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ABSTRACT

Appropriate planning, execution, and reporting of statistical methods and results is critical for research transparency, validity, and reproducibility. This
paper provides an overview of best practices for developing a statistical analysis plan a priori, conducting statistical analyses, and reporting statistical
methods and results for human nutrition randomized controlled trials (RCTs). Readers are referred to the other NURISH (NUtrition inteRventIon
reSearcH) publications for detailed information about the preparation and conduct of human nutrition RCTs. Collectively, the NURISH series outlines
best practices for conducting human nutrition research. Adv Nutr 2021;12:1610–1624.

Statement of Significance: This paper provides an overview of best practices for developing a statistical analysis plan a priori, conducting
statistical analyses, and reporting statistical methods and results for human nutrition, randomized, controlled trials.
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Introduction
At the foundation of good clinical nutrition research prac-
tice is a comprehensive and detailed plan that defines
the study design (described by Lichtenstein et al. (1)),
documentation and regulatory procedures (described by
Weaver et al. (2)), laboratory processes and data collection
management (described by Maki et al. (3)), as well as
the statistical analyses to be conducted (discussed herein).
In addition, reporting complete, clear, and transparent
results from human nutrition randomized controlled trials
(RCTs) is critical for knowledge transfer, critical appraisal,
and development of evidence-based guidance. These pa-
pers originated from the NURISH (NUtrition inteRventIon
reSearcH) Project, a workshop that was held to discuss
best practices for the conduct of human nutrition research
(4).

According to the American Statistical Association, sta-
tistical practice emphasizes principles of good study design

and conduct, and interpretation followed by reporting of
results in context (5). Therefore, the statistical analysis
phase of a human nutrition RCT should not be viewed
as a distinct component that is done independently of
the other phases. Rather, consideration of the statistical
methods should underpin all aspects of an RCT, includ-
ing development of the specific aims and design of the
protocol, execution of the trial, data management and
analyses, and interpretation and reporting of the find-
ings.

To ensure adequate consideration of the statistical meth-
ods for human nutrition RCTs, best practice is to develop an a
priori statistical analysis plan. The results and interpretation
of the findings should be presented in alignment with the
pre-defined statistical approach. The aim of this paper is
to describe the development of a statistical analysis plan
including timing, key components, and presentation of
results.
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Statistical analysis plan and execution
A statistical analysis plan should be prepared at the time
of protocol development and finalized prior to database
lock and unblinding of randomization codes (Figure 1).
The statistical analysis plan may be posted to a platform
such as Open Science Network (https://osf.io) where the
registration date is time-stamped for enhanced transparency.
Prior to database lock and unblinding of randomization
codes, the statistical analysis plan should be updated to reflect
any changes to the design, conduct, or proposed statistical
analyses that may have occurred because of several factors
including funding availability, trial implementation issues,
or the availability of new evidence from trials reporting out
since the commencement of the project. The importance of
this cannot be overstated because proper inference requires
full reporting and transparency. For valid conclusions to be
drawn from a publication reporting results from an RCT,
the number of hypotheses tested, key data collection deci-
sions, statistical analyses conducted, and resulting statistical
summaries for primary and secondary outcomes should be
reported. Care should be taken to optimize the design and
minimize the risk of type I (false positives) and type II (false
negatives) statistical errors.

Table 1 outlines elements that should be included in
a human nutrition RCT statistical analysis plan. Many of
these components are common to the statistical analysis plan
requirements for NIH grants and therefore the statistical
analysis plan may be formulated as part of a grant application.
If the statistical analysis plan is not written as part of a
grant application, it may be written as part of the protocol
development phase of the RCT or may be developed as a
separate document containing more details than are provided
in the protocol (Figure 1). In the subsequent sections,
detailed information about what should be included in
each section of a human nutrition RCT statistical analysis
plan is summarized including best practices for using and
implementing the statistical analysis plan throughout the
entire life of a human nutrition RCT.

Section 1. Administrative information.
The administrative information for a trial is in the first
section of the statistical analysis plan. It includes the protocol
title and clinical trial registration number, as well as the
statistical analysis plan number and protocol version number,
including amendments, if applicable. This section should
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FIGURE 1 How the statistical analysis plan fits into the overall
conduct and reporting of human nutrition RCTs. 1Statistical
analyses not pre-defined should be treated as exploratory and
clearly identified as such in the reporting of results. 2Unblinding of
randomization codes for RCTs with blinded allocation should occur
following the database lock as part of the data analysis phase. RCT,
randomized controlled trial.

also cover the roles and responsibilities of key personnel,
including the Principal Investigator and Co-investigator(s),
biostatistician(s), data manager, and others (e.g., project
manager, clinician monitor, medical monitor), depending on
the size of the trial. The sponsor and location(s) of the study
may also be included.

Section 2. Introduction.
The introduction section of a statistical analysis plan sum-
marizes the background and rationale for the study as well as
the study objectives. This information is often taken directly
from the grant proposal and/or study protocol.
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TABLE 1 Items that should be addressed in a statistical analysis
plan for a human nutrition RCT1

Section and Item

Section 1: Administrative information
Title and clinical trial registration number
Analysis plan version, including revisions
Roles and responsibilities of key personnel

Section 2: Introduction
Background and rationale for the trial
Study objectives

Section 3: Study methods
Trial design
Randomization/allocation concealment/blinding procedures
Sample size justification/calculations
Framework for hypothesis testing (e.g., superiority, non-inferiority,

equivalence)
Planned interim analyses and stopping rules, if applicable
Timing of outcome assessments and analysis

Section 4: Trial population
Screening data and eligibility criteria
Recruitment
Early withdrawal of participants
Presentation of baseline characteristics

Section 5: Analysis population(s)
Analysis populations (e.g., intention-to-treat, per protocol, completers,

safety)
Adherence/compliance and protocol deviations/violations

Section 6: Hypothesis testing
Multiple hypothesis tests (multiplicity)
Number of groups or conditions
Number of outcome variables evaluated
Composite outcome variables

Section 7: Statistical analysis
Outcome variable definitions
Accounting for covariates
Repeated measurements
Missing data
Additional planned analyses (e.g., sensitivity, subgroup, exploratory

analyses)
Safety and tolerability analyses
Data presentation
Statistical software

1RCT, randomized controlled trial.

Section 3. Study methods.
The study methods should be described in the statistical anal-
ysis plan, with particular attention to the following compo-
nents that will inform the statistical approaches for the RCT.

Trial design
The study design should be described, including the compar-
isons to be tested, the duration of the study, and the timing
of data collection. Other design aspects that should be de-
scribed include the run-in period and/or washout period(s).

Randomization method, allocation concealment,
blinding
Randomization is a critical step that balances characteristics
between allocation units. Allocation units may be at the
individual participant level or group level (e.g., household,
clinic, community), depending on the study design and

aims. It is imperative that the randomization schedule
cannot be anticipated, that is, the treatment or treatment
sequence allocation is concealed from study personnel until
assignment (described by Lichtenstein et al. (1)). The method
used to generate the randomization schedule should be
detailed in the statistical analysis plan, including the use
of stratification, if applicable. A stratified randomization
schedule can be used to ensure that 1 or more characteristics
of the study sample that are expected to be strongly related
to the outcome are approximately equally distributed across
groups. However, if stratification is used, the number of
stratification variables should be limited to a small number
of factors that are expected to be strongly associated
with the response or outcome, most often 1 or 2 (6).
For example, in the Reduction of Cardiovascular Events
with Icosapent Ethyl-Intervention Trial (REDUCE-IT) (7),
a trial to assess the impact of 4 g/d of icosapent ethyl
(ethyl esters of eicosapentaenoic acid) vs. placebo on major
adverse cardiovascular events, randomization was stratified
according to cardiovascular risk (secondary prevention or
primary prevention; with primary prevention capped at 30%
of enrolled patients), ezetimibe use, and geographic region.
In some instances, stratification is used to ensure adequate
representation of subgroups that are expected to be difficult
to recruit, or for which subgroup analyses are planned. For
example, sex stratification will ensure that there is not a
large imbalance in the male to female ratio across groups,
even if the study sample is 80% female and 20% male
(i.e., ∼4:1 in all study groups/conditions). In other cases,
a stratified randomization scheme will be used to ensure
that randomization is balanced by a particular characteristic,
for example, 50% in a lower stratum (150–199 mg/dL) for
baseline triglyceride concentration and 50% in a higher
stratum (200–499 mg/dL). Once a randomization stratum is
filled, only individuals that meet the criteria for the stratum
or strata with available slots are randomized. Therefore, when
using stratified randomization, the feasibility of recruiting
for and filling each randomization stratum/strata should be
considered. If a stratified randomization schedule is used, the
stratification categories should be included as factors in the
statistical models used to assess the intervention effects.

The statistical analysis plan should also detail how
allocation concealment was achieved. Allocation conceal-
ment occurs when personnel involved in the enrollment of
participants to the study have no knowledge of the allocation
sequence prior to a participant’s randomization. A lack of
foreknowledge of the randomization assignment avoids the
potential for conscious or subconscious influence on the
randomization sequence, such as directing a person with a
more severe condition to the active intervention rather than
the control. The randomization process will result in groups
that are approximately equivalent with regard to known
and unknown confounding factors; a lack of allocation
concealment may inadvertently alter this balance. To conceal
allocation, the randomization schedule should be developed
by a member of the research team who is not involved in
the screening or enrollment of participants into the study. At
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the time of participant allocation, randomization should be
done using opaque, sealed, and sequentially pre-numbered
envelopes (conventional methodology), a computer program
that is accessed through the internet (interactive web
response system, e.g., REDCap) or a telephone system
(interactive voice response system). These methods should
be detailed in the statistical analysis plan as well as the timing
of randomization.

Blinding, or being naïve to the intervention allocation,
mitigates ascertainment bias (or detection bias) by masking
the allocation sequence for the duration of the study among
participants, outcome assessors, and the statistician(s) who
will analyze study data. Blinding study personnel who assess
outcomes will limit bias in the collection and interpretation
of data; for example, judgment about whether an adverse
experience is likely to be attributable to the intervention.
Participant blinding reduces the risk of randomization
knowledge affecting the outcomes rather than the treatment
or condition. Participant blinding in human nutrition RCTs
is often not feasible because many research questions do
not enable concealment (see Lictenstein et al. (1) for more
detail). In some circumstances, it is advisable to ensure that
participants do not come into contact with one another to
avoid unblinding. For example, if there is a side effect of
the study intervention (e.g., flushing with niacin supplemen-
tation), discussions between subjects might lead individual
participants to conclude that they have been assigned to the
active or placebo condition. The methods used to ensure that
the pre-specified randomization schedule is followed, and
blinding is maintained, if applicable, should be described in
the statistical analysis plan.

Sample size estimate on assumptions for primary
outcome
The target sample size for a trial is typically estimated
based on assumptions for the primary outcome(s) (i.e.,
variable(s) to be measured). A power analysis is conducted
to determine the number of subjects needed to detect an
intervention’s effect at a pre-specified alpha (typically 0.05,
2-sided) and power (typically 80% or 90%) levels. Power
for secondary aims may be lower or higher if the sample
size is determined based on the primary outcome. For key
secondary outcomes, a separate sample size calculation may
be warranted, which may result in recruitment of a larger
number of participants to ensure sufficient power for both
primary and key secondary outcomes. An expected loss
to follow-up rate may be added to the recruitment goal
to ensure the target sample size is achieved. The sample
size estimate reported in the statistical analysis plan should
include all of the assumptions and parameters entered into
the power calculation (e.g., test, alpha, sidedness, variance,
effect size) with appropriate justification to support the
feasibility of the estimate. In some cases, no data may be
available for the estimated effect size and variance because
of the novelty of the research question, which should be
stated and other methods of determining the sample size
outlined (e.g., convenience sample, available resources).

Sample size calculations have been described in more detail
by Lichtenstein et al. (1).

Framework for hypothesis testing
In human nutrition RCTs the objective is typically to compare
one or more experimental condition(s) (i.e., the intervention
group or condition) with one or more control group(s) or
condition(s) for an outcome of interest. The outcome can be
a continuous variable such as LDL-cholesterol concentration
or a categorical variable such as new-onset type 2 diabetes
mellitus.

Standard practice is to state hypotheses as a null (no
difference between conditions) and an alternative (there is
a difference between conditions) since statistical tests are
based on rejecting the null hypothesis or failing to reject
the null. In most cases, the alternative hypothesis will be
non-directional (i.e., there is a difference being the default),
although it can be stated as a directional hypothesis (e.g.,
vitamin D supplementation to correct deficiency will lower
the incidence of fractures more than the placebo). If there are
more than 2 groups or conditions, hypotheses are typically
tested in a stepwise manner. The first (omnibus) hypothesis
is that there are no differences among the conditions and,
if the first hypothesis is rejected, additional hypotheses are
tested between individual conditions (i.e., post hoc, pairwise
tests). A different approach is to a priori define contrasts as
described in Section 6.

P-values and alpha level for hypothesis testing: A P-value
is an assessment of the probability of a result equal to or
more extreme than the observed result under the assumption
that the null hypothesis is correct and is used to assess the
extent of the evidence against the null hypothesis. If the
P-value is sufficiently small, we reject the null hypothesis;
otherwise, we conclude that the data do not provide sufficient
evidence to reject the null hypothesis. The alpha level
is the P-value that is used as a cut-off for rejection of
the null hypothesis, and has traditionally been 0.05, 2-
sided, when a single hypothesis is being tested. In Section
6, additional considerations for the alpha level used are
described.

P-values should not be viewed or reported as strictly
dichotomous indicators. Absolute P-values should be re-
ported, where possible, rather than P-value cut points (e.g.,
P < 0.05). It is not true that a P-value of 0.04 indicates that
the effect of an intervention is physiologically and clinically
important, while a P-value of 0.06 indicates that the effect is
physiologically and clinically unimportant. A small, clinically
unimportant effect can produce a P-value less than 0.05 if
the sample size is large and/or the measurement precision is
very high. Conversely, a large, clinically important effect may
result in a P-value above 0.05 if the sample size is small or
measurements are imprecise (8, 9). This is one reason why
sample size determination using a clearly rationalized power
calculation is so important.

With a 2-sided alpha of 0.05, there is a 5% probability of a
false positive, that is, rejecting a null hypothesis that is true. A
false positive is also known as a type I statistical error. When
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the null hypothesis is false (i.e., the alternative is true) and a
statistical test fails to reject it, this is a type II statistical error.
A common reason for a type II statistical error is a sample
size that is too small, resulting in insufficient statistical power.
Type I and type II statistical errors are covered in more
detail by Lichtenstein et al. (1). It should be noted that some
methodologists believe that a 5% risk of a false positive result
is insufficiently rigorous and leads to acceptance of efficacy
for interventions that lack clinically important benefits too
often. Therefore, some have proposed adoption of a more
stringent threshold for declaring statistical significance such
as 1% (P = 0.01) or 0.5% (P = 0.005) (9, 10).

Testing for difference, equivalence, or non-inferiority:
The usual hypothesis test applied in human nutrition
RCTs is for a difference between or among intervention
groups/conditions, which is equivalent to testing the null
hypothesis that the conditions are not different, with the
alternative hypothesis that they are not all the same. This
can be expressed as follows for the null hypothesis (H0)
and alternative hypothesis (Ha) in a study with 2 groups (or
conditions for a crossover study), A and B.

- H0: mean for group A = mean for group B
- Ha: mean for group A �= mean for group B

In some instances, the hypothesis being tested is one of
equivalence. For example, this approach can be used to test
for bioequivalence, based on the maximum concentration
(Cmax) and the AUC, for 2 drug formulations, such as a
reference version and a version seeking approval as a generic
substitute for the reference agent (i.e., the comparator). These
procedures can also be used for evaluating bioavailability
and bioequivalence for nutrients in dietary supplements. The
standard used by the FDA to demonstrate bioequivalence
in drug studies is a geometric mean ratio and 90% CI
that fall within the range of 0.80 to 1.25 (11). A geometric
mean ratio (antilog of the mean of the logs) is used
because logarithmic transformation of pharmacokinetic data
is recommended (12). These principles can also be applied
to dietary supplements (13, 14). For other applications, a
different range may be used (15).

The following profile would support an inference of
bioequivalence, using the FDA criteria (11), of 2 products
(i.e., a drug or a dietary supplement) because both the Cmax
and AUC geometric mean ratios show 90% CIs that do not
extend beyond the boundaries of 0.80 and 1.25:

- Comparator geometric mean Cmax/reference geometric
mean Cmax = 1.06 (90% CI: 0.88, 1.22)

- Comparator geometric mean AUC/reference geometric
mean AUC = 1.03 (90% CI: 0.86, 1.19)

In some trials the hypothesis being tested is non-
inferiority, that is, the comparator intervention is equivalent
or superior to the reference intervention. For example, a
weight loss trial designed to assess whether an intervention
administered via online instruction (i.e., the comparator) is

non-inferior to a reference intervention administered via in-
person group meetings (i.e., the reference). The test for non-
inferiority is based on a maximum margin by which the
comparator could underperform without being considered
clinically inferior. If the upper bound of the 90% or 95% CI
(depending on the alpha selected) excludes this margin, non-
inferiority would be supported, otherwise the alternative
hypothesis (inferiority) would be supported. In this example,
a non-inferiority margin of 3% is used with a 95% CI. If mean
weight loss is 8.2% in the reference group and 6.6% in the
online intervention group, the mean difference between the
groups would be 1.6%. Whether or not the non-inferiority
hypothesis is supported would depend on whether the 95%
CI for the mean difference crosses the 3% non-inferiority
margin. For example:

- Mean difference (95% CI): 1.6% (0.9, 2.3%), non-
inferiority hypothesis supported

- Mean difference (95% CI): 1.6% (0.1, 3.1%), non-
inferiority hypothesis not supported

Interim analyses
Some RCTs incorporate one or more a priori planned interim
analyses into the trial design for the purpose of decision-
making about whether to continue the trial or to stop the trial
because of benefit or harm of the intervention, or very low
likelihood of demonstrating benefit if completed (i.e., futility
analyses). For example, the Look AHEAD (Action for Health
in Diabetes) trial was stopped after 9.6 years because of a
recommendation from the data and safety monitoring board
based on a futility analysis showing low probability (i.e., 1%)
of observing a significant positive result at the planned end of
follow-up (i.e., a HR of 0.82 in the intervention group) (16).
Short-term studies do not tend to have interim analyses for
trial termination, but interim analyses might be used to verify
the assumptions used in the original sample size and power
calculations. If the assumptions do not appear to have been
accurate, the trial can be resized, based on observed data, to
ensure the study has adequate statistical power.

To account for the completion of multiple statistical
tests in the final analysis (i.e., for the interim plus final
analyses), procedures must be in place for “alpha spending”
or distributing the type I error rate across the planned
analyses. Some alpha is used for the interim analysis(es) and
the remaining alpha is then applied to the final analysis. The
degree of alpha spending used for the interim analysis(es)
depends on the alpha used to declare statistical significance in
the interim analysis(es), and the fraction of the information
from the overall trial available at the time of the interim
analysis(es) (17).

Timing of outcome assessments and analysis
Outcome measurement timing should be pre-specified for
both primary and secondary outcomes. This should include
outcome definitions, methods used to assess outcomes,
time points of outcome measurement (time frame for visit
windows), and frequency of follow-up. In some instances,
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follow-up may continue after the primary outcome has been
assessed. For example, the primary outcome in a weight loss
trial may be weight loss after 1 year, but follow-up may
continue for a second year. In such cases, analysis of first year
data may proceed while participants are still being followed
during the second year.

Section 4. Trial population.
Screening data and eligibility criteria
The participant inclusion and exclusion criteria should
be specified in the study protocol and summarized in
the statistical analysis plan (see Lichtenstein et al. (1) for
details about defining inclusion/exclusion criteria). Inclusion
criteria should clearly specify the population included in
terms of age range, sex, anthropometric data, health status
(presence or absence of specific diseases), medication and
dietary supplement use, biochemical values, and lifestyle
habits. Exclusion criteria should state the populations that
are being excluded. The eligibility criteria should provide a
clear rationale for the target population, including justifi-
cation for exclusion of certain population subgroups (e.g.,
if the study is limited to English-speaking participants),
since this can affect the generalizability of the results.
The timing of the data collection and processing of this
information to evaluate eligibility should be described.
Procedures for possible modification of the criteria to meet
recruitment goals or other unforeseen issues should be
specified. Any changes to the study protocol over time
should be carefully documented so that such changes can be
considered when the data are analyzed, and the results are
interpreted.

Recruitment
Methods used for recruitment should be described in
the statistical plan as this may have implications for the
representativeness of the sample (see Lichtenstein et al. (1)
for more details about recruitment methods).

Early withdrawal of participants (participant
dependent, investigator dependent)
A participant enrolled in a study may decide to withdraw
from the trial completely, or only from specific procedures
at any time, or may opt to discontinue participation for
a period of time and then rejoin the trial. If a subject
opts out of specific procedures, follow-up data collection
may continue for some of the study measures that the
participant agrees to continue. The investigator may also
withdraw participants from the trial for a variety of reasons,
including non-adherence, development of a condition that
would potentially confound the interpretation of the study
results for that participant, or that might increase the risks to
the participant should they continue. The statistical analysis
plan must address the handling of missing data because
of early termination and other reasons. Guidance on the
handling of missing data in statistical analyses has been

provided by the National Research Council’s Committee on
National Statistics (18, 19).

Presentation of baseline characteristics
Item 15 of CONSORT Statements provide recommendations
for baseline data reporting (20, 21). For example, for
randomized parallel group trials a table showing baseline
demographic and clinical characteristics for each group
should be presented (20). For randomized crossover studies,
a table showing baseline demographic and clinical charac-
teristics by sequence and period should be presented (21).
Descriptive statistics (see Section 7) should be presented for
baseline characteristics. Baseline characteristics should be
presented for the pre-specified main analysis population and
potentially secondary analysis populations (see Section 5).
Statistical testing for baseline differences between random-
ization groups/sequences is not recommended because any
differences that exist occur because of chance and therefore
statistical testing is redundant (20). Instead, the clinical
and prognostic significance of any differences in central
tendency or distribution of baseline characteristics between
groups/conditions should be evaluated using clinical judg-
ment.

Section 5. Analysis population(s).
Analysis populations
Analysis populations should be defined in the statistical anal-
ysis plan and all decisions regarding the analysis populations
should be made prior to database lock and unblinding of the
randomization codes for a blinded trial. It should be noted
that the term “analysis population” is in common usage,
although it can be argued that the term analysis samples
would be more appropriate, since a sample is a group selected
from a population by a defined procedure. In a clinical trial,
a sample is recruited from a larger population and enrolled
into the trial based on pre-defined entry criteria.

The FDA defines analysis populations as the set of
subjects whose data are to be included in the main analyses
and secondary analyses. The choice of analysis population
should be aligned with the objective(s) of the RCT; however,
minimizing bias and avoiding inflation of the risk of type
I statistical errors should also inform the decisions made.
Other considerations include whether the aim is to examine
effectiveness (conducted under conditions mimicking “real-
world” implementation) or efficacy (conducted under ideal
conditions), if self-reported or objective measures of adher-
ence will be collected, and the sample size.

Typically, an intention-to-treat analysis is conducted, that
is, an analysis based on the initial, random allocation, even
if the participant withdraws from the study, did not comply,
or received a different intervention. An intention-to-treat
analysis must often contend with missing data, such as data
for participants who discontinued participation in the study
or who missed some of the scheduled assessments. Anal-
yses consistent with intention-to-treat principles may have
missing data, although assumptions about the randomness
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of the missing data will inform appropriate handling of this
issue, which is beyond the scope of this paper. The interested
reader is referred to the following references prepared by
the National Research Council’s Committee on National
Statistics (18, 19). Additional analysis populations may be
included, such as a per-protocol analysis, which is limited to
only participants who completed the trial with a pre-specified
minimum level of adherence to the study intervention and
no major protocol deviations or violations, which may be
appropriate for efficacy trials. A safety population, which is
used to assess the safety of the treatment/intervention, in-
cluding adverse events, toxicity, and any clinical/biochemical
effects, is often defined as all participants randomized who
consumed at least 1 dose or serving of the study product.
The statistical analysis plan should specify how data are to be
analyzed for participants with poor intervention adherence
(e.g., include in the intention-to-treat analysis, but exclude
from the per-protocol analysis).

Adherence and protocol deviations/violations
The statistical analysis plan must include how adherence and
protocol deviations/violations will be defined for the purpose
of data analysis if a per-protocol analysis will be conducted.
Methods for assessing adherence that may be used to define
per-protocol analyses are detailed by Lichtenstein et al. (1).

Section 6: Hypothesis testing.
Plans for hypothesis testing need to be described in the study
protocol because the number of hypothesis(es) to be tested
impacts the type I error rate and appropriate considerations
(described later) are needed for managing this risk.

Multiple hypothesis tests (multiplicity)
Human nutrition RCTs with more than 2 interventions or
more than 1 outcome variable need to address the issue
of multiplicity, the appropriate control of statistical errors
when drawing conclusions using more than 1 significance
test. When particular versions of the alternative hypothesis
are of interest, contrasts can be used to examine them (22).
Each of these must be formulated as part of the statistical
analysis plan. Since the alternative hypotheses represent
separate research questions, each is tested using a critical
P-value of 0.05. For example, consider a human nutrition
RCT with 3 interventions: a control and 2 interventions
that are very similar. The questions of interest could, for
example, be formulated as 2 contrasts: the first comparing the
control with the average of the 2 active interventions and the
second comparing the 2 active interventions. If alternative
hypotheses are not formulated a priori, then the multiplicity
issue must be addressed in terms of a general alternative that
typically includes a comparison of all pairs of interventions
for each of the outcome variables. The general approach is to
adjust the P-value needed to declare statistical significance.

As the number of hypothesis tests from a single RCT
increases, so does the risk of type I statistical errors (false
positives). If 100 statistical hypothesis tests are completed,
each with an alpha of 0.05, for which the null hypothesis is

true, we expect that approximately 5 false positive test results
would occur with P ≤ 0.05. Therefore, as the number of
tests increases, the alpha level used for each test should be
adjusted downward to maintain the overall risk of a type I
error at 0.05. Note that the multiplicity issue also applies to
CIs. Accordingly, use of a lower alpha to account for multiple
comparisons is often accompanied by adjusted CIs.

There are 3 key multiplicity considerations:
� Number of groups or conditions to be compared,
� Number of outcome variables evaluated, and
� Whether any interim analyses have been undertaken

(see Interim Analyses section).

Number of groups or conditions
The number of comparisons increases rapidly as the number
of intervention groups/conditions increases. With 2 inter-
ventions, there is a single simple comparison, the difference
between the 2 interventions. With 3 interventions, there are
3 possible simple comparisons; with 4 interventions, the
number of simple comparisons is 6, and with 5 interventions,
there are 10 possible simple comparisons. It should also be
noted that if additional analyses are conducted to assess
between- or within-group/condition change from baseline
this will also inflate the risk of type I statistical error (23,
24). Commonly, when the primary analysis is a comparison
of endpoint means between groups/conditions, additional
analyses are conducted to assess the change from baseline for
outcomes between groups/conditions (i.e., between-group
change from baseline analysis) or changes from baseline
separately in each group/condition (i.e., within-group change
from baseline analysis). Within-group/condition compar-
isons to baseline are generally not recommended because
these are reflective of a time effect (23, 24) and an essential
feature of RCTs is analyses that are focused on between-
group/condition comparisons.

The typical approach for managing the risk of false
positive hypothesis tests is to use an omnibus (also known as
a global) test such as the F-ratio for ANOVA first, followed
by pairwise comparisons only if the null hypothesis for
the omnibus test is rejected at the specified alpha level
(typically 0.05). For example, in a parallel-arm study with 4
intervention conditions, the ANOVA F-ratio would test the
hypothesis that all group means are equal:

- H0: mean 1 = mean 2 = mean 3 = mean 4
- Ha: at least 1 pair of means is not equal

If the F-ratio from the ANOVA has a P < 0.05, then
pairwise testing can proceed. Various procedures are avail-
able for pairwise (also known as post hoc) testing. These
methods adjust the alpha level to account for the number
of pairwise tests being conducted to maintain the overall
(familywise) risk of a false positive at 5% or less. The
simplest method for adjusting the alpha is the Bonferroni
correction, which simply divides the overall alpha by the
number of comparisons to be undertaken as the threshold
for declaring statistical significance. For example, in a study
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with 4 intervention conditions, there are 6 possible simple
comparisons between allocation means:

1. 1 vs. 2
2. 1 vs. 3
3. 1 vs. 4
4. 2 vs. 3
5. 2 vs. 4
6. 3 vs. 4

In this example, the Bonferroni corrected alpha would
be 0.05/6 = 0.0083. Thus, significance would be declared
only if a pairwise test produced a P-value of <0.0083. The
Bonferroni method is highly conservative, which results in a
heightened risk of a type II statistical error compared with
other types of procedures. Alternatives include the Tukey-
Kramer and simulation-based procedures, which are appro-
priate when simple comparisons (i.e., pairwise comparisons)
are being undertaken. In some instances, it is of primary
interest to compare a single group (e.g., a control group) to
each of the other groups. Dunnett’s test may be used for this
purpose, which would result in 3 pairwise comparisons for
the above example, with 3 active intervention groups and a
control group.

More sophisticated methods that conserve statistical
power, compared with traditional approaches, include the
Holm-Bonferroni (25) and Benjamini-Hochberg procedures
(26). Full descriptions of these and other pairwise testing
methods are beyond the scope of this paper. The overarching
principle is that simply applying pairwise comparison tests,
such as multiple t-tests, across groups results in an inflated
risk of type I statistical errors (false positives). Therefore,
investigators should apply appropriate procedures to protect
the familywise error rate when more than 2 groups or
conditions are being compared. These methods limit the
number of tests being completed by using hierarchical testing
procedures and/or by adjusting the alpha used to declare
statistical significance to account for the number of statistical
hypothesis tests completed.

Number of outcome variables evaluated
The statistical analysis plan for a human nutrition RCT
should pre-specify all primary and secondary outcome
variables and how these will be tested, including the alpha
level that will be applied to each test, or how that alpha
level will be determined. Outcome variable features should
be specified, including time point(s), form (e.g., endpoint
means, change from baseline, % change from baseline),
and analysis population (e.g., intention-to-treat, completers,
per protocol). The statistical model should also be pre-
specified, including whether covariate adjustment will be
employed and, if so, how the specific covariates will be
determined (e.g., pre-specified or determined through an
objective decision tree). Objective decision trees are created
before data analysis begins and explicitly describe how data
analyses will be conducted with objective criteria that dictate
analysis decisions rather than using a results-driven approach
that inflates the type I statistical error risk.

If an RCT has a single primary outcome variable and
only 2 conditions/groups, a 2-sided alpha of 0.05 is generally
used. If there are 2 co-primary outcome variables, the issue
of multiple testing can be handled in several ways. One is
to adjust the alpha level used for each test, such as with a
Bonferroni correction, with half of the alpha allocated to
each test (0.05/2 = 0.025). Other methods such as the Holm-
Bonferroni (25) and Benjamini-Hochberg (26) procedures
could be utilized, which will often result in higher statistical
power than the more conservative Bonferroni method.
Another approach is to specify a hierarchy in which one
pre-specified variable is tested first, followed by continued
testing only if the first null hypothesis is rejected. A detailed
discussion of methods to protect the familywise type I error
rate is beyond the scope of this paper. Interested readers are
referred to 2 FDA guidance documents for more information
(27, 28).

For trials with a factorial design, where subjects are
randomly assigned to a treatment, then to 1 or more
additional treatments, the analysis plan should specify
the methods that will be used to account for potential
interactions between treatments. For example, in the VITAL
(Vitamin D and Omega-3) Trial (29), subjects were randomly
assigned to receive vitamin D or placebo and also omega-
3 fatty acids or placebo, resulting in 4 categories: vitamin D
placebo + omega-3 placebo, vitamin D + omega-3 placebo,
vitamin D placebo + omega-3, and vitamin D + omega-3.
If a statistically significant or clinically relevant interaction
is present for effects of treatments, the methods used for
analysis will have to account for such interactions, which will
have implications for the statistical power to test main effects.

Many human nutrition RCTs assess several secondary
outcome variables. The clinical relevance of changes in 1 vari-
able may require an understanding of how the intervention
affects other outcomes. For example, a human nutrition RCT
may examine the effect of an intervention on serum LDL-
cholesterol as the primary outcome (variable). However, if
the intervention lowers LDL-cholesterol while worsening
other cardiometabolic risk factors such as systolic blood
pressure or serum triglyceride concentration, one could not
unequivocally conclude that the intervention produced a net
benefit on the risk factor profile. In settings like this, it is
necessary to assess multiple outcome variables.

For many human nutrition RCTs, secondary and ex-
ploratory outcome variables are tested at a 2-sided alpha
of 0.05, without adjustment of the alpha to account for the
number of comparisons. These secondary and exploratory
variables can be highly correlated with the primary outcome
variable, for example in an RCT where change in systolic
blood pressure is the primary outcome variable, and change
in diastolic blood pressure is a secondary outcome variable.
Interpretation of the results of secondary and exploratory
outcomes should be made with caution and acknowledge the
risk for type I statistical error. For example, if 1 primary and
5 secondary outcome variables are tested, the risk of a type I
error using an alpha of 0.05 for each test is 1—0.956 = 0.265
or 26.5%. However, using a Bonferroni correction for each
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test would mean that an alpha of 0.05/6 = 0.0083 would
be required to designate statistical significance. Few human
nutrition RCTs are large enough to meet this level of rigor
in statistical testing. Therefore, it is recommended that
investigators report exact P-values for secondary outcomes
and state clearly that there is an elevated risk of type
I statistical error in secondary and exploratory outcome
analyses. This is also true for sensitivity analyses such as
those done in secondary analysis populations (e.g., completer
or per protocol, when the intention-to-treat analysis is
primary). It is also recommended that the primary outcome
is the focus of nutrition RCT abstracts and if secondary
and/or exploratory outcomes are reported in the abstract,
these should be clearly identified as such. Furthermore,
reporting of sensitivity and subgroup analyses in the abstract
should usually be avoided, with the exception of statements
indicating that the results were consistent across several
subgroup and sensitivity analyses.

An important element of study design is to specify
in advance a hierarchy of outcome variables in order to
protect against an inflated risk of false positive findings.
Generally, this involves pre-specification of a single primary
outcome variable, or a small number of co-primary outcome
variables, as well as a group of secondary outcome vari-
ables. Additional variables may be identified as exploratory.
Moreover, additional variables may be assessed statistically
(e.g., body weight change during the intervention) to assess
potential confounding. Finally, statistical tests may be run
for the purpose of assessing safety and tolerability of the
intervention. It is therefore not uncommon for the analysis of
results for a human nutrition RCT to include statistical tests
on many variables.

The emergence of “omics” methods that generate a large
amount of data, termed “big data” presents multiplicity
challenges and specialized statistical methods are needed
to control for the false discovery rate in these very large
complex datasets. A bioinformatician or statistician should
be consulted for these types of datasets. The interested
reader is referred to the following methodological pa-
pers that outline key principles for “big data” analysis
(30–35).

Composite outcome variables
In clinical event trials a composite outcome is often used,
whereby the occurrence of several clinical events equally
contributes towards the primary endpoint. For example,
PREDIMED (Prevención con Dieta Mediterránea) (36) had a
primary cardiovascular event endpoint that was a composite
of myocardial infarction, stroke, or death from cardiovascu-
lar causes. Individual components and related events such as
revascularization procedures can be included as secondary
outcome variables. In some instances, a hierarchical testing
procedure may be employed to minimize the risk of false
positives where testing proceeds in a pre-specified order
and stops when a test fails to produce a P-value <0.05. An
example of a study that used a hierarchical testing procedure
is REDUCE-IT (7). VITAL (29) is an example of how trial

findings may be interpreted when the results from pre-
specified secondary outcomes confirm hypotheses, but the
primary outcome does not confirm the main trial hypothesis
(Box 1).

Box 1:
Interpretation of results from pre-specified
secondary outcomes when the primary
outcome does not confirm the main trial
hypothesis

In recent years it has become more common for
journal editors to insist on de-emphasizing results from
pre-specified secondary outcomes if the primary out-
come shows no significant difference between treatment
conditions. Results for secondary outcomes that suggest
benefits for an intervention when the primary outcome
shows no statistically significant difference are often
interpreted as hypothesis generating (37). For example,
in the omega-3 fatty acid arm of the Vitamin D and
Omega-3 Trial (VITAL) that assessed supplementation
of individuals at average cardiovascular risk with 1 g/d
of omega-3 acid ethyl esters containing ∼840 mg/d of
eicosapentaenoic acid and docosahexaenoic acid, there
was no significant difference between the placebo and
omega-3 intervention groups for the primary composite
outcome of major cardiovascular events (HR 0.92; 95%
CI: 0.80, 1.06) (29). However, there were reductions in
some cardiac-related events, such as total myocardial
infarction (HR 0.72; 95% CI: 0.59, 0.90) and total
coronary heart disease (HR 0.83; 95% CI: 0.71, 0.97).

As suggested by Pocock and Stone (37) in some
instances, results for secondary outcomes may be
compelling enough to affect clinical and public health
guidelines. Such secondary findings must be interpreted
cautiously to ensure that there is a low probability
of false positives, such as a P-value small enough to
remain statistically significant after adjustment for the
number of comparisons made using a conservative
approach such as a Bonferroni correction. It is essential
for investigators to clearly pre-specify a hierarchy of
variables prior to unblinding to aid interpretation of
findings. This may include specification of primary,
key secondary, secondary, and exploratory analyses.
Such a hierarchy will typically be based on what is
known from prior investigations and the physiological
effects of the intervention under study. Creating this
hierarchy will be very helpful for limiting the number
of statistical comparisons for which adjustment must
be applied (i.e., alpha spending) and interpreting the
findings. Findings for key secondary and secondary
outcomes suggestive of benefit that align with results
from previous investigations will be given more weight
in the interpretation of findings than pre-specified
exploratory outcomes, and especially those from any
post hoc exploratory analyses.
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In the case of VITAL (29), the results for cardiac-
related secondary outcomes did not show unequivocal
evidence of benefit after consideration of the number
of statistical comparisons. However, the results were
consistent with those from prior studies, which had
shown mixed results, but generally supported a po-
tential benefit of supplementation with lower dosages
of omega-3 fatty acids (≤1.8 g/d) for some cardiac
outcomes, particularly coronary heart disease death, but
no benefit for stroke (38). Subsequent to the publication
of results from VITAL, a meta-analysis of data from
119,244 subjects (including 25,871 VITAL participants)
in 12 large-scale trials of lower-dosage omega-3 fatty
acid interventions, compared with placebo or usual
care, showed pooled estimates for myocardial infarction
(RR 0.92; 95% CI: 0.86, 0.99, P = 0.02) and coronary
heart disease death (RR 0.92; 95% CI: 0.86, 0.98,
P = 0.014) consistent with modest, but statistically
significant, benefits of supplementation (39). No benefit
was observed for incidence of stroke in pooled analyses
(RR 1.05; 95% CI: 0.98, 1.14, P = 0.183).

Pocock and Stone (37) use the example of a trial
(Anglo-Scandinavian Cardiac Outcomes Trial) compar-
ing 2 antihypertensive agents for which the primary
outcome of non-fatal myocardial infarction plus fatal
coronary heart disease showed no significant difference
(P = 0.11), but secondary outcomes such as fatal and
non-fatal stroke, and death from cardiovascular causes
(i.e., those related to cardiac and stroke events), did show
strong statistical significance, with P-values ≤0.001 and
95% CIs that were not close to the null value. Given
strong statistical evidence of benefit for these secondary
outcomes with the comparator agent (amlodipine), and
that prior research had shown that antihypertensive
treatments typically have larger effects on stroke out-
comes than cardiac outcomes, the results for these sec-
ondary outcomes were considered compelling enough
on their own to support recommendations to avoid
using the reference agent (atenolol) as first-line therapy
for hypertension (37).

Section 7. Statistical analysis.
The statistical analysis section in the statistical analysis
plan should describe the analysis methods and how the
intervention effects will be presented. It is important to
specify both the outcomes and endpoints that will be
used in statistical analyses. An outcome is defined as
the measured variable (e.g., LDL-cholesterol) whereas an
endpoint is the analyzed variable (e.g., change from baseline
at 6 weeks in LDL-cholesterol). The statistical analysis plan
should distinguish between analyses designed to understand
and interpret results, such as diagnostic plots to examine
statistical model assumptions, versus analyses designed to
explain the results to others, such as plots to effectively
communicate the research findings. In addition to analyses
designed to address specific aims and primary outcomes,

additional analyses supporting ideas for future research can
be included, such as subgroup and exploratory analyses.

Preliminary issues related to the statistical analyses that
need to be addressed in the statistical plan include:

� Clear definitions, including analysis form, for all
measured variables;

� Specification of procedures for identification and man-
agement of outliers with a description of how such
outlying values will be handled in the analysis;

� Plans for checking model or statistical test assump-
tions;

� Methods for dealing with missing and incomplete data.

The statistical methods used will be determined by
the variable type being examined, whether covariates and
confounders need to be accounted for, and whether the
dataset contains repeated measures. Statistical methods that
are routinely used in clinical nutrition studies will not be dis-
cussed here; the interested reader can refer to statistics texts
(40, 41). Rather, we focus on several principles that should
inform the statistical plan and data analysis procedures.

Outcome variable definitions
The appropriate statistical methods for analysis will vary
according to outcome variable type (level), which are
categorized as scale (continuous), nominal (categorical with
no intrinsic ordering), or ordinal (categorical with intrinsic
ordering) for data analysis purposes. Many commonly used
methods for statistical inference are based on an assumption
that sample means, regression coefficients, or other statis-
tical summaries follow a distribution that is approximately
normal. Non-parametric methods, including simulation-
based procedures, provide alternative approaches that do not
involve the assumption of approximate normality.

Accounting for covariates
Randomized controlled parallel trials should ideally be de-
signed in a manner that controls for variables with a high po-
tential to influence the response to the intervention (i.e., con-
founders) to reduce the need for covariate adjustment. Strati-
fication in the randomization schedule may be used to ensure
balance across groups for such variables. When stratification
is used for this purpose, the stratification factor must be
included in the statistical models used for hypothesis testing.

Pre-randomization variables, commonly referred to as
covariates, known in advance to be strongly associated
with an outcome can be included in the statistical model.
These can be quantitative variables or categorical variables
measured prior to the commencement of the intervention.
Variables measured after the start of the active/reference
intervention should not be included as covariates because
they are considered a response to the intervention alloca-
tion and interact dynamically with the outcomes (42). A
quantitative variable may be discretized, although there is
a potential trade-off between the loss of information versus
the facilitation of the interpretation of results. For example,
in the Glucosamine/chondroitin Arthritis Intervention Trial
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(GAIT) (43) the primary outcome was a 20% decrease in
knee pain from baseline to week 24, which represents a
discretization of the scale knee pain variable. For a given
endpoint, the baseline value is often a strong predictor
of response and therefore is frequently included as a pre-
specified covariate. Such variables should be described in
the statistical analysis plan with a rationale provided for
inclusion, and the number should be limited to a few that are
known to be related to the outcome(s), such as baseline value,
sex, and possibly age. It should be noted that in the 2010
CONSORT Statement for parallel group randomized trials
it is recommended that if covariate adjustment is conducted
then both adjusted and unadjusted analyses should be
presented (20).

Inclusion of covariates in an analysis has 2 potential
effects. First, the residual variation in a model can be
reduced, thereby increasing the power of the significance
testing procedures used. In the simplest form, the residual
variation is the mean squared error used as the denominator
in an F-test; a smaller denominator means that the ratio
is larger. Second, estimates of the outcomes can change if
there are large differences in the means of the covariate
across randomization groups. In this situation, we say that the
outcome is adjusted for or controlled for the covariate. The
adjusted means are what we would estimate the means to be if
the groups had equal means for the covariate. Consideration
of this issue should be carefully examined when the study is
designed and the analysis plan is formulated. The statistical
cost of including these variables, factors, or covariates, is
minimal, involving a transfer of a few degrees of freedom
from an error term to a model term in most linear models.
An extreme case can occur when there is an attempt to make
groups similar by matching on a collection of variables. With
one-to-one matching, for example, a substantial loss of error
degrees of freedom is consumed by adding terms to the
model that account for the matching.

Baseline imbalances between groups for factors other than
the dependent variable that were not expected but were
observed post hoc should not be included as covariates in
the primary analysis (44). However, the influence of baseline
differences that are deemed to be clinically or prognostically
significant may be evaluated in sensitivity and exploratory
analyses to assess the robustness of the primary statistical
analysis.

Repeated measurements
Outcome variables that are measured at multiple time points
can be incorporated in statistical analysis in different ways.
In some cases, a repeated measures ANOVA or mixed-
model analysis are appropriate choices. Alternatively, the
end-of-intervention value may be used as the outcome
of interest with intermediate values assessed as secondary
or exploratory analyses. In some specific circumstances, a
summary of the repeated measures such as the slope of the
change in values over time may be used as the outcome
(e.g., carotid intima media thickness (45) or renal function
(46–48)), although this approach can be challenging due to

missing data. The approach to be employed should be pre-
specified in the analysis plan.

A randomized crossover design is often referred to as
a repeated measures design. In this design, more than 1
measurement is taken on each participant, and participants
serve as their own comparison. Thus, it is important to distin-
guish the participant-to-participant (between-participant)
variation and the within-participant variation in the model.
One way to view this characteristic is through the correlation
between measures on the same participant. In crossover trials
the potential for order or carryover effects also needs to
be assessed. Similarly, for a multi-site study, the correlation
between measures at the same site should be modeled,
although for studies with many sites, geographical region
may be used in place of site. Clustered sampling, such as
sampling participants within households, can be modeled
in the same way. Mixed models allow modeling of both
random and fixed effects (factors), which is appropriate for
situations with repeated measurements. Random effects are
factors that are expected to differ across participants (e.g.,
subject), whereas fixed effects are factors that are assumed to
have the same effect across participants (e.g., diet, age, sex,
race, ethnicity).

Missing data
Missing data are unavailable values that were planned
to be collected. In human nutrition RCTs data may be
missing for many reasons including, but not limited to,
non-adherence to the study intervention, despite willingness
to continue with follow-up for outcome assessment, or
early withdrawal from the study because the participant
is no longer available for the study including outcome
assessment (49). Missing data affect a key assumption of
randomization, known and unknown characteristics are
balanced between allocation units, and thus the approach
for managing missingness must be clearly delineated in
the analysis plan with consideration for the assumptions
underlying different methods. Details about methods for
handling missing data are beyond the scope of this paper;
methods for dealing with missing data in nutrition RCTs
have been published previously (50). The interested reader
is referred to a National Research Council report on the
prevention and treatment of missing data in clinical trials
(19).

Additional planned analyses
Sensitivity analyses: Sensitivity analyses are conducted to
determine the robustness of a finding by examining how the
result is affected by changes in methods, models, values of
unmeasured variables, or assumptions (51). If the findings of
the primary analyses align with the sensitivity analyses this
increases confidence in the results, even if ideal experimental
and analytic conditions have not been met (52). In contrast,
if the results of the primary analysis and sensitivity analysis
differ, the conclusion of the study should be based on
the primary analysis with acknowledgment that 1 or more
sensitivity analyses suggested that the findings are not robust.
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Sensitivity analyses may be conducted to assess the impact of
non-adherence or protocol deviations, missing data, outliers,
imbalances in baseline characteristics, prognostic factors,
or different assumptions underlying statistical models (52).
Sensitivity analyses should be planned a priori and included
in the statistical analysis plan. Post hoc sensitivity analyses
may also be conducted and should clearly be reported as
such in the manuscript with a rationale for conducting these
analyses.

Subgroup analyses: Subgroup analyses are conducted to
evaluate the effect of an intervention in subgroups of par-
ticipants defined by baseline characteristics. These analyses
are used to determine if the intervention effect differs for
participants with a specific characteristic at baseline or to
determine how consistent the intervention effects are across
different subgroups within a trial cohort. Subgroup analyses
by genotype or phenotype may be conducted to assess
responsiveness to an intervention to inform personalized or
precision nutrition approaches. Subgroup analyses should
be pre-specified (including the criteria that will be used to
define the subgroup), limited in number, and included in the
statistical analysis plan. As described in Section 6, subgroup
analyses inflate the type I error rate (both pre-specified
and post hoc subgroup analyses) and therefore appropriate
consideration for this is required in the planning and data
analysis phases. Specifically, trials designed to determine
overall intervention effects will lack power to detect subgroup
differences, and therefore if examining heterogeneity in
intervention effects is part of the research question this must
be factored into the design to minimize type II statistical
errors (53). In addition, if subgroup analyses are not taken
into consideration when the randomization schedule (i.e.,
stratified randomization schedule) is generated, the sub-
groups are likely to differ with regard to known and unknown
characteristics, which limits inferences about heterogeneity
in intervention effects (54). Heterogeneity in intervention
effects among subgroups should be assessed with a statistical
test for interaction (55). For example, to examine whether
the effect of an intervention on LDL-cholesterol differed
by sex the interaction between treatment and sex would
be examined in a statistical model; if there is a statistically
significant interaction this suggests heterogeneity in the
intervention effect. Heterogeneity should not be assessed
by examining the intervention effect in subgroups sepa-
rately. For example, examining LDL-cholesterol lowering
in males following an intervention, then examining LDL-
cholesterol lowering in females and making conclusions
about intervention differences based on sex. When reporting
on subgroup analyses, it should be clearly stated whether
the subgroup analysis was pre-planned or conducted post
hoc and the findings should be interpreted based on the
aforementioned considerations. Furthermore, all subgroup
analyses conducted should be reported, not just the analyses
that reach statistical significance.

Exploratory analyses: Endpoints that are not designated
a priori as primary or secondary outcomes are termed
exploratory endpoints. Exploratory endpoints are sometimes

clinically important events that are expected to occur too
infrequently to show an intervention effect or outcomes that
are included to explore new hypotheses (28). Exploratory
endpoints and/or analyses should be clearly identified as such
and whether the analyses were pre-specified should be indi-
cated. The hypothesis-generating nature of such exploratory
analyses should be acknowledged in the publication of results
because of the inflated risk of false positive findings (type I
statistical errors).

Safety and tolerability analyses
Safety and tolerability analyses are usually limited to par-
ticipants who received at least 1 dose of the investigational
treatment or were exposed to the dietary intervention
on at least 1 occasion (27). Where specific safety and/or
tolerability issues are anticipated this can be factored into
the design of the trial. However, unanticipated safety and/or
tolerability issues may occur. Safety and tolerability may be
best addressed by applying descriptive statistical methods to
the data. If hypothesis tests are used, statistical adjustments
for multiplicity may be conducted to minimize the risk of
type I statistical errors; however, type II statistical errors may
occur as well. Therefore, safety and tolerability variables are
often tested at an alpha level of 0.05 to minimize the risk of
type II statistical error with acknowledgment that such an
approach may produce false positives.

Data presentation
Results reported for a human nutrition RCT should include
both descriptive and inferential statistics. Data should be
presented in a format that is useful for future pooled
analyses including meta-analyses (Box 2); poor data re-
porting impedes efforts to appropriately perform meta-
analyses (56, 57), a particular issue for crossover designs (58).
Descriptive statistics provide a summary of observations
and may include tabular and graphical summaries of the
sample characteristics, such as the mean and SD to describe
central tendency and dispersion, respectively, for the overall
study sample and for each study group, or randomization
sequence if a crossover study. The SEM is sometimes reported
rather than the SD. The SD describes the distribution of
the characteristic in the sample, whereas the SEM is really
an inferential statistic that provides information about the
precision with which the mean is estimated. The group SEM
can be calculated from the group SD and the number of
participants/observations using the formula:

SEM = SD/
√

n (1)

When values are non-normally distributed due to skew-
ness, alternative measures of central tendency and dispersion
are preferred, generally the median for central tendency
and either the interquartile range limits (25th and 75th
percentiles) or the range limits (minimum and maximum)
for dispersion. Alternatively, a normalizing transformation
can be employed, such as the natural log, and values
reported for the mean and SD of the transformed values.
To show the mean in its original units, the anti-log may
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be used to provide a geometric mean. It should be noted
that the back-transformed values for CI limits will not
be symmetrically distributed around the geometric mean.
Frequencies are described as numbers and percentages
for categorical variables such as sex, race/ethnicity, and
clinical classifications such as normal weight, overweight,
and obese. For crossover studies it is useful to present
statistics for central tendency and dispersion for the differ-
ence between treatments, which is helpful for later meta-
analysis.

Box 2:
Data required for meta-analyses most
commonly including human nutrition RCTs
by outcome type

Dichotomous (Binary) Outcomes
Randomized controlled parallel trials
� For each group, the number of participants expe-

riencing an event and number not experiencing an
event.

Randomized controlled crossover trials
� Paired response to each condition (every subject

represented once), i.e., event with active and
placebo, no event with active and placebo, event
with active and no event with placebo, no event
with active and event with placebo.

Continuous Outcomes
Randomized controlled parallel trials
� Number of participants and mean ± SD (pre-

sentation of standard error or CI will enable
calculation of the SD) for each group at the end
of the study period.

� Between-group mean difference ± standard error
(or CI).

Randomized controlled crossover trials
� Between intervention/condition mean

difference ± standard error (or CI).

Time-to-Event Outcomes
� HR and log-rank variance or lnHR and variance

of the lnHR.

Inferential statistics are used for estimation of parameters
and to test hypotheses, which allow inferences to be made
about a population, based on data collected from a sample
drawn from the population. In other words, a parameter
is a summary value that describes the whole population;
however, rarely is the true value for the population known,
so an estimate about the population is made from a sample
that is representative of the population. A CI is used to
express the degree of certainty about the sample estimate. A

larger sample will produce an estimate with a higher degree
of certainty (confidence) that the value from the sample
reflects the population value, and will, therefore, result in
a smaller range for the CI. The 95% CI will be the range
of values within which one can be 95% confident that the
true mean in the population lies. With a larger sample,
the range covered by the 95% CI will be smaller than that
for a smaller sample, reflecting a higher level of confidence
in the point estimate. When the sample is large, the 95%
CI is approximately mean ± z∗SD/

√
n. The z-value (from a

standard normal distribution) for a 99% CI is 2.58 and for a
95% CI it is 1.96. For many statistics, software will provide
CIs using the t distribution in place of the z-value based on
the normal approximation.

The CI and P-value for a statistical test are related and
reporting of both aids in data interpretation. Reporting of
CIs is recommended because a 95% CI will include the
true effect size, on average, 95% of the time assuming
statistical model assumptions are met. In other words, if
the alpha level for a statistical test is 0.05, the 95% CI will
not include the null hypothesized value of zero or 1. The
null value is zero for an absolute difference, such as the
difference between means/medians or event incidence by
randomization unit. When the statistic being evaluated is a
ratio, such as an odds ratio, RR, or HR, the null value will
be 1. For example, in a study comparing the incidence of
new-onset type 2 diabetes mellitus between an intervention
group and a control group, a HR (95% CI) of 0.70 (0.62, 0.77)
would indicate that the incidence rate for type 2 diabetes
was 30% lower (1−0.70 = 0.30 or 30%) in the intervention
group compared with the control group. Furthermore, it
can be concluded with 95% confidence that the true HR is
between 38% and 23% lower for this participant population.
Since the 95% CI does not include the null value of 1.0,
this relationship is statistically significant at an alpha of
0.05.

Statistical software
Various statistical analysis packages are available. Some offer
menu-driven options (e.g., JMP and SPSS) and others require
programming skills such as SAS and R. The latter is an
open-source package that is available at no cost. In addition,
various specialized packages are available for specific types
of analyses, such as analysis of genomic or microbiome
data.

Summary and conclusions
Key steps in the development of a pre-defined statistical
analysis plan, considerations for statistical analysis of data
from human nutrition RCTs, and presentation of results
have been summarized. Development of a detailed statistical
analysis plan early in the planning of a human nutrition
RCT will facilitate optimization of the study design and
procedures to ensure alignment between the objective(s) and
the methods. This increases the transparency, validity, and
reproducibility of the findings, which are at the foundation
of high-quality human nutrition research.
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