the presence of
pores, sharp edges, and nanoscale junctions. Different methods
are available for the synthesis of metallic nanowires: chemical
reduction from solutions, lithography technologies, the assembly
by electromagnetic field forces, the template-based approach,
CVD, laser deposition, etc. (Cheng et al., 2005; Nagashima et al.,
2007; Kisner et al., 2011; Xing et al., 2012; Ji et al., 2013; Panov
et al., 2017). Often, binary or more complex multicomponent
systems demonstrate a higher (electro) catalytic activity due to
synergic or electronic effects (Koper, 2004; Wang et al., 2008;
Shaidarova and Budnikov, 2011; Guascito et al., 2013; Yang et al.,
2013; Chen and Ostrom, 2015).

Recently, a method of the directed electrochemical nanowire
assembly (DENA) was proposed for metal nanowires (Cheng
et al., 2005, 2011; Talukdar et al., 2006; Ozturk et al., 2007a,b;
Kawasaki and Arnold, 2011; Flanders et al., 2012; Ji et al., 2013;
Zhang et al., 2013; Yi et al., 2014; Nikolaev et al., 2017). The
method is based on the directional growth of metal nanowires
and nanodendrites under the action of an AC voltage of high-
frequency and a DC offset voltage applied between a pair of
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pre-structured electrodes. Using this method, different metal
nanowire compositions can be electrodeposited on a chip and
connected to the external circuitry in a single step. Important
advantages of DENA, such as application at room temperature
and atmosphere, spatial resolution, fast rates of the directional
electrodeposition of metal nanostructures, and low costs have yet
to be fully explored for electrochemical sensors and multisensor
systems. In our recent work, we explore the DENA approach
for a novel class of electrochemical multisensor systems in
electrolyte solutions (Nikolaev et al., 2017, 2018). A synergic
action of the electrode transducer function of the assembled Pd-
Au nanowires and the electrochemical activity of the nanowire
surface toward hydrogen peroxide reduction is achieved in
the proposed multisensor system (Nikolaev et al., 2018). The
detection of hydrogen peroxide in cardiomyocyte-like HL-1
cells using a non-enzymatic Pd-Au nanowire multisensor array
prepared by DENAwas also demonstrated (Nikolaev et al., 2018).
The DENA method has been applied to create nanostructures
of platinum (Kawasaki and Arnold, 2011), gold (Ozturk et al.,
2007a; Nikolaev et al., 2017), palladium (Nikolaev et al., 2018),
as well as Au-Pt (Cheng et al., 2011) and Au-Ag (Ji et al.,
2014) compositions. Such materials can enable the detection of a
number of analytes (Koposova et al., 2014; Ermakov et al., 2016;
Nikolaev et al., 2017).

In this paper, we describe the development, characterization,
and application of the chip-based nanoelectrochemical
multisensor platform prepared byDENA for the analysis of liquid
media. A single-chip multisensor system is composed of an array
of Pd-Au, Pd-Ni, Pd, and Au NW electrodes prepared without
employing multiple cycles of photolithography process to realize
a multiplicity of the NW sensor compositions on a single chip.
Individual amperometric signals of two or more nanowires can
be acquired, making use of the specific electrocatalytic surface
properties of the individual nanowire sensors of the array for
the electrochemical detection. The multisensor system was
employed for the non-enzymatic analysis of hydrogen peroxide,
glucose, and ethanol. The proposed nanoelectrochemical
multisensor platform is promising for acquiring complex
analytical signals for advanced data processing with chemometric
techniques for flexible multi-analyte monitoring and healthcare
applications.

MATERIALS AND METHODS

Chemicals
Potassium tetrachloropalladate (II), palladium (II) chloride,
gold (III) chloride trihydrate, nickel (II) chloride, disodium
phosphate, hydrogen peroxide (≥30%), HEPES (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid), sodium
dihydrogen phosphate, propanol, acetone, and other chemicals
were obtained from Sigma-Aldrich. The substances were of
analytical grade purity and used without further purification.
The photoresists and developer for the photolithography
were obtained from MicroChem Corp. and MicroChemicals
GmbH. Solutions of analytes were prepared directly before
measurements. All solutions were prepared using distilled
water.

Electrode Synthesis by Directed
Electrochemical Nanowire Assembly
The growth microelectrodes (source and ground electrodes),
Figure 1, for the electrodeposition of the nanowires of
various compositions by DENA were structured on the
substrates and produced using thin-film technologies in
an ISO 5 cleanroom as described in detail (Nikolaev et al.,
2018). Briefly, wafers of single-crystal boron-doped n-Si
with (111) surface orientation were employed as substrates
for fabricating electrochemical sensors. The silicon wafers
were oxidized to produce a silicon dioxide layer of 1000 nm
thickness using a Tempress oxidation furnace. These Si/SiO2

wafers were further used as carriers for the deposition of
the growth microelectrodes by photolithography and lift-off
processes.

After dehydration at 180◦C for 20min, the Si/SiO2 wafers
were coated with a LOR 3B photoresist to produce a layer of
5µm, baked for 5min, and subsequently coated with an AZ
nLOF 2020 photoresist to produce a layer of 2µm. A photoresist
stack was used instead of a single photoresist layer to achieve a
better control over the geometry of the growth microelectrodes
and contact lines. After pre-baking at 115◦C for 90 s, the Si/SiO2

wafers with a photoresist stack were exposed at 325 watt using
a photolithography mask at Mask Süss MA-6 (Hg-vapor lamp
350W). Exposure time was optimized as 1.4 s. After exposure, the
wafers were post-exposure baked at 115◦C for 90 s. The wafers
with an exposed photoresist stack were subsequently developed
by AZ R© 326 (MIF, 2.38% TMAH in H2O) for 1min to produce
structured photoresist layers for subsequent metallization and
lift-off processes.

Thin metal layers of titanium for adhesion (10 nm) and
gold (100 nm) were deposited on the Si/SiO2 wafers with pre-
structured photoresist layers by means of an electron beam
evaporation using a Pfeiffer PLS 500 equipment. Afterwards,
the wafers were lifted off using acetone to remove sacrificial
photoresist polymer layers. The wafers were then cleaned in
isopropanol and distilled water.

Subsequently, DENA of nanowires and nanodendrites was
performed on the Si/SiO2 wafers with metal bond pads, contact
lines, and growth electrodes prepared by photolithography
and lift-off processes as described above. The nanowires and
nanodendrites of various metal and bimetallic compositions
were assembled between growth electrodes using an Agilent
Trueform Series Waveform Generator 33600. The optical
microscope Leica DMLB was used for fixing and observation
of DENA.

Analysis by Scanning Electron Microscopy
and Energy-Dispersive X-Ray
Spectroscopy
The nanoelectrodes were characterized by scanning electron
microscopy using a MagellanTM XHR SEM equipped with an
energy-dispersive X-ray spectroscopy (EDX) detector system,
and a MagellanTM XHR SEM equipped with a focused ion beam
(FIB) setup.
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Electrochemical Measurements
To be used in aqueous solutions, the contact lines and growth
electrodes of the nanowire electrode arrays prepared by DENA
need to be protected by an isolation layer. An isolation
layer of polyimide was produced by means of an aligned
photolithography procedure. The channels with arrays of the
assembled nanowire electrodes were left free from the isolation
polyimide layer for contact with aqueous solutions. Additionally,
the bond pads were left open for making electrical contacts to
the external circuit. The wafers were diced into 13 × 13mm
chips. A glass ring with a radius of about 8mm was attached on
top of each chip to make an electrochemical cell compartment
and accommodate the electrolyte solution for electrochemical
experiments using polydimethylsiloxane (PDMS, 10:1, Sylgard).
The bond pads were left outside the glass ring.

Electrochemical experiments were performed using a three-
electrode electrochemical cell placed in a dark Faraday cage and
controlled by a potentiostat-galvanostat AUTOLAB (PGSTAT
302, The Netherlands). The electrochemical cell was made of
a coiled platinum auxiliary electrode, an Ag/AgCl reference
electrode (3M KCl, DRIREF-450, World Precision Instruments),
and the desired working electrode. The electrochemical cell
was covered with a PDMS top cover, which incorporated
apertures for the electrodes and argon supply. The solutions and
electrochemical cell were purged with argon to remove oxygen
and kept under argon atmosphere during the experiments. All
experiments were at 22 ± 1◦C. A detection limit of sensors was
estimated using a signal to noise (S/N) ratio of 3.

RESULTS AND DISCUSSION

Growth and Characterization of the
Nanoelectrochemical Sensors
In a typical experiment on the nanowire assembly, the growth
electrodes, Figure 1, were connected to the AC/DC voltage

generator via bond pads and a small volume of the metal salt
solution of about 5 µl was positioned across the electrode gap. A
square wave potential of the defined frequency and a DC voltage
offset were applied across the electrode gap. Experimentally
optimized growth parameters and solution compositions are
shown in Table 1. DENA was detected in real time by optical
microscopy (a video of the nanowire assembly process is available
in Supporting Information).

Nanowire shape and compositions vary with the composition
of the electrodeposition solution, electrode gap, and AC/DC
parameters, as shown for example in Figures 2–4. The
nanodendrite electrodes with an overall diameter from 50 nm
to several micrometers were obtained by DENA in our studies.
The details of the growth mechanism were discussed in Bockris
and Despic (1970), Cheng et al. (2005), Ozturk et al. (2007a,b),
Kawasaki and Arnold (2011), Ji et al. (2013), and Nikolaev et al.
(2018). For the multisensor system, several types of electrodes,
i.e., Pd, Au, Pd-Au, and Pd-Ni, were grown on a single chip.

Figure 3 shows an example of a Pd electrode, Figures 3A,B,
and two examples of Pd-Au nanodendrite electrodes. A Pd-
Au nanodendrite electrode in Figures 3G–L was obtained by

TABLE 1 | The experimentally optimized parameters for the

directed electrochemical nanowire electrode assembly.

Composition Growth parameters

AC, DC parameters Solution composition

Au 45 MHz 18 Vpp, 1 VDC 1 × 10−2 M HAuCl4 in H2O

Pd 45 MHz 17 Vpp, 1.5 VDC 1 × 10−2 M K2PdCl4 in H2O

Pd-Au 40 MHz 17 Vpp, 1.5 VDC 5 × 10−3 M K2PdCl4, 5 × 10−3 M

HAuCl4 in water or PBS

Pd-Ni 38 MHz 15 Vpp, 2.5 VDC 2.5 × 10−3 M PdCl2, 7.5 × 10−3

M NiCl2 in 0. 1M HEPES buffer

FIGURE 1 | Design of a single 13 × 13mm chip (A). Source and ground electrodes setup, growth initiation site, and electrode gap (B).
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FIGURE 2 | (A) Optical microscopy image of a 13 × 13mm chip with contact

paths and growth electrodes structured by photolithography, and the nanowire

electrodes assembled by DENA (contact pads are not shown on the image).

Inserts in (A) show SEM images of Pd-Au (up left), Pd (up right), and the

structural features of an Au (below) nanowire electrodes prepared by DENA.

Optical microscopy images of Au (B), Pd (C), and Pd-Au (D) nanowire, and

nanodendrite electrodes prepared by DENA after isolation with polyimide

polymer.

deposition from 5 × 10−3 M HAuCl4 and 5 × 10−3 M PdCl2
in a 0.05M phosphate buffer solution (PBS) of pH 8 at 38 MHz,
17 Vpp, and 1.5V DC offset. According to the EDX elemental
mapping and spectrum of the nanowire composition, gold
and palladium were homogeneously distributed throughout the
cross-section and length of the Pd-Au nanodendrite electrode.
The element content was found to constitute 55.5 and 44.5%
for Au and Pd, respectively, while Pd accounted for about
60% in a Pd-Au nanodendrite electrode in Figures 3c–f in
case of deposition from water solution. The nanodendrite
electrodes have typically an electrochemically active surface area
of thousands of µm2 (Nikolaev et al., 2018).

The co-deposition of Pd and Ni was carried out at 38 MHz,
15 Vpp, and 2.5V DC offset in a solution of 2.5 × 10−3 M
K2PdCl4 and 7.5 × 10−3 M NiCl2 positioned across a 50µm
electrode gap, as shown in Figure 4. The chemical composition
of as-prepared Pd-Ni electrode was determined using an EDX
analysis. Figures 4C,B show the corresponding EDX spectrum
and mapping of Pd (red) and Ni (green), respectively.

Electroanalytical Measurements
Detection of Glucose

The metal nanodendrite electrodes prepared by DENA were
further characterized by cyclic voltammetry in 0.1M PBS (pH
7.2) or 0.1MKOH, Figures 5A, 6A, 7A. In a number of cases, the
current-voltage curves indicated that the connections between

the nanowire electrodes and growth electrodes were destroyed
during the isolation procedure. Therefore, these electrodes were
not used for further experiments.

The electrochemical activities of different nanodendrite
electrode surfaces prepared by DENA toward glucose oxidation
were studied to evaluate the feasibility of their application
for glucose sensing, Figures 5–7. Non-enzymatic glucose
electrochemical sensors have been presented and discussed in a
number of recent reviews and articles (Toghill and Compton,
2010; Chen and Ostrom, 2015; Jin et al., 2015; Pourbeyram
and Mehdizadeh, 2016; Liu et al., 2017; Quesada-González
and Merkoçi, 2017; Shabnam et al., 2017; Barragan et al.,
2018). The electrochemical measurements for the Au NW
electrode were performed in a 0.1M PBS at pH 7.2, Figure 5.
Cyclic voltammograms of the electrodes were recorded in
a potential range of 0–1.2V (vs. Ag/AgCl), Figure 5A. As
shown in Figure 5A, the CV of the Au NW electrode in the
absence of glucose displays the characteristic features of a
gold electrode surface. The gold cathodic peak potential after
anodic oxidation in the positive (anodic) scan was at about
+0.45V for the Au nanodendrite electrode, Figure 5A (black
line). Cyclic voltammogram in a 10−2 M solution of glucose
displays an anodic current due to oxidation of glucose in an
anodic (forward) scan at about +0.29V and an electrocatalytic
oxidation current at about +0.17V in a cathodic (reverse)
scan, Figure 5A (blue dashed line). In the reverse (cathodic)
potential sweeping, the reduction of the oxidized gold surface
occurs, meaning that the active sites on the electrode surface are
regenerated and accessible for the glucose oxidation. According
to this, anodic current of the glucose oxidation with a new peak
at about +0.17V is observed in a reverse scan, Figure 5A (blue
dashed line). The Au NW non-enzymatic sensor demonstrated
a linear concentration range of 1 × 10−4 − 5 × 10−3 M with a
sensitivity of 0.03 µAM−1 and a lower limit of detection of 3.3×
10−5 M glucose. Selectivity of the Au NW sensor in the presence
of fructose, sucrose, and ascorbic acid is shown in Figure S1.

Mechanisms of non-enzymatic electrocatalysis of glucose
oxidation on metal electrode surfaces has generated much
interest over the years for applications in glucose sensors and
glucose-oxygen biofuel cells (Nikolaeva et al., 1983; Vassilyev
et al., 1985; Makovos and Liu, 1986; Burke, 1994; Heller and
Feldman, 2008; Pasta et al., 2010; Toghill and Compton, 2010).
However, the electrocatalytic behavior of gold electrodes in this
process is complex and although many studies were published
and a series of mechanisms were proposed, the mechanism of the
glucose oxidation process remains uncertain. The processes of
electrocatalytic transformations on electrode surfaces generally
proceed via the adsorption of the analyte to the surface of the
electrode via suitable bonds, which should be formed or broken
during catalytic process (Pletcher, 1984) and involve the d-
electrons and d-orbitals of the metal electrodes surface. Most
notably is that electrocatalytic oxidation of glucose is favored on
the oxidized metal surfaces of surface oxides or hydroxides and it
was noted that electrooxidation of a number of organic molecules
including glucose coincided with the OHads formation (Toghill
and Compton, 2010). The concept that the oxide mediator
species were involved in the electrocatalytic oxidation processes
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FIGURE 3 | (a) EDX spectrum of a Pd NW electrode, (b) SEM micrograph of the Pd NW electrode shown in (a). The Pd NW electrode was synthesized by

electrodeposition from a Pd (ac)2 solution. (c) EDX spectrum of a Pd-Au nanodendrite electrode and (d) histogram of the Pd and Au element content in the Pd-Au

nanodendrite shown in (e) the SEM micrograph. (f) SEM micrograph of the same Pd-Au nanodendrite electrode with elemental mapping (Pd-green, Au-red). The

Pd-Au nanodendrite electrode was electrochemically assembled in a 5 × 10−3 M HAuCl4 and 5 × 10−3 M K2PdCl4 water solution at 45 MHz, 17 Vpp, and 1.5 V DC

offset. (g) EDX spectrum of a Pd-Au nanodendrite electrode and (h) histogram of the Pd and Au element content in the Pd-Au nanodendrite electrode shown in (i) the

SEM micrograph. (j) EDX elemental mapping of the same Pd-Au nanodendrite electrode (Pd-green, Au-red). (k) EDX spectrum of the lamella (cross section) of the

Pd-Au nanodendrite electrode. (l) EDX elemental mapping of the same lamella of the Pd-Au nanodendrite electrode. The structure was synthesized by

electrodeposition from 5 × 10−3 M HAuCl4 and 5 × 10−3 M PdCl2 dissolved in PBS, pH 8, at 38 MHz, 17 Vpp, and 1.5 V DC offset. Reprinted by permission from:

Springer, J. Solid State Electrochemistry, Bimetallic nanowire sensors for extracellular electrochemical hydrogen peroxide detection in HL-1 cell culture, Konstantin G.

Nikolaev, Vanessa Maybeck, Elmar Neumann, Sergey S. Ermakov, Yury E. Ermolenko, Andreas Offenhäusser, Yulia G. Mourzina © (2017), advance online publication,

28.11.2017 (doi: 10.1007/s10008-017-3829-3).

at electrodes was postulated earlier by Bagotzky and Vassilyev
(1967) for the process of methanol oxidation on Pt. Burke (1994)
discussed the premonolyer incipient hydrous oxide layer formed
in a premonolayer oxidation step on the metal electrode surface
and its role on the electrocatalytic processes at noble metal
electrode/aqueous solution interface. The author introduced the
“Incipient Hydrous Oxide Adatom Mediator” theory, where
OHads oxy-species on noble metal electrode surfaces might
act as mediators of many electrocatalytic processes. It is thus
believed that incipient hydrous gold oxide, which is formed by
chemisorption of OH− to the surface of a gold electrode mediates
electrocatalytic processes at a gold electrode. This hydrous gold
oxide premonolayer may favor the process of the removal of the
hemiacetalic hydrogen atom from the glucose molecule (Park
et al., 2006) and mediates oxidation of the adsorbed species.
Therefore electrocatalytic effect is more pronounced at higher
pH, since the reversible adsorption of oxygen in the form of
OHads on the gold electrode surfaces is negligible in acidic media

(Vassilyev et al., 1985). Therefore, non-enzymatic glucose sensors
based on metallic nanostructures are mostly used in alkaline
solutions.

Nikolaeva et al. (1983) and Vassilyev et al. (1985) proposed
a mechanism, in which an electrochemically formed gold oxide
on the gold electrode surface possessed a catalytic effect on the
process of glucose electrooxidation. It is thus supposed that a
chemisorption of glucose at the hydrous gold oxide takes place
and the adsorbed glucose is then oxidized by the adsorbed
hydroxide anions, like it is schematically shown in Equations
(1,2), and a scheme in Figure 5A:

Au[OHads]+ glucose → Au+ gluconolactone or gluconic acid
(1)

or

AunOm + glucose → AunOm−1 + gluconolactone or gluconic acid

(2)

Frontiers in Chemistry | www.frontiersin.org 6 June 2018 | Volume 6 | Article 256

https://doi.org/10.1007/s10008-017-3829-3
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Nikolaev et al. Multisensor Systems by Electrochemical Nanowire Assembly

FIGURE 4 | (A) SEM micrograph, (B) EDX map (Pd is red, Ni is green), and (C) EDX spectrum of the Pd-Ni nanodendrite electrode. This structure was synthesized at

38 MHz, 15 Vpp, and 2.5 V DC offset.

The mechanism was further elaborated by Makovos and Liu
(1986), which observed an anodic current during the cathodic
scan in cyclic voltammetry and the dependence of the peak
current values on the concentration of glucose. A common final
step in Nikolaeva et al. (1983) and Makovos and Liu (1986)
was a rapid electrochemical regeneration of the gold surface
oxy-species as illustrated in Equations (3–5), and scheme in
Figure 5:

OH− → OHads + e− (3)

H2O → OHads ++H+ + e− (4)

or

AunOm−1 + 2OH− → AunOm +H2O+ 2e− (5)

The mechanism of direct electrocatalytic glucose oxidation on Pd
electrocatalysts was reported and is summarized in Equations (6–
8) (Vassilyev et al., 1985; Becerik and Kadirgan, 1992; Cai et al.,

2013; Chen et al., 2015):

Pd + glucose → Pd−Hads + intermediates (6)

Pd + OH− → Pd[OHads]+ e− (7)

PdOHads + glucose or intermediates → Pd

+ gluconolactone or gluconic acid (8)

In a reverse (cathodic) scan, Figure 6B, the reduction of Pd
oxide and reformation of active hydrous oxide species, Pd(OH)x,
occurs after about 0.01V in alkaline medium. The regenerated
active sites of Pd hydroxide species carry out glucose oxidation
reaction again and the anodic peak of glucose re-occurs.

Nickel electrodes were also investigated as catalysts for the
electrooxidation of organic substances in alkalinemedium, where
the oxidized component of the Ni(OH)2/NiOOH redox couple
is a catalytic component (Fleischmann et al., 1971; Toghill
and Compton, 2010). It is supposed that the removal of the
hemiacetalic hydrogen atom is the rate determining step of the
process of glucose electrooxidation at nickel oxyhydroxide. Thus,
the oxidation of glucose to gluconolactone in an alkaline solution
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FIGURE 5 | (A) Cyclic voltammograms of an Au NW electrode in a 0.1M PBS, pH 7.2, (black line) and in a 1 × 10−2 M solution of glucose in PBS (blue dashed line).

Insert in (A) shows a scheme of the oxidation and reduction processes at the metal electrode surface during oxidation of glucose. (B) A calibration curve as a current

dependence on the concentration of glucose. The calibration curve was obtained by means of amperometry at Edet = +0.35V (vs. Ag/AgCl) using an Au NW

electrode prepared by DENA as a working electrode.

FIGURE 6 | Cyclic voltammograms of a Pd NW electrode in 0.1M KOH (black line) (A) and with addition of 2.0 × 10−3 M of glucose (red line) (B). (C) Amperometric

detection of glucose on a Pd NW electrode in 0.1M KOH at −0.15 V with additions of glucose up to 2.0·10−3 M. (D) Calibration curve as a dependence of the

oxidation current on the concentration of glucose at −0.15V at a Pd NW electrode, 0.1M KOH.
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is catalyzed by the Ni(II/III) redox couple of the electrode surface
in accordance with reactions (9–10) (Toghill and Compton, 2010;
Li et al., 2014):

Ni(OH)2 + OH− → NiO(OH)+H2O+ e− (9)

NiO(OH) + glucose+OH− → Ni(OH)2

+ gluconolactone+H2O+ 2e− (10)

Non-enzymatic electrodes based on electrocatalysis, which rely
on bimetallic systems, may offer electrodes, in which the
catalytic and electronic benefits of the components synergistically
combine to reach particular electronic and catalytic properties
(Vassilyev et al., 1985; Wang et al., 2008; Toghill and Compton,
2010; Shaidarova and Budnikov, 2011; Zhang et al., 2011;
Si et al., 2013; Yang et al., 2013; Chen and Ostrom, 2015).
A high surface area of the nanodendrite electrodes provides
active sites for the electrocatalytic reaction. Moreover, the
dendritic metals have many nanostructured features such as
sharp edges and nanoscale junctions rendering them a high
activity.

Figures 6A,B, 7A,B show the CV curves of Pd and Pd-Ni
NW electrodes in the absence and presence of 2.0 × 10−3 M
glucose in 0.1mol L−1 KOH. In order to evaluate the sensitivity
of the sensors to glucose, amperometric responses of the Au, Pd,

and Pd-Ni nanodendrite electrodes to the changes of the glucose
concentration were studied. The amperometric measurements
were made in a constantly stirred 0.1M solution of potassium
hydroxide with successive additions of glucose every 100 s,
Figures 6C, 7C. As can be seen in Figures 6D, 7D, well-defined
amperometric currents were proportional to the concentration of
glucose in a concentration range of 5.0 × 10−6 to 2.0 × 10−3 M
for the Pd NW electrode and 1.5× 10−7 to 2.0× 10−3 M for the
Pd-Ni NW electrode, respectively.

Series of CVs experiments were performed to evaluate
linear concentration ranges, LODs, sensitivities, and regression
coefficients. The experiments were performed in 0.1M KOH
for Pd, Figure 6, and Pd-Ni, Figure 7, electrodes, and in 0.1M
PBS for the Au NW electrode, Figure 5. Table 2 summarizes the
analytical characteristics of the Au, Pd, and Pd-Ni nanodendrite
electrodes assembled by DENA in our studies for the detection of
glucose. As shown in Table 3, the calibration graphs were linear
in concentration ranges 1.0 × 10−4 − 5.0 × 10−3 M for the Au
NW electrode, 5.0 × 10−6 − 2.0 × 10−3 M for the Pd electrode,
and 1.5 × 10−7 − 2.0 × 10−3 M for the Pd-Ni nanodendrite
electrode. The LODs were 3.3× 10−5 M, 1.3× 10−6 M, and 4.0×
10−8 M for Au, Pd, and Pd-Ni electrodes, respectively (S/N = 3).
Regression coefficients for all electrodes compositions were not
<0.9988. Electrodes sensitivities in linear concentration ranges

FIGURE 7 | Cyclic voltammograms of a Pd-Ni NW electrode in 0.1M KOH (A) and in 0.1M KOH (black line) with addition of 2.0 × 10−3 M glucose (red line) (B). (C)

Amperometric detection of glucose on a Pd-Ni NW in 0.1M KOH at −0.15V with additions of glucose up to 2.0 × 10−3 M. (D) Calibration curve as a current

dependence on the concentration of glucose at −0.15 V at a Pd-Ni NW electrode, 0.1M KOH.
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were found to be 0.03, 20, and 178 µA M−1 for Au-, Pd-, and
Pd-Ni nanodendrite electrodes, respectively.

One can see from Table 2 that although all three compositions
demonstrate sensor properties with respect to glucose, the Pd-Ni
composition provided better analytical characteristics, i.e.,
the lowest LOD, a higher sensitivity, and a broader linear
concentration range. We suppose that this performance is
due to the bimetallic composition of the electrode and a
complex synergic electrocatalytic mechanism. Similar effects
of the improved electrochemical sensor performance, e.g.,
significantly higher currents and as a consequence, a higher
sensitivity of determination of hydrogen peroxide were
observed for microwires of Au-Cu prepared by laser-induced
metal deposition from solution in comparison with Au
microwires (Panov et al., 2017). The enhanced electrocatalytic
activity of two-component or more complex compositions of
electrode materials in comparison with individual pure metal
surfaces was also discussed (e.g., Koper, 2004; RodriGuez-
Nieto et al., 2004; Shaidarova and Budnikov, 2011; Guascito
et al., 2013; Yang et al., 2013). This effect may be due to
bifunctional or synergic effect, the ligand or electronic effect
with variations of electronic and catalytic properties of elements
in composite materials compared with pure metals (Koper,
2004; RodriGuez-Nieto et al., 2004; Shaidarova and Budnikov,
2011), and formation of various phases and crystal defects in
multicomponent systems leading to more electrocatalytically
active surfaces. However, molecular understanding of bimetallic
electrocatalysis and explanation of the experimentally observed
enhanced electrocatalytic performance of bimetallic and
multicomponent systems in comparison with individual metal
surfaces require further detailed investigations in each case
(Koper, 2004).

Ethanol Detection
Further characterization of the NW electrodes prepared by
DENA included the study of their electrocatalytic performance in
the oxidation of ethanol. Ethanol electrooxidation on metal and
composite electrodes has been discussed in a number of reviews
and articles (Azevedo et al., 2005; Chen and Ostrom, 2015; Liu
et al., 2015; Shishov et al., 2016; Cinti et al., 2017). Ethanol
electrooxidation was reported to be most effective on the Pd-
containing electrodes in alkaline media due to the electrocatalytic
activity of Pd (Liu et al., 2007; Ksar et al., 2009; Chen and Ostrom,
2015). As it was discussed above, metal oxy-species on the
electrode surface are supposed to mediate the electrooxidation
of ethanol on Pd electrodes. It was shown that Pd had no activity
for ethanol oxidation in acid media (Liu et al., 2007). Therefore,

TABLE 2 | Analytical characteristics of the nanodendrite electrodes prepared by

DENA for the detection of glucose.

Electrode Edet, V Linear range, M LOD, M Sensitivity,

µA M−1

Au 0.35 V(PBS) 1.0 × 10−4 − 5.0 × 10−3 3.3 × 10−5 0.03

Pd −0.15(KOH) 5.0 × 10−6 − 2.0 × 10−3 1.3 × 10−6 20

Pd-Ni −0.15(KOH) 1.5 × 10−7 − 2.0 × 10−3 4.0 × 10−8 178

in the following, results for the Pd-containing NW electrodes
prepared by DENA in 0.1M KOH solution are presented. The
oxidation sequence for ethanol oxidation in alkaline media may
be summarized as follows:

OH− → OHads + e− (11)

CH3CH2OH+ 3OH− → CH3COads + 3H2O+ 3e− (12)

CH3COads +OHads → CH3COOH (13)

CH3COOH+OH− → CH3COO
− +H2O (14)

Figures 8, 9 show voltammograms of the Pd- and Pd-Ni NW
electrodes prepared by DENA in 0.1M KOH without and with
successive additions of ethanol. The current-voltage curves in
the presence of ethanol display two well-defined anodic current
peaks: one on the forward (anodic) potential scan and another
one on the reverse (cathodic) sweeping (Gutiérrez et al., 2007;
Ksar et al., 2009), Figures 8A, 9A. The appearance of a symmetric
anodic peak in the forward scan at about −0.070V corresponds
to the ethanol electrooxidation process. In the reverse scan,
oxidation of the incompletely oxidized and adsorbed on the
electrode surface intermediate carbonaceous species, which are
produced in the forward anodic scan, results in the appearance
of the asymmetric anodic peak at about −0.300V for Pd- and
−0.230V for Pd-Ni NW electrodes.

The characteristics of the NW sensors for ethanol detection
based on the electrocatalytic oxidation of ethanol are presented
in Table 3 and Figures 8, 9. A linear calibration range of 7.0 ×

10−4 − 3.0× 10−2 M(R2 = 0.9999), detection limit of 2.2× 10−4

M (S/N = 3), and a sensitivity of 1.5 µAM−1 were found for the
Pd NW electrodes. For the Pd-Ni NW electrodes, a similar linear
calibration range of 7.0 × 10−4 − 3.0 × 10−2 M (R2 = 0.9998)
with a detection limit of 5.2× 10−4 M, and a sensitivity of 28 µA
M−1 were observed in alkaline media.

Hydrogen Peroxide Detection
Further characterization of the metal NW electrodes prepared
by DENA included the study of their performance in the
reduction of hydrogen peroxide, thereby Pt- and Pd-based
electrocatalysts generally demonstrate high catalytic activity
for the electrochemical reduction of hydrogen peroxide
(Chen and Ostrom, 2015). Non-enzymatic hydrogen peroxide
electrochemical sensors have been discussed in a number of
recent reviews and articles (Chen et al., 2014; Chen and Ostrom,
2015; Naveen et al., 2016; Plauck et al., 2016; Wang et al., 2016;
Komkova et al., 2017; Nikolaev et al., 2018).

Electrochemical reduction of hydrogen peroxide on several
nanodendrite electrode surfaces was studied to evaluate these

TABLE 3 | Analytical characteristics of the ethanol detection with the

nanodendrite electrodes prepared by DENA.

Electrode Edet, V Linear range, M LOD, M Sensitivity,

µA M−1

Pd −0.3 7.0 × 10−4 − 3.0 × 10−2 2.2 × 10−4 1.5

Pd-Ni −0.25 7.0 × 10−4 − 3.0 × 10−2 5.2 × 10−4 28
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FIGURE 8 | (A) Cyclic voltammograms of a Pd NW electrode in a 0.1M KOH (black line) with additions of ethanol up to 3.0 × 10−2 M. (B) Dependence of the anodic

current on the concentration of ethanol at −0.3 V in 0.1M KOH at the Pd NW electrode. Insert in (B) shows the Pd nanodendrite electrode used for the detection.

FIGURE 9 | (A) Cyclic voltammograms of a Pd-Ni NW electrode in a 0.1M KOH (black line) with additions of ethanol up to 3.0 × 10−2 M. (B) Calibration curve of the

Pd-Ni NW sensor as a dependence of the anodic current on the concentration of ethanol at −0.25 V in 0.1M KOH.

electrode materials with regard to their application in hydrogen
peroxide sensing. The electrochemical measurements were
performed at pH 7.2 maintained with 0.1M PBS, Figure 10.
The current-voltage curves, which were recorded in 0mM (black
line) and 10mM (red line) solutions of hydrogen peroxide
on the Pd-Au nanodendrite electrode, and the corresponding
electrode are shown in Figures 10c,f, respectively. As can be seen,
the Pd-Au electrode demonstrates high electrochemical activity
toward hydrogen peroxide reduction at these conditions with a
half-wave reduction potential of about −0.125V (vs. Ag/AgCl).
Additionally, analytical characteristics of the sensors in terms of
linear concentration range, sensitivity, and detection limit were
studied by amperometry, where a detection potential of as low
as −0.05V was selected, Figures 10d,e. A low absolute value
of the detection potential for the amperometric measurements
was used to show the feasibility of the sensor application for
the analysis of reactive oxygen species and oxygen metabolism
in biological systems (Mason, 1957; Calas-Blanchard et al.,
2014). The Pd-Au NW sensor demonstrates a high sensitivity
of 18 µA M−1 in a wide linear concentration range of 10−6

− 10−3 M of hydrogen peroxide at this detection potential,
Table 4. Selectivity of the sensor response to a number of

interfering substances was evaluated, Figure S2. The response of
the sensor to 1µM hydrogen peroxide decreased to <50% in the
presence of 1.5 × 10−4 M ascorbate, 1 × 10−4 M dopamine,
and 5 × 10−4 M uric acid. Thus, our results show that high
concentrations of these substances exhibit interfering effect on
the determination of hydrogen peroxide, however, do not distort
the response to hydrogen peroxide essentially, which allows
to use the developed sensors and multisensor systems in the
presence of these interfering substances. The interfering effect is
due to the redox behavior of the substances on electrodes and
reduction of hydrogen peroxide by these interfering substances
(Ames et al., 1981; Lowry and O’Neill, 1992; Deutsch, 1998; Zhao
and Kim, 2016). Similar effects were discussed in Lowry and
O’Neill (1992).

Table 4 summarizes the analytical characteristics of the Pd-
Au, Au, and Pd nanodendrite electrodes assembled by DENA.
It can be seen, that the Pd-Au NW electrodes show a wide
linear range with higher sensitivity, and a lower detection limit
in comparison with the Au and Pd NW electrodes. Essentially,
these analytical characteristics were achieved at a significantly
lower absolute value of the detection potential than in a series of
previous works (Chen et al., 2013, 2014; Goran et al., 2015; Huang
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FIGURE 10 | (a) Cyclic voltammogramms of the Pd-Au (red line) and Au (black line) NW electrodes assembled by DENA in 0.1M PBS, pH 7.2. (b) CVs of the Pd-Au

(red line) and Pd (black line) NW electrodes in 0.1M PBS, pH 7.2. (c) CVs of the Pd-Au NW electrode at 0mM (black line) and 10mM H2O2 (red line), 0.1M PBS, pH

7.2. (d) Amperogram with additions of H2O2 in 0.1M PBS, pH 7.2, at Edet = −0.05V. H2O2 concentration in the final solution was 10−3 M. (e) Calibration curve of

the sensor in 0.1M PBS, pH 7.2, at Edet = −0.05V. (f) Optical microscopy image of the Pd-Au NW electrode assembled by DENA and used for the electrochemical

measurements. Reprinted by permission from: Springer, J. Solid State Electrochemistry, Bimetallic nanowire sensors for extracellular electrochemical hydrogen

peroxide detection in HL-1 cell culture, Konstantin G. Nikolaev, $Vanessa Maybeck, Elmar Neumann, Sergey S. Ermakov, Yury E. Ermolenko, Andreas Offenhäusser,

Yulia G. Mourzina © (2017), advance online publication, 28.11.2017 (doi: 10.1007/s10008-017-3829-3).

TABLE 4 | Analytical characteristics of the detection of hydrogen peroxide in

solutions with Au-, Pd-, and Pd-Au nanodendrite electrodes electrodeposited by

DENA, 0.1M PBS.

Metal/alloy Linear range, M LOD, M Sensitivity, A M−1

Au 2 × 10−4 − 1 × 10−2 5.9 × 10−5 5.7 × 10−7

Pd 1 × 10−5 − 7.9 × 10−3 6.0 × 10−6 5.4 × 10−7

Pd-Au 1 × 10−6 − 1 × 10−3 2.4 × 10−7 1.8 × 10−5

et al., 2015), thus emphasizing high activity of these new sensor
nanomaterials toward electrochemical reduction of H2O2.

Analytical performance of the DENA-prepared non-
enzymatic electrochemical sensors in electrolyte solutions
offer wide linear concentrations intervals, low detection
limits, and additional benefits resulting from the multiplicity
of possible material compositions, spatial resolution, and
durability of the sensors. While fabrication of enzymatic
and most non-enzymatic sensors employs drop-casting of
the nanostructures prepared by different methods and other
onerous immobilization procedures on the glassy carbon
electrodes or other supports, the DENA sensors presented in
this investigation do not involve modification of the electrode
surfaces as well as the sensor response is not affected by the
surface protection (surface-capping) agents from the chemical
synthesis of the nanostructures. Hence, the sensors are stable to

the detachment of components, which makes them favorable
for in vivo analysis, minimizes drift of the sensor response,
and thereby improves the stability. Furthermore, significantly
lower absolute values of the detection potentials than in many
previous investigations (Azevedo et al., 2005; Chen et al.,
2013, 2014; Goran et al., 2015; Huang et al., 2015; Jin et al.,
2015; Pourbeyram and Mehdizadeh, 2016; Shishov et al., 2016;
Shabnam et al., 2017) demonstrate that the DENA-metal NW
electrodes possess high activity for the electrochemical redox
processes of a number of substances such as glucose, ethanol,
and hydrogen peroxide, which are both important analytes
and components of the fuel cell electrochemistry. Possible
approaches to compensate for a generally lower selectivity
of the non-enzymatic design in comparison with enzymatic
biosensors can be involvement of the separation methods as well
as realization of the voltamperometric “electronic tongue”-type
multisensor systems, where non-selective signals of multisensor
arrays are processed by chemometric techniques.

CONCLUSIONS

Advances in nanotechnology, nanomaterials, and chemometric
methods provide new opportunities for innovative
electrochemical non-enzymatic sensors, multisensor systems,
and multicomponent analysis. In this paper, we discuss DENA
of nanowire electrochemical sensors and sensor arrays of
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metals and bimetallic compositions for the development of a
single-chip multisensor system for the solution analysis. Various
sensor nanomaterials (Pd, Ni, Au, and their multicomponent
compositions) were electrochemically assembled on a single
chip and at the same time connected to the external circuit
without employing repetitive cycles of photolithography. The
structural features of the DENA-assembled electrodes were of
50 nm to several µm in diameter as found by SEM analysis.
The nanostructures were characterized by EDX analysis with
elemental mapping to confirm the presence of elements.
Individual amperometric signals of the DENA-assembled
NW electrodes of different compositions were analyzed to
make use of the specific electrochemical surface properties
and show their successful application as functional sensor
devices. Characteristics of non-enzymatic electrooxidation or
electroreduction of analytes (glucose, ethanol, and hydrogen
peroide) varied significantly depending on the NW electrode
composition. For example, Pd-Ni nanowire sensors based on
non-enzymatic glucose oxidation were characterized by a linear
concentration range of 1.5 × 10−7 − 2.0 × 10−3 M glucose
(R2 = 0.9999) with a LOD of 4.0 × 10−8 M, and a sensitivity of
178 µAM−1 at a low value of the detection potential of−0.15V.
Pd- and Pd-Ni NW sensors demonstrated a similar linear
calibration range of 7.0 × 10−4 − 3.0 × 10−2 M for ethanol
determination with a higher sensitivity of 28 µAM−1 at−0.25V
for the Pd-Ni nanodendrite electrode. Pd-Au nanowire sensors
based on the non-enzymatic hydrogen peroxide reduction
demonstrated a linear concentration range of 10−6 − 10−3

M H2O2 with a LOD of 3 × 10−7 M, and a sensitivity of 18
µA M−1 at a low absolute value of the detection potential of
−0.05V. Thus, a novel single-chip electrochemical multisensor
platform can be proposed based on the DENA-metal nanowire
electrodes of a compositional diversity. We anticipate that
DENA-nanomaterials will find a wide range of applications as
electrochemical sensors and multisensor systems in the fields

of high-resolution multicomponent monitoring in fundamental
biology, pharmacology, biomedicine, catalysis, and microfuel
cells to realize the synergetic effects of electrocatalytic materials.
Possible approach to compensate for a generally lower selectivity
of the non-enzymatic design in comparison with enzymatic
biosensors can be realization of the voltamperometric electronic
tongue-type multisensor systems, where non-selective signals of
multisensor arrays are processed by chemometric techniques.
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