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Abstract
Background. The germline genetic events underpinning medulloblastoma (MB) initiation, and therefore the ability 
to determine who is at risk, are still unknown for the majority of cases. Microsatellites are short repeated sequences 
that make up ~3% of the genome. Repeat lengths vary among individuals and are often nonrandomly associated 
with disease, including several cancers such as breast, glioma, lung, and ovarian. Due to their effects on gene func-
tion, they have been called the “tuning knobs of the genome.”
Methods. We have developed a novel approach for identifying a microsatellite-based signature to differentiate MB 
patients from controls using germline DNA.
Results. Analyzing germline whole exome sequencing data from a training set of 120 MB subjects and 425 con-
trols, we identified 139 individual microsatellite loci whose genotypes differ significantly between the groups. 
Using a genetic algorithm, we identified a subset of 43 microsatellites that distinguish MB subjects from controls 
with a sensitivity and specificity of 92% and 88%, respectively. This microsatellite signature was validated in an in-
dependent dataset consisting of 102 subjects and 428 controls, with comparable sensitivity and specificity of 95% 
and 90%, respectively. Analysis of the allele genotypes of those 139 informative loci demonstrates that their asso-
ciation with MB is a consequence of individual microsatellites' genotypes rather than their hypermutability. Finally, 
an analysis of the genes harboring these microsatellite loci reveals cellular functions important for tumorigenesis.
Conclusion. This study demonstrates that MB-specific germline microsatellite variations mark those at risk for MB 
development and suggests mechanisms of predisposition.
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Key Points

1. Microsatellites in germline DNA differentiate children with medulloblastoma.

2. Children with medulloblastoma do not have constitutional microsatellite instability.

3. Genes harboring the tumor associated microsatellites are cancer associated.

Medulloblastoma (MB) is the most common malignant child-
hood brain tumor. Extensive genomic characterization has 
divided MB tumors into 4 molecular subgroups: wingless 
(WNT), sonic hedgehog (SHH), Group  3, and Group  4, with 

distinct transcriptional profiles, copy number alterations, so-
matic mutations, and clinical outcomes.1 Overall, 5–6% of 
MB patients harbor germline mutations that are considered 
to be pathogenic, including in adenomatous polyposis 
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coli (APC), breast cancer 2 (BRCA2), partner and localizer 
of BRCA (PALB2), Patched 1 (PTCH1), suppressor of fused 
homolog  (SUFU), and tumor protein 53 (TP53).2 TP53 
germline mutations are present in 1% of MB cases, al-
though this incidence rises to 8% of SHH cases and even 
further to 20% if one limits the analysis to SHH cases 
aged between 5 and 16 years.2 These predisposing muta-
tions are individually insufficient to efficiently cause MB 
in animal models and require a potentiating background.3 
Numerous genome-wide association studies in MB have 
focused on single nucleotide variants, ignoring noncoding 
regions and repetitive DNA. However, many studies have 
shown linkage between insertion/deletions (indels) of 
germline microsatellites (MS) and a number of neurolog-
ical disorders such as Huntington disease and Friedreich 
ataxia—caused by an MS variant in the former in the 
coding sequence and in the latter in a noncoding intronic 
sequence.4 Furthermore, recent studies have shown that 
MS variations can contribute to the genetic background 
of several adult cancers.5–9 Many cancer-associated 
genes contain MS loci10 (eg, phosphatase and tensin ho-
molog  [PTEN], neurofibromatosis type 1  [NF1]), and in 
some cases somatic MS indels have been causally impli-
cated in cancer.11 Based on these findings, we hypothe-
size that a permissive constitutional genetic environment 
may be created by the cooperation of germline DNA MS 
repeat elements affecting the transcriptional and transla-
tional landscape of individuals, making them susceptible 
to tumor formation through modulation of foundational 
cellular processes.

MS consist of a 1–6 base pair unit repeated in tandem 
to form an array.12 Over 600 000 unique MS exist in the 
human genome, often embedded in introns, exons, and 
regulatory regions.13 The length of MS loci frequently 
change due to strand slip replication and heterozygote 
instability,13 varying between alleles and between indi-
viduals. These changes can influence gene expression 
by inducing Z-DNA and H-DNA folding,14 altering nucle-
osome positioning14,15 and changing the spacing of DNA 
binding sites.13,16,17 Noncoding variations can alter DNA 
secondary structure and protein/RNA binding of proxi-
mate genes, resulting in changes in transcriptional and 
translational activity as well as alternative splicing.18 For 
these reasons, MS have been called the “tuning knobs” 
of the genome.14,19,20 Exonic MS loci containing repeated 
elements of 3 or 6 base pairs often cause amino acid 
gain or loss; other non-modulo-3 lengths typically cause 
frameshift mutations.21 Genes harboring MS contribute 

disproportionately to nervous system disorder, sug-
gesting an importance in neurodevelopment.22 In 
fact, the role of repetitive elements is well established 
for some neurological diseases; polyglutamate re-
peats in particular play a role in Huntington disease, 
spinocerebellar ataxia, and spinobulbar muscular at-
rophy. Bioinformatic studies indicate that many genes 
hosting tandem repeats have a neural function.23 A thor-
ough review of MS and their impact on disease has re-
cently been published.24

Recent developments in MS genotyping algorithms and 
advances in genome sequencing have allowed the iden-
tification of germline MS genotypes that can distinguish 
healthy from affected individuals with different types of 
cancers (breast, colon, glioma, etc7,9,25–27). Here, for the first 
time in a pediatric cancer, we present a set of MS geno-
types able to differentiate children with MB from healthy 
individuals based upon their germline DNA.

Methods

Patient Samples

The majority of sequencing data used in this work 
has been previously published and can be found in 
Supplementary Table 1 and the Supplementary Methods. 
Additionally, whole-exome sequencing (WES) from 6 
MB patients' blood DNA was newly generated using 
the TruSeq exome target enrichment kit and Illumina 
Sequencer HiSeq 2500 (data available upon request). All 
patient material was collected after informed consent 
under a CNMC institutional review board approved pro-
tocol. Power calculations were performed to determine 
the sample size of training and validation cohorts (see 
Supplementary Methods).

Microsatellite Genotyping

A list of 625 195 unique MS in version GRCh38/hg38 of the 
human reference genome was generated with a custom 
Perl script ‘searchTandemRepeats.pl’ using default 
parameters28 (Supplementary Methods).

Reads from WES and whole-genome sequencing (WGS) 
were mapped to the human GRCh38/hg38 reference ge-
nome using Bowtie2,29 and reads mapping to MS loca-
tions were locally realigned using the Genome Analysis 

Importance of the Study

This is the first study establishing a link between 
germline microsatellite genotypes and the presence of 
a pediatric cancer. Given the dearth of environmental 
influences and the relative paucity of germline muta-
tions associated with pediatric cancers, microsatel-
lites constitute an important novel and understudied 
source of genetic predisposition. Future screening and 

prevention strategies applied to rare diseases will re-
quire the means to identify populations at risk, a pur-
pose that microsatellite signatures could fulfill. In 
addition to this potential, the establishment of the bio-
logical influence of specific microsatellites upon their 
companion genes could delineate avenues for preven-
tative intervention.
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Toolkit IndelRealigner tool30 after duplicated reads were 
marked. We used the program Repeatseq31 to determine 
the genotype of MS in WES or WGS (Supplementary 
Methods).

For each microsatellite, we calculated whether the dis-
tribution of genotypes differs in the germline DNA from 2 
groups of samples in the training dataset. For each micro-
satellite, a contingency table is populated with genotype 
counts for the 2 groups: MB and normal (Supplementary 
Fig. 1). Then, statistical differences were quantified using 
a generalized Fisher's exact test. The Benjamini–Hochberg 
multiple testing correction (n = 43 457 tested MS) was ap-
plied to control the false discovery rate. The numbers used 
to describe each genotype denote the length of that micro-
satellite in each allele.

Microsatellite Filtering to Control for Age, 
Ethnicity, and Sequencing Protocol

This study was designed to identify germline variations 
of MS specific to MB. The publicly available sequence 
data used contain limited metadata (sex, age, and eth-
nicity), variation in the sequencing protocol used, and 
relatively few children. Thus it was not possible to con-
fine our analysis to age and ethnically matched controls, 
and therefore our analysis ran the risk of identifying MS 
with age, sequencing, and ethnic bias rather than dis-
ease status alone. In an attempt to eliminate this risk, we 
identified MS with potential bias—for age, sequencing 
protocol, or ethnicity—and excluded them from sub-
sequent analysis. Details about how this filtering was 
done can be found in the Supplementary Methods and 
Supplementary Figures 2–4.

Metric to Score Samples and ROC Analysis

Metric to score samples

We designed a metric to score samples based on their 
unique distribution of MS genotypes. Essentially, the 
metric is a weighted sum of the genotypes belonging to 
each sample: weights stem from the difference in frequency 
for each genotype in the MB and healthy groups. A visual 
summary of the metric is provided in Supplementary Fig. 5.  
Scores calculated for every sample in our cohorts can be 
found in Supplementary Table 1.

ROC analysis

We used receiver operating characteristic (ROC) analysis 
to design a classification scheme capable of differentiating 
samples with MB from healthy controls. The area under the 
ROC curve (AUC) was used as a measure of how well scores 
differentiate the 2 groups. Then, a cutoff was selected for all 
future classification (see the “Validation” section below). 
Here, the cutoff is a single score that minimizes sensitivity 
and simultaneously maximizes specificity; it was identified 
using the Youden index (ie, sensitivity + specificity – 1)32 
(Supplementary Methods).

Subset of Microsatellites (Genetic Algorithm)

Genetic algorithms are a class of biologically inspired 
algorithms and have been described extensively else-
where.33 In this work we use a genetic algorithm to iden-
tify the most predictive subset of markers—from the set 
of 139 found to be correlated with MB—using a 2-step 
process. In initialization, an initial population is gen-
erated with random subsets of the 139 MS markers. In 
optimization, subsets are iteratively ranked, recom-
bined, and replaced (see Supplementary Fig. 6). The 
algorithm has 4 adjustable hyperparameters: (i) the max-
imum population size, (ii) the size of each subset, (iii) the 
metric used to rank each subset, and (iv) the number of 
subsets replaced in each iteration. Details of each step 
and hyperparameters are provided in the Supplementary 
Methods.

Validation

Samples used for validation can be found in Supplementary 
Table 1 and the Supplementary Methods. Each valida-
tion sample was scored with the same metric used for 
the training samples (see above). The cutoff (identified in 
training) was used to predict which of the 530 validation 
samples had MB and which were healthy controls. MB was 
predicted for validation samples above the cutoff and com-
pared with the known identity of the validation samples.

Additionally, an extended validation cohort using a re-
cently published MB germline WGS dataset contained 290 
samples that did not overlap with the samples we previ-
ously used. These samples were scored with the procedure 
described above.

Microsatellite Mutability

In order to test whether individuals with MB are more 
prone to MS variation, we used the total number of al-
leles genotyped for each microsatellite as a measure of 
its mutability and compared this metric across disease 
and control cohorts. Details regarding the identifica-
tion of minor alleles can be found in the Supplementary 
Methods.

Downstream Analysis

For functional analysis, we used genes associated with 
the 139 loci of MS whose genotypes are significantly dif-
ferent between MB subjects and controls. Pathway anal-
ysis was performed using Ingenuity Pathway Analysis 
(Qiagen, https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis). Mutations and co-occurrence 
were analyzed using PedcBioPortal (www.cbioportal.org). 
In the mutation analysis, the numbers indicate the per-
cent of tumors in each dataset with mutations in at least 
1 of the 124 genes associated with the identified MS. 
Construction of a protein-protein interaction (PPI) network 
was conducted with STRING (Search Tool for the Retrieval 
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of Interacting Genes/Proteins). Parameters and details can 
be found in the Supplementary Methods.

RNA Sequencing

In order to investigate the effect of the MS genotypes on 
their associated genes, we downloaded 170 files from 
RNA sequencing (RNA-seq) (European Genome-phenome 
Archive dataset EGAD00001003279; Supplementary Table 
1) partially overlapping with our validation and extended 
validation cohorts. Details of the expression analysis can 
be found in the Supplementary Methods.

Stability Prediction of mRNA

To analyze the effect of the untranslated region (UTR)/
exonic MS on the stability of the RNA, we predicted the 
minimum free energy (MFE) secondary structures for 
each of the MS variants using the RNAfold tool from the 
ViennaRNA package.34 Because the MFE depends on the 
length of the RNA, we normalized the MFE by the size of 
the RNA and then calculated the difference in MFE be-
tween the different RNA variants (ΔMFE).

Results

Identification of Medulloblastoma Microsatellite 
Informative Loci

To explore the impact of variations of MS in MB predisposition, 
we have developed a new computational workflow to identify 
germline MS whose genotypes differ between children with 
MB and control subjects (Fig. 1). We have applied this ap-
proach to germline DNA sequencing data divided into training 
and validation groups. The training set contained 120 MB 
and 425 control individuals, and the validation set contained 
102 MB and 428 control individuals (Supplementary Table 1). 
Using the training set, we first genotyped 43 457 different MS 
present in both the 120 MB samples and 425 healthy controls. 
For each of these microsatellites, a generalized Fisher's exact 
test was used to assess the statistical difference in genotype 
distribution between the 2 groups, revealing 2094 MS with 
P < 0.05. After Benjamini–Hochberg multiple testing correction 
(α = 0.05), 422 passed false discovery. We then performed 
3 additional steps to remove MS that nonrandomly vary 
with age, ethnicity, and DNA sequencing protocol (Fig. 1, 
Supplementary Figures 2–4 and Supplementary Methods). 

  

Call genotypes for each
MS locus in every 
training set sample

43 457 Mst

Performs Fisher exact
test p-values for each
MS locus to identify

informative loci
2094 Mst (p-value < 0.05)

Test 139 Mst loci using
 iterative classification 
algorithm to assemble 

signature set
139 Mst

43 Mst
Compute ROC Curve,

sensitivity and
specificity

88% sensitivity
92% specificity

Call genotypes for each
MS locus in every 

Validation set sample.

Compute ROC Curve,
sensitivity and 

specificity
95% sensitivity 
90% specificity

Downstream functional analysis

Age
738 MSs

Ethnicity
71 MSs

Sequencing 
Technology

157 MSs

Training Set (120 MBs and 425 Controls)

Validation Set (102 MBs and 428 Controls)

Remove Mst loci that vary with Age, Ethnicity and Sequencing Technology

Benjamini-Hochberg 
p-value correction

422 Mst (FDR < 0.05) 

(Gene ontology, pathways, mutations, networks)

Fig. 1 Schematic representation of the approach used for the identification and validation of medulloblastoma associated microsatellites. The 
approach used in this work is divided into 3 stages: computational identification of informative microsatellite loci using the training set, validation of 
the microsatellite markers in an independent validation cohort, and finally downstream analysis of the genes associated with those microsatellites. 
The first stage includes a filter to eliminate microsatellites that vary with age, ethnicity, and sequencing technology.
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In total, 283 MS were removed from the list of 422, re-
sulting in a reduced list of 139 markers (Supplementary 
Table 2). In summary, our approach identified 139 MS from 
germline DNA whose genotypes were significantly dif-
ferent between MB subjects and healthy controls.

Medulloblastoma Microsatellite Classifier Set

In order to identify a subset of MS with the best performance 
in distinguishing MB samples and healthy controls, we used 
the set of 139 MS to train an MB classifier. First, we designed 
a metric to score each sample based on the genotypes of 
the 139 MS (Supplementary Methods, Supplementary Fig. 5).  
We used a genetic algorithm33 to identify a subset of 43 MS 
that best distinguish MB samples from healthy controls 
(Supplementary Methods, Supplementary Fig. 6). Briefly, 
subsets of MS (drawn from the set of 139) are ranked by 
their precision and recall. Subsets with the lowest ROC re-
sults are discarded; those that remain are continuously 
mixed and re-ranked. The algorithm converged in 87 cycles 
to reveal a subset of 43 MS with an F-measure of 0.90 and 
an AUC of 0.962 (Fig. 2, Table 1, Supplementary Table 3, 

Supplementary Fig. 6). Using Youden's index,32 we deter-
mined that the optimal cutoff score for differentiating MB 
samples from healthy controls is 0.155 (Supplementary 
Fig. 7). Thus, we have identified a set of 43 MS whose gen-
otype distributions are able to distinguish MB patients from 
healthy controls with 88% sensitivity and 92% specificity 
(Fig. 2A, C and Supplementary Fig. 8).

In order to validate this result, we used an independent 
cohort of germline DNA including 102 MB and 428 control 
subjects. This number of sample was selected to ensure 
that the study would be robustly powered (Supplementary 
Methods). We applied the optimal cutoff (0.155), using 
Youden's index, to the independent validation sample set 
and found that the classifier could distinguish cases from 
controls with a sensitivity of 95% and specificity of 90% 
(Fig. 2B, D). We further tested our signature in a larger, re-
cently published independent dataset of 290 germline MB 
WGS with deeper coverage35 (Supplementary Table 1) and 
found it to perform similarly well (Supplementary Fig. 9). 
In summary, we have identified and validated a set of 43 
MS whose genotype distributions are able to distinguish 
MB patients from healthy controls using germline DNA 
with high sensitivity and specificity.
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To determine whether the performance of the signature set 
varies across the 4 consensus molecular subgroups of MB, we 
tested the 43 MS signature across MB subgroups combining 

the training and the validation cohorts to achieve adequate 
sample sizes. It performed equally well for all MB subgroups 
(Kolmogorov–Smirnov test) (Supplementary Fig. 10).

  
Table 1 List of 43 MS loci in the MB germline DNA classifier

Position Fisher's P-value Benjamini Adj. P-value Repeat Unit Gene Region

chr20:30215031-30215040 0 0 A – Intergenic

chr4:71755149-71755177 0 3.60E-07 TATT GC Intron

chr2:216610248-216610286 0 3.05E-06 TTTTC – Intergenic

chr4:102949102-102949116 1.00E-08 5.17E-06 AC SLC9B1 Intron

chr13:44943352-44943377 2.00E-08 1.21E-05 AC NUFIP1 Intron

chr22:50215636-50215648 1.60E-07 7.59E-05 G SELENOO Intron

chr17:17793780-17793820 3.54E-06 1.07E-03 CAG RAI1 Exon

chr1:153770135-153770152 3.76E-06 1.11E-03 GT INTS3 Intron

chr6:106518976-106519008 4.94E-06 1.36E-03 CA CRYBG1 Intron

chr2:68217012-68217040 6.94E-06 1.83E-03 AC PPP3R1 Intron

chr17:64504983-64504996 8.09E-06 2.03E-03 TC DDX5 Intron

chr18:21540014-21540032 1.10E-05 2.58E-03 AT ESCO1 Intron

chr5:1278442-1278456 1.10E-05 2.59E-03 CA TERT Intron

chr18:42923771-42923785 1.16E-05 2.69E-03 A RIT2 Intron

chr17:7024701-7024730 1.58E-05 3.51E-03 CAG BCL6B Exon

chr16:4407278-4407290 1.81E-05 3.98E-03 A CORO7 Intron

chr1:8946030-8946056 1.83E-05 3.99E-03 CTT CA6 Intron

chr4:112653323-112653334 2.12E-05 4.39E-03 T LARP7 Intron

chr4:77773174-77773189 2.42E-05 4.88E-03 A CNOT6L Intron

chr5:64507682-64507694 2.69E-05 5.31E-03 A RGS7BP Intron

chr1:3836469-3836492 3.11E-05 5.99E-03 T CEP104 Intron

chr20:33015600-33015613 3.24E-05 6.11E-03 A BPIFB2 Intron

chr10:26223687-26223728 6.49E-05 1.06E-02 GT GAD2 Intron

chr15:91749825-91749843 6.80E-05 1.10E-02 GGTGGA – Intergenic

chr15:64395361-64395385 7.25E-05 1.16E-02 TG TRIP4 Intron

chr10:36522760-36522794 8.32E-05 1.29E-02 GT – Intergenic

chr3:189907237-189907252 9.32E-05 1.40E-02 T – Intergenic

chr5:91149985-91150025 1.04E-04 1.54E-02 TTCTTT ADGRV1 Intron

chr20:33623955-33623983 1.07E-04 1.58E-02 A CBFA2T2 Intron

chr16:75234097-75234113 1.47E-04 2.07E-02 AC BCAR1 Intron

chr4:151662756-151662771 2.06E-04 2.71E-02 T FAM160A1 3′ UTR

chr7:37033493-37033506 2.43E-04 3.03E-02 A ELMO1 Intron

chr10:27145290-27145311 2.51E-04 3.11E-02 A YME1L1 Intron

chr5:79088359-79088398 2.81E-04 3.37E-02 TG BHMT2 Intron

chr4:52062187-52062204 2.99E-04 3.51E-02 T SPATA18 Intron

chr1:153645035-153645049 3.45E-04 3.92E-02 T CHTOP Intron

chr15:85123338-85123386 3.44E-04 3.92E-02 AC PDE8A Intron

chr17:80822939-80822950 3.56E-04 3.99E-02 GT RPTOR Intron

chr20:5106079-5106120 3.76E-04 4.17E-02 AC TMEM230 Intron

chr10:104037288-104037301 3.86E-04 4.25E-02 T COL17A1 Intron

chr4:6084968-6084994 4.24E-04 4.55E-02 A JAKMIP1 Intron

chr14:80905756-80905768 4.63E-04 4.84E-02 A CEP128 Intron

chr6:49470141-49470153 4.84E-04 4.99E-02 T CENPQ Intron
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Medulloblastoma Informative Microsatellite Loci 
Mutability

In the germline, indels of MS are significantly more common 
than elsewhere in the genome, 10−4 to 10−3 compared with 
10−8 per locus per generation respectively.36 However, mu-
tation rates also vary for different MS based on the length 
of the repeat, their repetitive motif, and influence on DNA 
folding.37 We hypothesized that the differences found for 
the 139 MB-associated MS (Supplementary Table 2) could 
be the result of increased MS genotype variation inherent 
in the individual with MB. In order to test whether individ-
uals with MB are more prone to MS variation, we used the 
total number of alleles genotyped for each microsatellite as 
a measure of its mutability and compared this metric across 
disease and control cohorts. We didn't find significant differ-
ences in the number of genotyped alleles between healthy 
and MB individuals, supporting the conclusion that there is 
not a general instability of MS in MB patients. This is con-
sistent with a previous report that found only 1 case out of 36 
with increased MS instability.38 We then investigated whether 
the predictive capability could be related to a characteristic of 
the informative MS themselves by ranking all identified MS 
by allelic load. We found that while the 139 were among the 
more mutable MS (higher number of alleles), they did not 
include the most mutable sites. Additionally, we compared 
the number of homozygote and heterozygote genotypes and 
the MS array lengths as potential sources of variability and 
found no statistically significant differences between MB and 
control germline DNA. From these data, we conclude that 
the association of the 139 MS with MB is a consequence of 
those individual microsatellite genotypes rather than simply 
being a result of constitutional hypermutability.

Specificity of Microsatellite Informative Loci for 
Medulloblastoma

Interestingly, the group of 139 MS significantly associated 
with MB contained some intronic MS previously implicated 
in other cancer types, nuclear fragile X mental retardation 
protein interacting protein 1 (NUFIP1) and kinesin family 

member 1B (KIF1B),6 raising the possibility that the effects 
of germline MS genotypes are not histologically restricted. 
To analyze the specificity of the 43 signature MS markers for 
MB, we tested their performance on a cohort of 153 adult 
pancreatic ductal adenocarcinoma germline samples from 
The Cancer Genome Atlas. The signature does differentiate 
pancreatic cancer samples from the MB validation cohort; 
however, the pancreatic cancer sample scores are clearly 
elevated compared with healthy controls (Fig. 3). From this, 
one may expect other pediatric brain tumors to also have 
elevated prediction scores. To test this, we performed MS 
genotyping on 72 ependymomas, 65 high-grade gliomas, 
and 230 low-grade gliomas from the Children's Brain Tumor 
Tissue Consortium and observed elevated MS genotype 
scores compared with normal controls and pancreatic 
cancer samples (Fig. 3). Finally, we cross-referenced our set 
of 139 markers with 55 previously published informative 
MS markers for breast cancer7 and 105 for lung cancer.9 Two 
markers are in common with breast cancer, NUFIP1 and 
KIF1B, and 3 markers are shared with lung cancer: NUFIP1, 
KIF1B, and UBXN7. Interestingly, NUFIP1 and KIF1B had 
been identified as pan-cancer markers before.6 In sum-
mary, these findings support the overarching hypothesis 
that variations of MS play a role in cancer susceptibility at 
an organismal level and, like predisposing gene mutations, 
do not respect histologic boundaries.

Role of the Informative MSAssociated Genes

Of the 139 MS whose genotypes differed between MB and 
control samples, 114 were located in intronic regions, 15 in 
intergenic regions, 6 in 3′ UTRs, 3 in exonic regions, and 
1 in a 5′ UTR (Fig. 4A). To understand the potential mech-
anistic roles of these genes, we conducted an Ingenuity 
Pathway Analysis of the 124 genes associated with non-
intergenic informative MS loci. The analysis revealed 
statistically significant associations with cancer and molec-
ular cellular functions such as cell cycle, DNA replication, 
recombination and repair, and cellular growth and prolif-
eration (Fig. 4B, Supplementary Table 4). The occurrence 
of mutations in these 124 genes was examined in 4 MB 
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cohorts available in cBioPotal. In spite of the known low 
mutation rate in MB tumors,2 we found that on average 
17% of the MB cancer samples contained mutations in at 
least one of these 124 genes (Supplementary Table 5) com-
pared with 4.5% of neuroblastoma tumors. An analysis of 
mutational co-occurrence, using the Sick Kids 2016 dataset 
within cBioPortal, indicates that 135 out of all possible 
(9591 = 139*(139-1)/2) MS pairs were found to significantly 
co-occur (P < 0.05). Interestingly, we found 2 patients with 
co-occurrence of mutations in 20 and 10 MB informative 
MS loci, respectively (Supplementary Table 6).

A PPI network comprising the 124 genes associated with 
the informative MS loci (Fig. 4C) resulted in a network 
with a PPI enrichment P-value of 0.0007. Despite the low 
number of proteins used as input, we found a significant 
hub related to mammalian target of rapamycin (mTOR), 
a prominent pathway (phosphatidylinositol-3 kinase/AKT/
mTOR) in MB tumors that has been proposed as a prom-
ising therapeutic target.39,40 While it is interesting to specu-
late regarding a role for these MS impacting such a central 
cancer pathway, these are germline findings and therefore 
it will be necessary to first demonstrate a functional effect 
of the MS genotypes in the context of tumor cell biology.

It has been described that MS proximate to splice sites 
can alter mRNA splicing by altering immature RNA sec-
ondary structure.18 Out of 139 informative MS, 114 are lo-
cated in intronic regions. As shown in Supplementary Fig. 
11, all the intronic MS are within 1 to 260 bp of an exon and 
thus a splice site. To detect a possible effect on splicing, we 
determined the genotypes of the 114 intronic MS in RNA-
seq data from 170 MB tumors and then correlated them 
with the abundance of each splice isoform (Supplementary 
Table 1); 49 of the 837 isoforms were significantly correl-
ated (ANOVA P < 0.05; Supplementary Table 7). Exonic or 
UTR MS can affect the stability of the mature mRNA. We 
found 6 in 3′ UTRs, 3 in exonic regions, and 1 in a 5′ UTR 
(Fig. 4A). To analyze the effect of the UTR/exonic MS on 
the stability of the RNA, we predicted the MFE secondary 
structures for each of the MS variants using the RNAfold 
tool from the ViennaRNA package (see Supplementary 
Methods). We calculated the difference in MFE between 
each RNA variant and the shortest (Supplementary Fig. 
12a). We found that differing MS lengths affect the pre-
dicted stability of the RNA. For example, we found that 
the retinoic acid induced 1 (RAI1) mRNA with a microsat-
ellite of 38 nucleotides is the most stable, as opposed to 
that with a 41 nucleotide microsatellite, which is the least 
stable. The insertion of an extra CAG triplet increases the 
positional entropy of the loop formed by the CAG MS 
in RAI1 mRNA, resulting in the lower predicted stability 
(Supplementary Fig. 12b). We found that the genotypes 
associated with MB have the least stable mRNAs for the 
exonic MS in the RAI1 and B-cell chronic lymphocytic leu-
kemia/lymphoma 6 member B (BCL6B) genes, as well as 
for the 3′ UTR MS in the ZBTB3 and MIDN genes. On the 
other hand, the genotype associated with MB on the 3′ 
UTR of the FAM160A1 gene has the most stable mRNA. 
To extend this analysis to mRNA abundance, we then ana-
lyzed RNA-seq data from 170 MB tumors (Supplementary 
Table 1) and correlated them with the MS genotypes in 
tumor DNA but did not find any significant correlation 
with gene expression (ANOVA; Supplementary Fig. 12c).

In this study, we have identified a set of 139 MS whose 
genotypes differ between MB patients and healthy con-
trols. We have shown that a subset of 43 of these MS is 
able to differentiate MB individuals from controls based 
upon their germline DNA with a sensitivity and specificity 
of 95% and 90%, respectively. Although the prospective 
validation of a diagnostic test for MB predisposition will 
need to wait for a time when germline sequencing early 
in life is more ubiquitous, these findings represent the first 
evidence of germline predisposition to a pediatric cancer 
that is not attributable to a germline coding mutation.

Discussion

This study identifies a subset of MS that has genotypes that 
statistically differ between MB samples and healthy con-
trols. Beyond marking individuals with MB, the role these 
MS may play in medulloblastoma etiology is not yet de-
fined. MS array length variations are known to affect nu-
cleosome positioning, the spacing of DNA binding sites, 
DNA secondary structure alteration, mRNA and protein 
stability, gene expression, alternative splicing, and pro-
tein sequence. MSs located in intronic regions can alter 
mRNA splicing by altering immature RNA secondary struc-
ture.18 An analysis of the location of these intronic MS 
showed that they are located in close proximity to splicing 
sites (1–260 bp) (Supplementary Fig. 11). Although this is 
expected as the training cohort is based on WES, we find 
significant correlations between isoform expression and 
MS genotypes supporting the hypothesis that MS close to 
splice sites can alter mRNA splicing. Although this result is 
appealing, we cannot demonstrate that MS genotypes are 
causal. Exonic and UTR MS can also alter mRNA stability, 
while exonic MS can have a direct impact on protein trans-
lation, function, or stability. Values of MFE of the predicted 
secondary structures for each of the exonic/UTR MS vari-
ants showed that MS genotype variants can change the sta-
bility of mRNA, although we haven't found any significant 
correlations between gene expression and MS genotypes 
(Supplementary Fig. 12).

Three informative MS loci are located in protein coding 
sequences (Fig. 4A); all of them are CAG trinucleotide re-
peats (RAI1, BCL6B, TNS1). The BCL6B gene has been 
implicated in colon, gastric, and hepatic cancer.41–43 
RAI1 encodes for a nuclear protein with unknown func-
tion whose haploinsufficiency causes Smith–Magenis 
syndrome.44 Of note, there is no predisposition to 
medulloblastoma or any other cancer inherent in Smith–
Magenis syndrome. However, both RAI1 and BCL6B are 
transcription factors located in the short arm of chromo-
some 17, the deletion of which is a recurrent alteration in 
the most common subgroups of MB tumors.45 The frame of 
the CAG repeat in RAI1 MS encodes a polyglutamine run. 
Apart from inducing changes in protein structure, short 
polyglutamine expansions are also thought to modulate 
transcription factor activity.46 Interestingly, the RAI1 pro-
tein is highly expressed in cerebellum, the region where 
MB tumors arise.47 Still, it's unclear how a polyglutamine 
variant in RAI1 may contribute to MB. Most polyglutamine 
diseases are characterized by insoluble protein aggregates, 
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something not seen in most cancers. On the other hand, 
polyglutamine expansions have been shown to confer 
both gain and loss of function depending upon the affected 
protein.48 It's conceivable that this phenomenon plays a 
role in MB formation and/or maintenance.

The 43 germline MS identified may assist in 
differentiating individuals with MB from healthy con-
trols; our classification scheme reached a sensitivity and 
specificity of 95% and 90%, respectively. Despite this, 
high sensitivity and specificity are not always indicative 
of high predictive value when applied to rare diseases 
such as MB, where false positives may outnumber true 
positives. Thus, more prospective development is neces-
sary to determine the true predictive power of MS in MB 
formation.

The treatment for medulloblastoma leaves survivors 
with lifelong burdens, including hearing loss, cognitive 
deficits, endocrinopathies, and a heightened risk of stroke 
and secondary malignancies. Screening strategies for 
rare diseases present significant challenges, which could 
be mitigated by the ability to quickly identify a population 
at increased risk. If health care continues to evolve toward 
a standard of routine germline DNA sequencing at an 
early age, our predictive signature could be used to de-
marcate such a population. Early detection strategies, per-
haps based upon advanced imaging or emerging liquid 
biopsy technologies, could allow for less invasive, more 
localized means of tumor control. However, the single 
best way to improve the lives of these children would be 
to prevent their tumors from forming in the first place, 
a dream that until recently had no conceivable means of 
achievement. Advances in immunotherapies including 
cancer vaccines create the potential to immunize an in-
dividual against tumor-specific antigens. Such a strategy 
would require the selection of individuals appropriate for 
such an intervention. Our work using MS based risk pre-
diction could begin to provide this piece of the tumor pre-
vention puzzle.

Supplementary Material

Supplementary data are available at Neuro-Oncology 
online.
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