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Summary As the most common form of joint disorder, osteoarthritis (OA) imposes a tremen-
dous burden on health care systems worldwide. Without effective cure, OA represents a unique
opportunity for innovation in therapeutic development. In contrast to traditional treatments
based on drugs, proteins, or antibodies, stem cells are poised to revolutionize medicine as they
possess the capacity to replace and repair tissues and organs such as osteoarthritic joints.
Among different types of stem cells, mesenchymal stem cells (MSCs) are of mesoderm origin
and have been shown to generate cells for tissues of the mesoderm lineage, thus, raising
the hope for them being used to treat diseases such as OA. However, given their ability to
differentiate into other cell types, MSCs have also been tested in treating a myriad of condi-
tions from diabetes to Parkinson’s disease, apparently of the ectoderm and endoderm line-
ages. There are ongoing debates whether MSCs can differentiate into lineages outside of the
mesoderm and consequently their effectiveness in treating conditions from the ectoderm
and endoderm lineages. In this review, we discuss the developmental origin of MSCs, their dif-
ferentiation potential and immunomodulatory effects, as well as their applications in treating
OA. We suggest further investigations into new therapies or combination therapies that may
provide more effective treatment for bone and joint diseases. Furthermore, cell-based ther-
apy and its associated safety and effectiveness should be carefully evaluated before clinical
translation. This review provides updated information on recent approval of clinical trials
and related applications of MSCs, and discusses additional efforts on cell-based therapy for
treating OA and other joint and bone diseases.
ª 2017 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking
Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Osteoarthritis (OA) is the most common form of joint dis-
order. It is characterized by degeneration of articular
cartilage [1] and reactive new bone formation at the
articular margins, causing pain and stiffness of the affected
joints [2]. The macroscopic features of OA are revealed by
radiography and magnetic resonance imaging (Figure 1),
and the microscopic features by histology (Figure 2). OA
can affect all synovial joints, with the hip and knee being
the most common sites that often lead to physical disability
[2]. Currently, OA is the leading cause of disability among
the elderly population and this is often associated with
depression and sleeping disorder [3]. It is estimated that
10e15% of adults over the age of 60 years suffer from OA
worldwide [1]. As the global population ages, it has been
forecasted that > 20% of the population will be suffering
from OA and > 40 million people will be severely disabled
by 2050 [1]. Unfortunately, without effective treatment
[4], OA represents a significant economic burden for pa-
tients and society at large [1,3,5e7].

Currently, there is no effective therapy that can reverse
the progressive nature of OA. However, one promising
therapy may rely on the therapeutic use of stem cells. The
majority of the current stem cell therapies involve using
mesenchymal stem cells (MSCs) due to their multilineage
differentiation towards cell types in the joints and their
immunoregulatory function. This could be efficacious to
repair the damaged joints in OA, not only for cartilage
repair but also for subchondral bone remodelling. However,
the safety and effectiveness of the new cell-based thera-
pies must be carefully evaluated before any clinical appli-
cation. Thus, significant challenges remain and are
addressed in this review.
Risk factors of OA

OA can be classified into primary and secondary forms [8].
Primary OA is a chronic degenerative disease related to
aging [1] and heredity [2]. The exact aetiology of primary
OA remains unknown [2], although genetic predisposition
Fig. 1 Radiograph and magnetic resonance images of a Kellgren
thritis. (A) Anteroposterior radiograph: joint-space narrowing and
plateau (white arrow). (B) Corresponding coronal T1-weighted ima
cysts (black arrow). (C) Corresponding coronal T2 weighted image
medial tibial plateau (white arrow), which could not be visualized
medial meniscus and extrusion of the body of the medial meniscu
space narrowing.
has been implicated [1]. Secondary OA can occur in any
synovial joints and at any age due to articular injury [2], for
instance, fracture, repetitive joint use, obesity [9e11], or
metabolic disease such as diabetes [12,13]. The aetiology
of the primary and secondary of OA is different, however
patients’ symptoms and signs are similar [1]. Detailed risk
factors for primary and secondary OA are summarized in
Table 1.

Age is accepted as an independent risk factor for the
development of OA [17], thus increasing the chance of total
hip replacement [18]. Recently, more emphasis has been
placed on genetic predisposition as another independent
cause for OA. Genes such as those for the vitamin D re-
ceptor gene, insulin-like growth factor I, cartilage oligo-
meric proteins, and the human leukocyte antigen (HLA)
region have all been associated with OA [19]. Post-
traumatic OA can develop in joints after sustaining frac-
tures or contusion [14]. These injuries invariably accelerate
the nature of OA development and progression [2].

The development of OA also shows sex-specific preva-
lence and ethnic differences. Zhang et al. [20] have
compared the prevalence of OA in Chinese patients from
Beijing and Caucasians from Framingham, MA, USA. They
reported that the prevalence of radiographic knee OA was
higher in Chinese and Caucasian women than in men aged >
60 years. Ethnic variation also shows that Chinese women
have a higher prevalence of knee OA than their Caucasian
counterparts.

High body mass index is associated with a high risk of
developing knee OA [21] and hip OA. The risk of knee OA
increases w15% for each additional kg/m2 over 27 [16,22].
However, development of OA in obesity is not confined to
the lower limbs. Reports of upper limb involvement are just
as common in OA of the hands and wrists [10]. Weight
reduction and controlling obesity is the single patient
control variable that can reduce the risk of OA development
[18,21].

Oestrogen deficiency might be a risk factor for devel-
oping OA as women have a high incidence of OA after
menopause [14]. Lower prevalence of OA has been
observed in women under oestrogen replacement therapy
[2,14]. However, oestrogen has complex effects on the
eLawrence grade 3 knee illustrating the features of osteoar-
definite marginal osteophytes at the distal femur and tibia

ge: diffuse cartilage loss at the tibia plateau and subchondral
: a subchondral cyst with bone marrow oedema (BML) of the
by X-ray. Partial maceration and oedema of the body of the

s (black arrow), both factors contributing to radiographic joint



Fig. 2 Histological features of OA. The normal synovium has a thin (1e2 cells thick) lining layer and a vascularized, loose
connective tissue sublining layer. OA synovium demonstrates features of synovial villous hyperplasia (#), lining hyperplasia (ar-
rows), increased vascularity (D), and perivascular mononuclear cell (inflammatory) infiltration. In OA articular cartilage, loss of
cells and matrix is accompanied by areas of cell clusters. There is thickening of the calcified zone and duplication of the tidemark,
which normally separates the articular cartilage from the underlying calcified cartilage. The subchondral bone is also thickened,
and vascular invasion, which can extend through the tidemark and into the base of the articular cartilage, is seen.
OAZ osteoarthritis. Note. From “Osteoarthritis: a disease of the joint as an organ” by Loeser, et al., 2012. Arthritis Rheumatology,
64, p. 1697e1707. Copyright 2012, The American College of Rheumatology. Reprinted with permission.
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degradation and repair of joint cartilage [2]. On the one
hand, oestrogen preserves bone mass by preventing the
activation of osteoclasts, therefore resulting in high bone
density, which may increase the risk of OA [2,14]. On the
other hand, high bone mineral density may protect the
progression of OA, therefore, oestrogen also has a protec-
tive effect on OA [14].
Diagnosis of OA

The pathophysiology of OA is multifactorial [2], involving
mechanical, cellular and biochemical processes [15]. These
lead to changes in the composition and loss of articular
cartilage, remodelling of the subchondral bone, and
changes to the homeostasis of the soft tissue and synovial
joint environment [2,14]. The diagnosis of OA mainly de-
pends on the detailed history of patients, together with a
complete physical examination. Ancillary diagnostic tests
can be performed when the diagnosis remains uncertain
(Table 2).

Clinical features of OA
The principal symptom of OA is pain involved in one or a
few joints [15]. Pain tends to progress with time and get
worse with weight bearing, especially following a period of
inactivity [23]. OA usually cause morning stiffness in the
affected joints and resolves within 30 minutes [15]. This
differs from rheumatoid arthritis in which stiffness can last
for � 45 minutes [24].

Physical examination reveals joint swelling caused by
effusion and restricted joint motion associated with joint
crepitus [25]. Joint enlargement, inflammation, and syno-
vitis may also be observed [2]. In addition, Heberden’s node
or Bouchard’s node may be present and cause joint defor-
mity and functional limitations [2].

Radiographs
Radiography is a useful and cost-efficient tool in estab-
lishing OA [23]. It can reveal joint-space narrowing and
osteophyte formation, as well as subchondral cysts and
sclerosis of the subchondral bone [20,23,25]. Furthermore,
radiography has been used in the assessment of joint-space
width [26,27] and there is radiographic classification to
stage the severity of OA (Kellgren Lawrence grading).
However, radiographic and symptomatic OA are not always
consistent [20,23]. For instance, some patients with
radiographic changes do not show any symptoms of OA or
any disability, and symptomatic OA patients may have no
radiographic changes. Therefore, the presence or absence
of radiographic changes cannot establish or exclude the
diagnosis of OA [23].



Table 1 Risk factors for OA [2,14,15,16].

Forms of OA Risk factors for OA

Primary OA Constitutional risk factors Hereditary and genetic factors Age, sex, genetic inheritance
Idiopathic

Secondary OA Congenital Congenital and developmental disorders
Acquired Activity-related risk factors Occupational/repetitive activities, sports

activity, traumatic
Local mechanical factors High body mass index, obesity, muscle

weakness, alignment, mechanical instability
Behavioural and hormonal factors Smoking, oestrogen
Local osseous factor Bone marrow lesion, bone mineral density
Inflammatory
Infection
Vascular Avascular necrosis, haemarthrosis
Connective tissue disorder EhlerseDanlos syndrome, Marfan syndrome
Neuropathic Diabetes mellitus, Charcot syndrome

OA Z osteoarthritis.

Table 2 Diagnostic tools of OA [15,23].

Diagnostic tools Details Symptoms and signs

Clinical features Patient’s history Pain, morning stiffness
Physical examination Inflammation, swelling, deformities, joint enlargement, crepitus,

limitation of motion
Imaging Radiography Objective evidence on joint-space narrowing, osteophyte formation,

pseudocysts, and sclerosis of subchondral bone
CT and CT arthrography Visualization of cortical bone and soft-tissue calcification,

quantifying amount of bone lost or size of subchondral cyst
Magnetic resonance imaging Assessment of cartilage morphology and soft-tissue associate with OA
Ultrasonography Evaluation of the quality of superficial articular cartilage and

cartilage thickness
Laboratory testing Serum and molecular markers Inflammation markers, bone markers, cartilage synthesis and

degradation markers, transforming growth factor-b

CT Z computed tomography; OA Z osteoarthritis.
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Other valuable tools have also been applied in the
diagnosis of OA due to their unique advantages. Specif-
ically, computed tomography and computed tomography
arthrography in the visualization of cortical bone and soft-
tissue calcification; magnetic resonance imaging in assess-
ment of cartilage morphology and soft-tissue associate with
OA; and ultrasonography for evaluation of the quality of
superficial articular cartilage and measurement of cartilage
thickness [23,27].

The clinical classification criteria developed by the
American College of Rheumatology remain a popular
method of classifying knee OA. This classification is based
on clinical sign and symptoms, as well as radiographic or
biochemical evidence (Table 3).

Laboratory testing and biochemical markers
In general, laboratory testing is not required to make the
diagnosis of OA. It is recommended when the diagnosis
remains uncertain [2]. Bauer et al [29] proposed BIPED as a
classification scheme for OA biomarkers, with B for burden
of disease, I for investigative, P for prognostic, E for effi-
cacy of intervention, and D for diagnostic. To assist the
diagnosis and monitor the progression of OA, cartilage
matrix components and molecular makers in synovial fluid,
serum, and urine have been investigated for their critical
role in cartilage and bone turnover and synovial inflam-
mation in OA (Table 4).

Subchondral bone in OA

Although cartilage degradation has been considered as an
important feature of OA, subchondral bone also contributes
to the pathogenesis of OA [31]. The subchondral bone with
functional mechanical properties supports the integrity of
the articular cartilage, and vice versa. Those patient with
avascular necrosis with weaken subchondral bone support
tend to have accelerated OA development. It is reported
that bone anabolic drug dickkopf homolog 1 prevents OA
and bone spurs [32] and anti-bone resorption drug alendr-
onate can be used as a disease-modifying agent in the
treatment of OA in rats [33].

Therapeutic strategies for OA

The current therapeutic strategies for OA include non-
pharmacological, pharmacological, complementary



Table 3 ACR clinical classification criteria for knee OA
[28].

Clinical and
laboratory

Knee pain and
at least 5 of 9

Age > 50 y
Stiffness < 30 min
Crepitus on active
motion
Bony tenderness
Bony enlargement
No palpable warmth of
synovium
Erythrocyte
sedimentation rate <

40 mm/h
Rheumatoid factor <
1:40
Synovial fluid signs of OA

Clinical and
radiographic

Knee pain and
at least 1 of 3

Age > 50 y
Stiffness < 30 min
Crepitus on active
motion and osteophytes

Clinical Knee pain and
at least 3 of 5

Age > 50 y
Stiffness < 30 min
Crepitus on active
motion
Bony tenderness
Bony enlargement
No palpable warmth of
synovium

ACRZ American College of Rheumatology; OAZ osteoarthritis.
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alternative, and surgical, with the primary goal to reduce
pain and improve function and quality of life (Table 5).
Nonpharmacological and pharmacological treatments are
usually considered in the early stage of OA: complementary
alternative treatment such as supplements with glucos-
amine and chondroitin for moderate and severe OA; and
surgical intervention should be reserved for patients with
OA symptoms that cannot be controlled by other treat-
ments [4,24]. However, currently, no therapy has been
shown to protect articular cartilage [4], nor approved to
prevent the progression of OA [3]. Due to the complex pa-
thology and its slow progression, and the lack of biomarkers
for early diagnosis of OA [3], a challenge remains for
Table 4 Biomarkers for diagnosis of OA [14,19,23].

Categories Biomarkers

Inflammation markers
Bone markers N-terminal cross-linke

type I collagen
CTX-I Urine
Cartilage markers Synthesis C-propeptide of collag

N-propeptide II of col
Degradation CTX-II

Glc-Gal-Pyd
Cartilage oligomeric p

Transforming growth factor-b

CTX Z C-terminal cross-linked telopeptide; OA Z osteoarthritis.
researchers to develop efficient therapies to treat and
modify OA.

MSCs are a good candidate to meet the challenge in
treating OA. They can repair the damaged tissues or pro-
vide immunomodulatory function to reduce inflammation in
OA. Since OA is a degenerative joint disease likely involving
the depletion of endogenous MSCs [3], and adult MSCs have
the potential to differentiate into cells of chondrogenic
lineage, investigation into MSC-based therapy should be
supported for potential articular cartilage repair and
regeneration [3,4].

MSCs

MSCs can be isolated from various sources but bone marrow
harvesting remains the primary source of most MSCs [34].
MSCs are widely distributed in other tissues, including
periosteum, trabecular bone, adipose tissue, synovium,
skeletal muscle, tendon, lung, and deciduous teeth
[35e37]. Due to their similar behaviour and potential with
perivascular cells both in vivo and in vitro, the relationship
between MSCs and pericytes has been investigated [38e40].
Furthermore, the perivascular niche for MSCs has been
suggested [39,40] and an in vitro study has confirmed that
pericytes in human tissues are positive for MSC markers
[39]. However, Kurth et al [41] have reported that MSCs
isolated from the synovium in vivo are distinct from peri-
cytes phenotypically and functionally.

Isolation and characterization of MSCs

The first attempt to isolate MSCs was reported by Frie-
denstein and co-workers [42e44]. They were the first to
isolate fibroblastic cells from the stromal compartment of
bone marrow, which could differentiate into bone tissue
and bone marrow stroma in vivo. These fibroblastic cells
were named stromal progenitor cells then stromal stem
cells [42,44]. MSCs were then isolated from many other
tissues [3], including adipose tissue [45], skeletal muscle
[39], umbilical cord blood [46], and Wharton’s jelly [47]. As
progenitors for the mesoderm lineage, MSCs have shown
the multilineage differentiation potential that enables
MSCs to differentiate into bone, fat, cartilage, and muscle
cells in vitro [3]. The Mesenchymal and Tissue Stem Cell
Sources Refs

[23]
d telopeptide of Urine [30]

en type II Serum, Synovial fluid [30]
lagen type II Serum

Urine, synovial fluid [14,19,30]
Urine

rotein (COMP) Serum
[23]



Table 5 Current therapeutic strategies for OA [2,24].

Stages of OA Strategies Measures

Early stage Nonpharmacological Lifestyle adjustment, weight loss if necessary, elimination of
damaging influences on the joint, physical and occupational therapy

Pharmacological NSAIDs, glucocorticoids, opioids, symptomatic slow-acting drugs for
OA, anticytokines

Moderate and severe OA Complementary alternative Acupuncture, supplements with glucosamine and chondroitin,
therapeutic touch, antioxidants such as vitamins C, D and E

Severe OA Surgical treatment Joint-preserving surgical treatment: bone-stimulating, joint surface
restoration including ACT and OCT; total joint replacement: THR or
TKR

ACT Z autologous chondrocyte transplantation; NSAIDs: nonsteroidal anti-inflammatory drugs; OA Z osteoarthritis; OCT Z autologous
osteochondral transplantation; THR Z total hip knee replacement; TKR Z total knee replacement.
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Committee of the International Society for Cellular Therapy
has proposed the criteria to classify MSCs, which includes:
fibroblast-like morphology; plastic-adherent property
under standard culture conditions; differentiation potential
into osteoblasts, adipocytes, and chondroblasts in vitro;
expression of surface markers including CD105, CD73 and
CD90; and lack of expression of CD45, CD34, CD14, or
CD11b, CD79a or CD19, and HLA-DR [48].
Differentiation potential of MSCs

As progenitors for the mesoderm lineage, MSCs can be
differentiated into lineages of mesodermal tissues,
including bone, cartilage, fat, muscle, tendon/ligament,
and bone marrow stroma, dermis, and other connective
tissues as diagrammed in Figure 3.

Osteogenic differentiation of MSCs requires b-glycerol-
phosphate, ascorbic acid-2-phosphate, dexamethasone,
and fetal bovine serum. Successful differentiation can be
assessed by the upregulation of alkaline phosphatase ac-
tivity and deposition of calcium-rich mineralized extracel-
lular matrix readily detected by Alizarin Red or other stain
[34,35]. Adipogenic differentiation of MSCs involves several
factors including nuclear receptor, transcription factor,
peroxisome proliferator-activated receptor-g, and fatty
acid synthetase. The resulting adipocytes can be identified
by their morphology of large lipid-filled vacuoles and
staining with Oil Red [34,35]. The differentiation potential
of MSCs into other cell types such as myocytes and neurons
has also been reported. These cells can be identified
through immunocytochemistry with antibodies specific for
antigens [34,35].

Chondrogenic differentiation occurs when MSCs grow in
serum-free nutrient medium and three-dimensional cul-
ture, with the addition of a member of the transforming
growth factor (TGF)-b super family [35]. These cells have
characteristic cartilage-specific markers such as collagen
type II, aggrecan, and sulphated proteoglycans. Previous
studies on MSC chondrogenesis were usually performed in
high-density micromass cultures [49] or pellet culture [50]
to promote cellular condensation. Caplan and co-workers
[51e53] have developed an in vitro method of chondro-
genic differentiation for animal and human MSCs using
pellet or aggregate culture. A later study revealed that
human bone-marrow-derived MSCs can form chondrocytes
with TGF-b in the growth medium, while human adipose-
tissue-derived MSCs require TGF-b and bone morphoge-
netic protein 6 [51,54].
Chondrogenic differentiation potential of MSCs
and OA treatment

Given the capacity of MSCs to differentiate towards the
chondrogenic lineage, OA has been proposed as one of the
primary areas for MSC-based therapy. OA may be the result
of dysfunction in the MSC population, giving rise to
degenerative changes in the absence of repair [3]. Thus,
MSCs could be effective in treating OA by repairing the
worn out tissues and lost cells. However, conflicting findings
have been reported on the chondrogenic differentiation of
MSCs and OA. Barry and Murphy [35] have reported that
chondrogenic and adipogenic activity of bone-marrow-
derived MSCs is reduced in patients with advanced OA;
and they have argued that these changes in differentiation
profile of MSCs may explain the loss of cartilage in OA pa-
tients [55]. In contrast, Scharstuhl et al [56] have revealed
that chondrogenic differentiation potential of bone-
marrow-derived MSCs from patients with OA is indepen-
dent of age and OA [56]. MSCs isolated from all the three
types of OA-aetiology groups including age-related, joint
trauma, and joint dysplasia show adequate chondrogenic
differentiation potential, and therefore, can be applied to
cartilage regeneration. Furthermore, synovium-derived
MSCs are reported to be larger from patients with rheu-
matoid arthritis and OA than healthy joints [57]. Caplan and
Correa [58] have proposed MSCs as drug stores during
injury. MSCs were released and activated from perivascular
location, Further studies are needed to verify and compare
those results, especially in the context of OA aetiology and
therapy.

Recent investigations have advanced our understanding
on the paracrine signalling by MSCs, with the secretion of
biologically active molecules that might be more important
than differentiated cells in stimulating repair responses,
therefore, effectively widening the range of MSC thera-
peutic applications [3,59]. Thus, more attention should be
shifted from cell-surface markers and differentiation to
paracrine factors by MSCs for assessment of MSC thera-
peutic potency [3,59]. MSC paracrine effects can be cate-
gorized into trophic (nurturing) in terms of antiapoptosis,



Fig. 3 The mesengenic process. MSC self-renewal, proliferation, and potential lineage specific differentiation pathways are
depicted in this diagram. MSCs differentiate by committing, differentiating, and maturing in a lineage-specific fashion.
MSCZmesenchymal stem cell. Note. From “Identification of functional progenitor cells in the pulmonary vasculature” by Firth and
Yuan, 2012. Pulmonary Circulation, 2, p. 84e100. Copyright 2012, Pulmonary Circulation. Reprinted with permission.

Mesenchymal stem cells in osteoarthritis treatment 95
angiogenesis, and support of growth and differentiation of
stem and progenitor cells, immunomodulation, antiscar-
ring, and chemoattraction (Figure 4). Insights from these
paracrine mechanisms may lead to revolutionary solutions
to OA treatment.
Biomaterials in cell therapy

It is of great interest to combine biomaterials and cell
therapy in the treatment of OA. Both primary adult osteo-
blasts and bone marrow MSCs have been used with bio-
materials for bone tissue engineering [60]. Generally,
autologous or allogeneic bone biomaterials can be divided
into three groups: (1) bioactive inorganic materials,
including bioactive ceramics such as tricalcium phosphate,
hyaluronic acid (HA) and bioactive glasses; (2) biological
and synthetic polymers; biological polymers include
collagen and HA, while synthetic polymers include
polylactic acid, polyglycolic acid, copolymers of polylactic
and polyglycolic acids, and polycaprolactone; and (3)
inorganiceorganic composites, such as tissue-engineered
HAecollagen nanocomposite systems (Figure 5). Several
types of scaffolds have been used in tissue engineering in
the study of MSC differentiation. For instance, silk-based
scaffolds [61], agarose [62,63], hydrogels [64e66], nano-
composite [67], and affinity-bound TGF-b scaffolds [68].

Commercial tissue engineering products for cartilage
repair for clinical use is growing fast (Table 6). On
December 13, 2016, The US Food and Drug Administration
approved MACI (autologous cultured chondrocytes on
porcine collagen membrane) for the repair of symptomatic,
full-thickness cartilage defects of the knee in adult patients
[70]. MACI is the first US Food and Drug Administration-
approved autologous cell therapy product that is
composed of autologous cultured chondrocytes from
healthy cartilage tissue of a patient, and expanded on
scaffolds with bioresorbable, porcine-derived collagen



Fig. 4 Paracrine effects of cultured MSCs. The secretion of a broad range of bioactive molecules is now believed to be the main
mechanism by which MSCs achieve their therapeutic effect and it can be divided into six main categories: (1) immunomodulation;
(2) antiapoptosis; (3) angiogenesis; (4) support of the growth and differentiation of local stem and progenitor cells; (5) antiscarring;
and (6) chemoattraction. bFGF Z basic fibroblast growth factor; CCL Z CC chemokine ligand; CXCL Z chemokine (C-X-C motif)
ligand; ECM Z extracellular matrix; GM-CSF Z granulocyteemacrophage colony-stimulating factor; HGF Z hepatocyte growth
factor; iDCZ invasive ductal carcinoma; IGF-1 Z insulin growth factor-1; LIFZ leukaemia-inhibitory factor; M-CSFZ macrophage
colony-stimulating factor; mDC Z macrophage-derived chemokine; NK Z natural killer; PGE2 Z prostaglandin E2; SCF Z stem cell
factor; SDF-1 Z stromal cell-derived factor 1; TGF-b Z transforming growth factor-b; VEGF Z vascular endothelial growth factor.
Note. From “Mechanisms involved in the therapeutic properties of mesenchymal stem cells” by da Silva Meirelles, et al., 2009.
Cytokine Growth Factor Reviews, 20, p. 419e427. Copyright 2009, Elsevier Ltd. Reprinted with permission.
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membrane and implanted over the defective or damaged
area of the knee. MACI is produced by Vericel Corporation,
Cambridge, MA, USA, which markets autologous cell-based
therapies for patients with serious diseases.

Clinical roadmap of MSCs as OA treatment

Choice of stem cells

Stem cells can be of embryonic, fetal, or adult origin
(Figure 6) [71]. Embryonic stem cells (ESCs) originate from
the early embryo [71]. However, the use of fetal stem cells
or ESCs has been a complex ethical issue. Currently, human
ESCs from antenatal origin are not allowed in many coun-
tries [72]. Therefore, placenta, umbilical cord blood, and
tissue obtained postnatally offer another source of MSCs
(Figure 6). The MSCs isolated from these sources share
similar properties in both their cell surface markers and
morphology with MSCs from other sources. Different from
ESCs with pluripotent differentiation capacity, fetal MSCs
show multipotent differentiation capacity, with the dif-
ferentiation pathways in terms of adipogenic, osteogenic
and chondrogenic, myogenic, neurogenic, and endothelial
potential [72]. Adult MSCs can be isolated from bone
marrow or marrow aspirates. Besides bone-marrow-derived
MSCs, muscle- and adipose-tissue-derived MSCs have been
investigated and serve as important sources of MSCs [73]. It
is critical to evaluate MSCs from all these sources and
determine which is more efficacious for OA therapy.
Preclinical models

Given the success in generating cartilage from MSCs, pre-
clinical models have been applied to investigate MSCs in
treating OA. The effect of MSCs on cartilage has been
observed on many animal models including cartilage
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Table 6 Commercial cartilage tissue engineering products and biomaterials [69].

Product Regulatory status Description Use Source Cell Form

Synvisc, Genzyme 1997 HA (Hylan GF-20 and Hylan
B)

Synovial fluid replacement Animal derived Resorbable Gel

CaReS, Arthro Kinetics 2007 Germany Rat-tail type I collagen
matrix

Articular cartilage injury Animal derived Resorbable Autologous
chondrocytes

3D disc

Bioseed-C, Biotissue
Technologies

Clinic trial 2001 PLA/PGA and PDS scaffold Articular cartilage injury Synthetic Resorbable Autologous
chondrocytes

3D disc

Menaflex, Regenbiologics 2008 Bovine type I collagen with
HA and GAG, hydrated

Meniscus cartilage injury Animal derived Resorbable Mesh

Hyalograft C autograft,
Fidia advanced
biopolymers

2008 EU HYAFF (esterified derivative
of HA) scaffold

Articular cartilage injury Resorbable Plant or bacteria
derived

Autologous
chondrocytes

3D disc

MACI, Vericel
Corporation

Clinic trial 2016 FDA porcine-derived collagen
membrane

Articular cartilage injury Human derived Resorbable Autologous
chondrocytes

Sheet

HA Z hyaluronic acid; PLA Z polylactic acid; PGA Z polyglycolic acid; GAG Z glycosaminoglycan; PDS Z polydioxane; 3D Z three-dimensional; EU Z European Union; FDA Z US Food
and Drug Administration.

M
e
se
n
ch

ym
a
l
ste

m
ce

lls
in

o
ste

o
a
rth

ritis
tre

a
tm

e
n
t

97



Fig. 6 Stem cells obtained at different stages of development can have varying levels of potential for differentiation.
MSC Z mesenchymal stem cell. Note. From “Prospects of stem cell therapy in osteoarthritis” by Roberts S, Genever P, McCaskie A,
De Bari C, 2011, Regenerative Medicine, 6, p. 351e66. Copyright, 2011, Future Medicine Ltd. Modified with permission.
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OA, such as mice [74,80], rats [84], rabbits [76], goats [77],
sheep [82], guinea pigs [79,86], and donkeys [87] (Table 5).
Mouse and rat models used for OA research include trans-
genic mouse models, aging models, and obesity models
[88]. Specifically, Wakitani et al [75] observed complete
repair of full-thickness defects of articular cartilage after
they placed rabbit MSCs from bone marrow, or cells from
the periosteum into a full-thickness chondral defect of an
adult rabbit. Murphy et al [77] evaluated the effects of
autologous injection of bone-marrow-derived MSCs in tissue
repair and joint regeneration in goats with knee OA [77].
They observed marked regeneration of meniscal tissue and
a decrease in degeneration of the articular cartilage,
osteophytic remodelling, and subchondral sclerosis in cell-
treated joints. In addition, Lee et al [86] used direct
intra-articular injection of bone-marrow-derived MSCs sus-
pended in HA for treating cartilage defects in pigs. Carti-
lage repair was improved both histologically and
morphologically at 6 weeks and 12 weeks after injection.
Mokbel et al [87] showed significant reparative effect of
MSCs both clinically and radiologically in animals injected
with green-fluorescent-protein-transduced MSCs. These
preclinical studies have indicated that MSCs can serve as a
viable and practical option for treating different degrees of
OA. Taken together, insights from these animal models
provide the rationale for human clinical trials detailed
below.

It is accepted that animal studies have improved our
understanding of disease mechanisms, while it has been
controversial to use animal experiments to predict the
effectiveness of treatment strategies in clinical trials.
There are three good reasons for continuing animal studies:
(1) the recurrent failure of interventions; (2) methodolog-
ical flaws in animal studies; and (3) critical disparities be-
tween the animal models and the clinical trials [89].
Therefore, clinical trials should only be performed after a
systematic analysis of all available animal studies [89,90].

Clinical trials

Clinical trials with MSCs for treating human joint cartilage
defects have been performed in the past several decades.
Brittberg et al [91] reported that cultured autologous
chondrocytes could be used to repair human deep cartilage
defects of the knee joint [91]. The clinical benefits from
this study led to the development of MSC-based strategies
for cartilage repair. Wakitani et al [92e94] applied human
autologous culture expanded bone-marrow-derived MSCs
for repair of cartilage defects in osteoarthritic knees. They
found that patients treated with bone-marrow-derived
MSCs had higher arthroscopic and histological grades than
the control group, while with no significant clinical
improvement. This study revealed the potential to use MSC
therapy for cartilage repair and regeneration, and reducing
arthritis signs and symptoms through the immune regula-
tory effect of MSCs.

Bone-marrow- or adipose-tissue-derived MSCs have been
used in most of the clinical studies, either with the
approach of intra-articular injection or delivering the cells
to the synovial fluid compartment [3]. Several studies have
reported the effect of intra-articular injection of autolo-
gous MSCs for the treatment of knee OA [95e98]. Centeno



Table 7 Preclinical models of MSC therapy for treating OA.

Animal models Delivery systems MSC sources Outcome Refs

Mouse Intra-articular injection of MSCs Adipose-derived stem cells Cartilage protection [74]
Intra-articular injection of MSCs Bone marrow Efficacy in preventing OA [80]

Rat Fibrin glue embedded with MSCs Bone marrow Meniscal repair [83]
Intra-articular injection of human
MSCs

Synovial stem cells Meniscal repair [84]

Hyaluronan-based scaffold of MSCs Bone marrow Reduced the development of
early/mild OA lesions

[85]

Rabbit Type-I collagen gel with adherent
cells from bone marrow or
periosteum

Bone marrow or periosteum Complete repair of full-thickness
defects of joint

[75]

Implantation of MSCs Synovial SCs Meniscal regeneration [81]
Direct intra-articular injection of
MSCs

Subcutaneous adipose tissue Cartilage improvement [76]

Goat Direct intra-articular injection of
MSCs

Bone marrow Regeneration of the meniscus [77]

Sheep Intra-articular Injection of MSCs Chondrogenic-induced bone
marrow SCs

Meniscal regeneration [82]

Horse Intra-articular injection of MSCs Adipose-derived or bone
marrow-derived MSCs

Improved synovial fluid effusion
PGE2 levels

[78]

Guinea pig Intra-articular injection of MSCs
with HA

Bone marrow Cartilage repair [86]

Intra-articular injection of MSCs
with HA

Commercially available human
MSCs

Partial cartilage repair [79]

Donkey Intra-articular injection of MSCs Bone marrow Homing evidence and the
reparative effect

[87]

MSC Z mesenchymal stem cell; OA Z osteoarthritis; PGE2 Z prostaglandin E2.
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et al [95] reported significant cartilage and meniscus
growth, and reduced pain and increased joint mobility in
patients with degenerative joint disease at 24 weeks after
autologous bone-marrow-derived MSC injection [95]. Ema-
dedin et al [97] also observed satisfactory effects of intra-
articular injection of bone-marrow-derived MSCs in patients
with knee OA. In their study, after 6 months injection of
MSCs, patients showed improvements in terms of pain,
functional status of the knee, and walking ability.
Furthermore, an increase in cartilage thickness and
extension of the repair tissue over the subchondral bone
was found in three out of six patients after MSC injection
[97]. In addition, Jo et al [98] evaluated the potential of
intra-articular injection of adipose-tissue-derived MSCs for
the treatment of knee OA at low, medium and high doses.
After 6 months of intra-articular injection at high dose (108)
of MSCs into the osteoarthritic knee, they observed
improvement in pain and function of the knee joint without
causing adverse events, and cartilage defects were also
reduced by regeneration of hyaline-like articular cartilage
(Figure 7).

Concerns about MSC-based therapy

Direct intra-articular injection of MSCs has shown
improvement in the condition of patients with OA and other
degenerative joint diseases. Besides intra-articular injec-
tion, there are also other MSC delivery systems, such as
scaffolds, aligned nanofibrous scaffolds, fibrin glue/gel/
clot, tissue-engineered construct, and hydrogel systems
[99]. However, the number and type of MSCs and the timing
for injection, and the stage of the disease for MSC therapy
and the delivery strategy need further investigation to
achieve optimal response [96,100]. More importantly,
simplicity and ease of the injection for MSCs in clinical
practice could avoid surgery and the associated adverse
effects, and provide better treatment opportunities for OA.
Each patient should be assessed individually for the severity
of OA and a stepwise treatment with combination therapy
could be applied for best performance. MSC treatment ef-
fects could be optimized together with patient education
and counselling as well as conservative treatment or other
options.

It is also worth noting that there are other concerns
regarding therapy with MSCs and other stem cells. First,
autologous cells should not be encouraged for genetic dis-
orders due to their genetic influence, such as in OA.
Therefore, allogeneic MSCs could be considered. Second,
the quality of the cells might be too low for older patients
[57]. Lastly, the safety of stem cell therapy is always a
concern. The first safety study reported that human bone-
marrow-derived mesenchymal progenitor cells obtained
from cancer patients could be collected, expanded in vitro,
and infused intravenously without toxicity. Five years later
it was reported that autologous human bone-marrow-
derived MSC infusion at the time of peripheral blood pro-
genitor cell transplantation was feasible and safe. Howev-
er, the risk of tumourigenicity with uncontrolled cell
division and disease transmission remained a concern [72].
It takes time and a great amount of careful, quantitative



Fig. 7 Histological evaluation of regenerated articular cartilage of biopsy from the medial femoral condyle after intra-articular
injection of adipose-tissue-derived MSCs (AD MSCs). (A) Typical biopsy sample from the medial femoral condyle of a patient with
International Cartilage Repair Society Grade 3C in the high-dose group at baseline and 6 months after AD MSC injection, stained
with safranin O and anti-type I and II collagen antibodies. Although no articular cartilage is seen at baseline, a thick, hyaline-like
cartilage with a smooth surface is regenerated and integrated with the subchondral bone 6 months after injection. In the superficial
and the upper half of the middle zones, regenerated cartilage is composed of type I collagen and contains minimal type II collagen.
Collagen fibrils in the superficial zone run parallel to the articular surface, while those in the middle zone are aligned obliquely.
Safranin O and type II collagen is stained mostly in the lower half of the middle and deep zones. Collagen fibrils in these zones run
vertically. Typical columnar chondrocytes or tide mark is not definite. However, chondrocytes are flattened in the superficial zone,
and round in the middle and deep zones similar to those in the deep zone of hyaline cartilage. Small chondrocytes are also present
in the in the calcified cartilage zone. saf O Z safranin O. Note. From “Intra-articular injection of mesenchymal stem cells for the
treatment of osteoarthritis of the knee: a proof-of-concept clinical trial” by Jo et al., 2014, Stem Cells, 32, p.1254e66. Copyright
2014, Alpha Med Press. Reprinted with permission.
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research and safety assessment for us to answer these
questions.
Conclusion and future directions

Without an effective cure, OA remains a significant clinical
burden on our elderly population. The advancement of
regenerative medicine and innovative stem cell technology
offers a unique opportunity to treat this disease. In this
review, we examine OA and the likely resolution with MSCs.
MSCs have been one of the highlights in stem cell research
in recent years. Although the application of MSCs in joint
repair is well established, it is particularly exciting about
MSCs being used for OA treatment. Indeed, animal testing
has provided much needed encouragement and the ratio-
nale to move forward with human trials. Future challenges
may include the efficient isolation and culture of MSCs from
defined and reliable sources. MSCs made through good
manufacturing practices must be carefully evaluated
through a combination of means including biochemical,
genetic, and epigenetic markers, as well as bioactive assays
to establish the efficacy of cells, their proliferative activity,
and reparative potentials before they can be used in
humans. Furthermore, delivery systems for MSCs and eval-
uation of their safety and effectiveness also need to be
investigated. It is hopeful that these studies can be
accomplished in the near future and OA patients may
receive much needed help soon. In this review, we provide
some updated information, including most recent approvals
of the clinical trials and related applications of MSCs.
Future aspiration of MSCs resides in the realization of
clinical translation and the treatment of other musculo-
skeletal disorders.
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